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Abstract: In this paper we present a comparative analysis of two algorithms for image representation with application 
to recognition of 3D face scans with the presence of facial expressions. We begin with processing of the input point 
cloud based on curvature analysis and range image representation to achieve a unique representation of the face 
features. Then, subspace projection using Principal Component Analysis (PCA) and Linear Discriminant Analysis 
(LDA) is performed. Finally classification with different classifiers will be performed over the 3D face scans dataset 
with 61 subject with 7 scans per subject (427 scans), namely two "frontal", one "look-up", one "look-down", one 
"smile", one "laugh", one "random expression". The experimental results show a high recognition rate for the chosen 
database. They demonstrate the effectiveness of the proposed 3D image representations and subspace projection for 3D 
face recognition. Copyright © Research Institute for Intelligent Computer Systems, 2014. All rights reserved. 
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1. INTRODUCTION 

Face recognition is a crucial part of many 
contemporary applications. Recent key applications 
in fields such as human-computer interface, identity 
verification, criminal face identification and 
surveillance systems need a reliable face recognition 
algorithms. Most of the approaches have focused on 
the use of 2D images but the decreasing cost of 3D 
acquisition systems and their increasing quality, 
together with the greater computational power 
available nowadays, will make real-time 3D systems 
for face recognition a commonplace in the  
near future.  

According to [1] it appears that 2D face 
recognition techniques have exhausted their 
potential as they stumble on inherent problems of 
their modality such as differences in pose, lighting, 
expressions, and other characteristics that can vary 
between captures of a human face. 

Recently, to overcome these challenges 3D facial 
recognition systems have been developed as a newly 
emerged biometric technique. It is showing 
promising results in terms of a high level of 
accuracy and reliability. Also it is more robust to 
face variation due to the different factors. A face-
based biometric system consists of several 
subsystems: acquisition system performed by special 
devices (2D camera, 3D scanner or infrared camera), 

pre-processing unit, feature extraction unit, database 
and a recognition unit. In our scenario, an 
acquisition device may be a 3D-scanner that can 
record the facial information. 

3D face recognition is a challenging task with a 
large number of proposed solutions [2, 3]. With 
variations in pose and expression the identification 
of a face scan based on 3D geometry is difficult. 

One common technique on 3D object recognition 
is based on the correspondence among scene points 
and model points in order to perform the recognition 
and to determinate the object pose and location [4]. 
Among the 3D free-form object descriptors to 
represent objects is the curvature of the local surface 
evaluated in each point, which is characterized by 
the directions in which the normal of the surface 
changes more and less quickly [5]. In [5], a set of 
twelve 3D feature extracted from segmented regions 
using curvature properties of the surface were 
experimented for face recognition using a database 
of 8 individual and 3 images per individual 
obtaining 95,5% recognition rate providing a 
previous 100% correct feature extraction. 

Another popular approach to representing the 
face is the range image representation where the 3D 
point cloud is represented as a 2D image. The 
popularity of this approach is due to the many 
readily available methods for 2D facial recognition 
[6]. Also range images are robust to the change  
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of color and illumination, which causes a  
significant problem in face recognition using 2D 
intensity images. 

The rest of the paper is organized as follows: In 
the next section we present the technique for pre-
processing of point cloud data, curvature analysis 
and range image representation of the 3D face image 
data. In Section 3 we present the approach for 
dimensionality reduction based on PCA and LDA. 
In that section we have described the classifiers for 
the subspace projections. In Section 4 we have 
presented the experimental results for the 
classification of the processed data with various 
classification techniques. Finally in section V we 
will present our future plans to develop  
these methods. 

 
2. PREPROCESSING OF THE POINT 
CLOUD DATA, RANGE IMAGE AND 

CURVATURE-BASED 
REPRESENTATION 

2.1. POINT CLOUD FILTERING 

Compared to widely available CMOS and CCD 
technologies for capturing 2D images, the 
technology for 3D scanning is still immature in 
many aspects. There are multiple approaches to 
acquiring 3D data but all of them have drawbacks. 
The data acquired with 3D scanners contain 
undesired noise usually in the form of erroneous 
measurements or missing measurements. In the first 
case this noise appears as “spikes” in the data and in 
the second appears as “holes”.  An example is 
illustrated on Fig. 1. 

