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Abstract: Over the past few decades, application of neural networks and chaos theory to electroencephalogram (EEG) 
analysis has grown rapidly due to the complex and nonlinear nature of EEG data. We report a novel method for 
epileptic seizure detection that is depending on the maximal short-term Lyapunov exponent (STLmax). The proposed 
approach is based on the automatic segmentation of the EEG into time segments that correspond to epileptic and non-
epileptic activity. The STL-max is then computed from both categories of EEG signal and used for classification of 
epileptic and non-epileptic EEG segments throughout the recording. Neural network techniques are proposed both for 
segmentation of EEG signals and computation of STLmax. The data set from hospital have been used for experiments 
performing. It consists of 21 records during 8 seconds of eight adult patients. Furthermore the publicly available data 
were used for experiments. The main advantages of presented neural technique is its ability to detect rapidly the small 
EEG time segments as the epileptic or non-epileptic activity, training without desired data set about epileptic and non-
epileptic activity in EEG signals. The proposed approach permits to detect exactly the epileptic and non-epileptic EEG 
segments of different duration and shape in order to identify a pathological activity in a remission state as well as detect 
a paroxysmal activity in a preictal period. Copyright © Research Institute for Intelligent Computer Systems, 2015. All 
rights reserved. 
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1. INTRODUCTION 

Nowadays Artificial Intelligence has become 
broadly applied in medicine as evidenced by over 
500 academic publications concerning artificial 
neural networks in medical applications [1]. In 
accordance with published literature, artificial neural 
networks are potentially powerful tools for 
automating diagnostics to support clinical decision 
making. Here, we propose a novel automated 
algorithm for seizure detection in patients 
with epilepsy.  

The scalp EEG is the most widely-used 
diagnostic tool in epilepsy, a common neurological 
disorder that affects approximately 1% of the 
world’s population [2]. Seizure detection, as well as 
detection of epileptiforminterictal activity, is an 
essential part of day-to-day management of patients 
with epilepsy. Notably, although most EEG data are 
now digital, and numerous protocols for automated 
seizure detection are available [2-16], the EEG is 

still largely analyzed by visual inspection. Here, we 
present a novel method for automated detection of 
seizure and epileptic interictal discharge based on 
the maximal short-term Lyapunov exponent 
(STLmax), a measure of dynamic system instability 
which has been extensively used in EEG 
analysis [3, 17] 

Previous studies show nonstationarity and 
chaotic nature of EEG data, and thus justify a 
measure of entropy such the STLmax [3, 8-10]. 
There exists clear difference in dynamical properties 
of the EEG signals in non-epileptic and epileptic 
state. Epileptic seizures are characterized by 
synchronized neuronal firing which reduces EEG 
complexity. It is known that the STLmaxis reduced 
during epileptic activity, and for this reason the 
STLmax calculation has been proposed as a 
component of seizure detection protocols [3, 5, 8-
10]. However the conventional approaches for 
computing of the STLmax exponent are very 
sensitive to the volume of data and computationally 
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intensive [18]. In order to estimate the STLmax for 
EEG data, a modified Wolf algorithm [17] are used 
in [3]. However, the existing approaches have the 
following drawbacks: unreliable for small data-set 
size and computationally intensive. Therefore the 
many authors use for computing of STLmax long 
EEG segments with time length of 10,24 s [19-21]. 
One limitation of previous study is that these don’t 
permit to detect exactly the small EEG segments 
with epileptic and non-epileptic activity. 

Seizure detection by machine learning protocols 
is often accomplished in two stages: (1) feature 
selection and (2) event classification [5, 11-16]. 
However, present approaches to feature selection 
have a disadvantage in their inability to select time 
segments with epileptic activity in EEG and the 
requirement for neural network training on desired 
data set, which necessitates some amount of non-
automated EEG analysis in order to identify 
representative epileptic and non-epileptic EEG 
segments to be used as templates for the automated 
algorithm [2,4-2-7,11-16].  

The basic idea of this paper is to detect exactly 
the EEG segments of different duration with 
epileptic and non-epileptic activity. It permits to 
identify pathological activity in remission state and 
to detect paroxysmal activity in preictal period. We 
propose neural networks technique both for time 
segmentation of EEG signals and computation of the 
STLmax. As mentioned, the epileptic seizure is 
characterized an STLmax decrease, and we propose 
to exploit the change of the STLmax over time as a 
criterion of epileptic seizure in EEG segments. The 
proposed diagnostic system generates two-
dimensional map which can visualize the zones 
(segments) of epileptic and non-epileptic activity in 
EEG signals, as it can be seen below.  

Neural networks techniques permit to reduce the 
diagnostic time and the number of misdiagnosis, as 
well as to assist the doctor in making decision. The 
clinical data from the 5th City Hospital (Minsk, 
Belarus) have been collected for testing of the 
proposed approach. Furthermore the publicly 
available data were used for experiments [23]. The 
efficiency of epileptic seizure detection is illustrated 
by the experimental results. 

The paper is organized as follows. The dataset 
used in this work and proposed methodology is 
given in Section 2. In Section 3 the experimental 
results are described. Finally, discussions are given 
in the last section. 

 

2. MATERIALS AND METHODS 

2.1. DATABASE 

In this research we have used two dataset for 
proposed approach testing. The first one described in 
[22] and publicly available from [23]. The second 

one have been taken from 5th City Hospital in 
Minsk (Belarus). Let’s consider these databases. 

The complete dataset [22] includes five subsets 
(denotes A, B, C, D and E), each containing 100 
single-channels EEG signals of 23,6s duration with 
sample frequency of 173,6 Hz. Set A and B have 
been taken from surface EEG recordings of five 
healthy volunteers with eyes open (set A) and closed 
(set B), using international 10-20 electrode 
placement scheme. Set C and D consist of inter-ictal 
recordings from five epileptic patients. Electrodes 
were placed on epileptic zone for set C and on the 
hippocampal formation of the opposite hemisphere 
of the brain for set D. Thus sets C and D contains 
activity of epileptic patients measured during 
seizure free intervals. Set E includes seizure  
activity, selected from all recording sites exhibiting 
ictal activity. 

The next database was collected from the 5th 
City Clinical Hospital (Minsk, Belarus) for eight 
adult patients with epileptic activity. During long 
time was performed patients examination, using 16-
channel registration of EEG. The EEG signals have 
been registered with the sampling rate of 250 
samples per second. The duration of one registration 
was approximately 30 min. 50 registrations were 
realized for each patients. As a result of processing 
these EEG data, the EEG database was created, 
which represents the set of 21 registrations of 16-
channelEEG, selected from eight adult epileptic 
patients during 8 seconds for each registration. It 
may be noted, that each signal in EEG was presented 
as time series of 2000 points. Thus the EEG 
database contains 21x16=336 EEG time series. The 
total number of epileptic events in these EEG signals 
is 32. The epileptic events were selected due the 
long time examination of patients. We should note 
that practically impossible to indicate the seizure 
event in these EEG signals even for high quality the 
neurologist experts. Our goal is to detect in  
EEG signals the segments with epileptic and non 
epileptic activity. 

 
2.2. THE SYSTEM DESCRIPTION 

In this section the neural network diagnostic 
system for epileptic seizure detection using EEG 
data is described. As a diagnostic criterion the value 
of the STLmax is used