 

 

Fig. 1 – Example of spikes in the 3D scan under the 
nose and on the eye. 

 
Usually samples are missing because the scanner 

fails to read the reflection of the laser beam at 
certain point, while the spike-like measurements are 
usually caused by reflection of wet surfaces such as 
the eyes [12]. The spikes exist because the laser 
beam is reflected by a glossy object such as wet skin 

areas. The holes on the other hand can be seen when 
the laser beam of the scanner is not reflected. Such 
situations can rise, for example, when the mouth of 
the person is open or the pupil of the eye is wide 
open.  It may heavily influence the recognition 
processes so a preprocessing step is required. 

To cope with these issues we apply preprocessing 
in three steps: face extraction, median filtration and 
smoothing. Median filtration is used to remove the 
spike-like measurements. The smoothing is 
performed using cubic interpolation. All missing 
points are filled by interpolation based on the closest 
points. Since the interpolation is applied in a least 
squares manner, a Gaussian noise is reduced also. 
Example of profile view of point cloud originated 
from scanner, filtered with median filter and the 
extracted face region is presented in Fig. 2. 

The scanning process captures the face but also 
the region around the face including hair, neck, 
chests etc. These body parts do not contain 
information relevant to the face recognition process 
and need to be removed. 

 

 

Fig. 2 – (from left to right): Example point cloud 
representation, filtered version of it and the extracted 

facial region. 

 
To cope with these drawbacks we apply 3D 

median filtering of size medN  elements. The steps to 

perform this filtration are as follows:  first, for each 

point T
iiii zyx ],,[x of the point cloud data the 

nearest medN  points are selected by calculating the 

Euclidean distance using only the x  and y  

coordinates. Next the z  values of these medN  points 

are arranged in increasing order and the value at 

index   12/ medN  is selected. This value 

represents the median value of the selected medN  

points, closest to ix . As a final step, the iz  value of 

ix  is replaced with the median value.  

This filtration removes the “spikes” and the 
“holes” and also noise induced by the scanner.  

The next step in the preprocessing stage is face 
extraction (Fig. 1). This step is needed because the 
scanner captures data of body parts such as neck, 
shoulders and hair. This step can also be considered 
as face registration step because all faces are aligned 
to the same coordinate center. 
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2.2. RANGE IMAGE REPRESENTATION 

A common approach [6, 7] is to use all data 
points of the point cloud, located inside a sphere 

with radius FER  and center the tip of the nose. 

Using this assumption the point with maximum 
z value is considered as the nose and translation of 
the 3D point cloud data is made such that this point 
is the center of 3D coordinate system. After the 
registration step all faces are aligned to a common 
coordinate system and are extracted such as to 
contain relevant and meaningful information only.  

An example of range image representation and 
extracted face region is given on Fig 3. The intensity 
values of the range images represent inverse distance 
to the scanner i.e. the brighter the value the closer to 
the scanner.  

 

 

(a) 

 

(b) 

Fig. 3 – Range image representation of 3D point 
cloud data from scanner (a) and extracted face (b). 

 
The range images are robust to the change of 

illumination and color because the value on each 
point represents the depth value which does not 
depend on illumination or color. 

Also, range images are simple representations of 
3D information. The 3D information in 3D mesh 

images is useful in face recognition, but its data is 
complex and difficult to handle. It is easy to utilize 
the 3D information of range images because the 
information of each point is explicit on a regularly 
spaced grid. 

As a first step to range image representation the 
minimum and maximum values of the point cloud 
values are extracted: 
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for each point Ni ,...,1 , where N  is the number 

of points in the point cloud. Next a set of two regular 
grids, one for x one for y directions, are generated 

such that there are RIN  equally spaced points 

between MinX and MaxX and MinY and MaxY 
respectively. These grids define the coordinate 
system of the range image. Next a linear 
interpolation is applied to the point cloud data such 
that the interpolated points lie on the previously 
defined grid. At the end rescaling of the z  values is 
applied such that MinZ = 0 and MaxZ = 1. The result 
is M by M image with intensities in the range [0, 1]. 
 

2.3. CURVATURE-BASED 
REPRESENTATION 

One of the main motivations for using curvature 
representation is their invariance to rotations. Besl 
and Jain [13] studied the 3D object recognition using 
range images. They calculated Gaussian curvature 
and mean curvature and used the signs of these 
surface curvatures to classify range image regions. 
Based on this 3D object recognition problem, 
Gordon devised a solution for a face recognition 
problem using range images [14].  

Formally curvature represents the amount of 
local bending. The facial point cloud can be 
considered as 2D continuous surface parameterized 
over independent variables vu, .  

Let S  be the facial surface in the form 

),( yxfz   with parameterization 

)),(,,(),( vufvuvuZ  . The partial derivatives in 

the directions of the independent variables vu ZZ ,  

form a basis for the tangent plane at point ),( vuZ . 

Then the intersection of S with a plane formed by 
the surface normal n  and a vector from the tangent 

plane is called normal section of S at ),( vu along 

the direction of the tangent vector. The curvature of 
the normal section is called normal curvature. Then 

the principal curvatures )(,, 2121 kkkk  are the 
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maximum and the minimum of the normal 
curvatures at point ),( vu . Using the principal 

curvatures we calculate the mean H  and the 
Gaussian curvature K by [8]: 

 

21kkK      (2) 

)(
2

1
21 kkH     (3) 

 
These values are calculated for each point of the 

3D point cloud and they are the curvature based its 
representation. On fig. 4 an example of Gaussian 
and mean curvature representation of range image. 
Then the feature vector is formed by rearranging 
them as vectors and concatenation to form  
single vector. 

 

 

Fig. 4 – Top row, left to right: projected range image 
and its smoothed version. Second row: mean and 

Gaussian curvature map [21] (the darker zones are 
high curvature regions and lighter low curvature 

regions). 

According to [15] this method shows that a great 
deal of information about facial features that cannot 
be seen from intensity images is contained in the 
curvature maps. This approach can deal with faces 
that differ in size, but needs extension to cope with 
changes in facial expression. 

 
3. SUBSPACE PROJECTION  

WITH PCA AND LDA 

For the subspace projection step we propose a 
combination of two very popular approaches for 
linear dimensionality reduction, namely Principal 

Component Analysis (PCA) and Linear 
Discriminant Analysis (LDA).  

 
3.1. PRINCIPAL COMPONENT ANALYSIS 

The first approach is unsupervised technique for 
projection onto a subspace, trying to preserve most 
of the important information while reducing 
irrelevant noises.  

From statistical point of view PCA seeks linear 

transformation of type XWY T  which results in 
decorrelated output signals [9], where X  is a matrix 
of the feature vectors. The major step in PCA is 
determining the basis W . This basis is calculated by 
solving the problem of eigenvalues and eigenvectors 
of the covariance matrix of X : 

 

}))({( T
X XXXXC  E ,   (4) 

 

where X  is the mean value of the data. The solution 
of the eigenvalue problem is stated as: 
 

 WWCX    (5) 

 
Each of the columns of W  represents a normalized 

eigenvector of XC  and   is diagonal matrix with 

the eigenvalues on the main diagonal. 
Dimensionality reduction can be achieved by first 
rearranging eigenvalues in descending order and 
then rearranging W  to match  . Using the criteria 
Normalized Residual Mean Square Error (RMSE): 
 

TbRMSE
p

i
i

b

i
i  

 11

)(  , (6) 

 
where Т is a threshold representing the fraction of 
the power of the signal, the most relevant b 
eigenvectors are selected.  

Projecting the data on the PCA basis W  has two 
advantages. First, this transformation preserves most 
of the important information and facilitates further 
calculations since the dimension of the projected 
data is much lower. Second, removing basis vectors 
of which the corresponding eigenvalues are lower is 
similar to filtering out non correlated noises. Thus 
PCA makes the process more robust to non 
informative variations.  

 

3.2. LINEAR DISCRIMINANT ANALYSIS 

The second technique is supervised and oriented 
towards classification. It seeks a subspace onto 
which the projected data can be separated by a 
hyperplane. 
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Given c classes cii ,...,1,   LDA seeks c-1 

discriminating directions of type 

1...1,  ciy ii xwT , (or in matrix notation 

xWy T ), where x  is a PCA feature vector [9]. It 

is assumed that the dimensionality of the image 

space is cd  , which defines W  as a rectangular 
matrix. Thus, LDA is a projection in a space with 
lower dimensionality.  

The basis W  is calculated by solving: 

 

||

||
maxarg)(

WSW

WSW
W

T

T

W W

BJ     (7) 

 

WS  is called within-class scatter matrix representing 

the scatter of each class and BS  is between-class 

scatter matrix representing the scatter between the 
mean vectors of each class: 
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The vector m  is the mean value of the data and im  

is the mean vector of the i-th class. The scalar in  

defines the priors for i-th class. The matrix BS  is 

sum of с matrices with rank one where at most с-1 
of these matrices may be independent. Thus there 
exist not more than с-1 nonzero eigenvalues with 
their respective eigenvectors. 

The solution of (8) is calculated by solving the 
generalized eigenvalue problem: 

 

iWiiB wSwS      (10) 

 

for each basis vector cii ,...,, 1w , corresponding 

to the largest c eigenvalues cii ,...,, 1 . 

Once the dimension of the data is reduced for the 
range image representation technique and the 
curvature-based representation using the feature 
vectors we apply multiple class classification using 
different classifiers to test the effectiveness of these 
two approaches. 

 
4. EXPERIMENTAL RESULTS 

We performed tests of the proposed approach 
using the “SHape REtrieval Contest 2008: 3D Face 
Scans” (SHREC) database [11]. All subjects in this 

database are Caucasian, scanned with Minolta Vi-
700 laser range scanner.  

There are seven scans per subject, two are with 
neutral expression and the rest are with expression. 
Thus there are total 61 subject with 7 scans per 
subject (427 scans), namely two "frontal", one 
"look-up", one "look-down", one "smile", one 
"laugh", one "random expression".  

SHREC scans are normalized for pose variations 
and a simple hole filling algorithm is applied. 
Moreover the tip of the nose is centered at the origin 
of the 3D coordinate system. This kind of 
normalization reduces the dependency of irrelevant 
variations and emphasize on the actual 3D face 
recognition. A sample of the database is presented 
on Fig. 5.  

For both experiment we selected experimentally 
the radius of the sphere in the Face extraction step to 
be and the size of the median filter window to be 
5x5. 

 

 

Fig. 5 – Sample from the 3D face scans of SHape 
REtrieval Contest 2008. 

 
We performed two experiments on the point 

cloud face scans. In Experiment 1 we used the first 
two scans with frontal view (neutral expression) for 
training and the rest of the scans for testing. In 
Experiment 2 we used 2 frontal scans, one scan with 
smiling expression and one “random expression” 
scan for training and the rest for testing. 

For the experiments we used Matlab Pattern 
Recognition Toolbox PRTools 4.2.4 
(http://prtools.org/) [16] and the LIBSVM package 
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/) [17] for 
the kernel Support Vector Classifier.  

For our classification task we use several 
standard classifiers.  

We apply nearest neighbors classifier (KNN) for 
classification of unknown point cloud into one of the 
available classes. This classifier is relatively simple 
technique which assigns the class label of the 
unknown data based on the closest training samples.  

Closeness is defined by the distance between the 
samples and the class label assignment is made by 
selecting the class label of the majority of the closest 
KNN samples. In our approach we use the 
advantages of the Euclidean measure to compute the 
distance between samples and we tested the 
approach by varying the number of neighbors 
between 1, 3 and 5. Only the best results for the 
recognition rate are presented [22].  
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Minimum least square linear classifier (Fisher 
classifier), normal densities based quadratic (multi-
class) classifier (QDC) and Naïve Bayes classifier 
are also used in the experiment. 

The normal based quadratic classifier assumes 
that the classes are described by multi-normal 
distributions each with its own covariance matrix. If 
the covariance matrices are singular we use a 
regularized version of this classifier by enlarging the 
diagonal values of the matrix [20].  

The Fisher linear discriminant is obtained 
maximizing the ratio of between-scatter to within-
scatter – the Fisher criterion, which for two classes 
is basically the normal based linear classifier. If the 
covariance matrix is singular we use a regularized 
version of this classifier by enlarging the diagonal 
values of the matrix [20]. 

The naive Bayes classifier has several properties 
that make it useful in practice. One of the most 
important is the separation of the class conditional 
feature distributions which means that each 
distribution can be independently estimated as a one 
dimensional distribution. This helps solve the 
problem of the curse of dimensionality, such as the 
need for datasets that scale exponentially with the 
number of features [19]. 

We also applied kernel-based SVM. Each kernel 
defines an implicit transformation from objective 
space into a usually higher dimensional feature 
space. We applied kernel Support Vector Machines 
with the pure distance substitution linear kernel (klin) 
and the Gaussian radial basis kernel (krbf).  
Depending on the chosen kernel, the geometry of 
this induced feature space can be very specific. 
Using RBF kernels for example, the points in feature 
space all lie on a hyper sphere around the origin with 
a radius one [18]. One of the main characteristics of 
kernel-based SVM is that their runtime and space 
complexity is basically independent of the 
dimensionality of the input space, but rather scales 
with the number of data points used for training. In 
our case we use only a fraction of the dataset  
for training. 

The values of the penalty error C and the 
parameter for the Gaussian radial basis kernel are 
logarithmically varying along a suitable grid and 
only the best recognition rates are presented. 
Because this is multiclass recognition problem we 
used the “one versus all” procedure for the Support 
Vector Machines where classification is done by a 
max-wins voting strategy.  

For the size of the range images we selected 

64RIN , thus the range images space is of size 

4096. We preserve 95% of the energy of the PCA 
eigenvalues which results in 107 eigenvectors, i.e. 
107 dimensional feature spaces.  

The results for the range image representation in 
terms of recognition rate in % are presented in 
Table 1. 

 

Table 1. Experimental results for the range image 
representation in terms of recognition rate in %. 

Classifier Recognition Rate 
Experiment 1 

Recognition Rate 
Experiment 2 

Fisher classifier 71,93 77,56 
QDC 81.64 89,43 
Naïve Bayes 78,88 86.24 
KNN 91.78 95.45 
SVM klin 64.92 75,93 
SVM krbf 93.36 96.64 

 
On Fig. 6 is represented the training set for 

Experiment 2 in function of the first two features to 
demonstrate the highly nonlinear data 
representation. 

For the curvature-based representation after 
preserving 95% of the energy of the eigenvectors i.e. 
T = 0.95 the resultant PCA basis is with 112 
eigenvectors.  
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Fig. 6 – The training set for Experiment 2 in function 
of the first two features. 

 
The results for the curvature-based image 

representation in terms of recognition rate in % are 
presented in Table 2 below. 

 

Table 2. Experimental results for the curvature-based 
image representation in terms of recognition rate in 

%. 

Classifier Recognition Rate 
Experiment 1 

Recognition Rate 
Experiment 2 

Fisher 
classifier 

63.93 69.22 

QDC 76.38 83.65 

Naïve Bayes 72.68 79.22 

KNN 78.78 85.16 
SVM klin 69.56 74.87 

SVM krbf 87.12 91.56 
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5. CONCLUSION 

In this paper we have presented comparative 
analysis to 3D Face recognition techniques based  
on range image and curvature-based image 
representations.  

The 3D range image representation technique 
results in easy to handle data because the value on 
each point represents the depth information. The 
range images are robust to the change of 
illumination and color.  

The curvature-based representation is robust to 
faces that differ in size, but needs extension to cope 
with changes in facial expression as the results for 
the recognition rate show. 

The experimental results show a high recognition 
rate for the SHREC 3D Face database. These 
experiments demonstrate the effectiveness of the 
proposed 3D image representations and subspace 
projection for 3D face recognition. The recognition 
is successful with most classifiers but the best 
classifier performance in the two representations is 
the SVM Gaussian radial basis kernel. The linear 
classifiers such as Fisher and SVM klin perform less 
well than the other nonlinear classifiers, this is due 
to the highly nonlinear data representation. 

In the future additional tests will be performed 
adding more classification techniques to try and 
confirm the method’s robustness against additive 
noise. Also different test will be included with 
different number of retained feature vectors. There is 
a need of improving the curvature-based 
representation to take into account the changes in 
facial expression. 
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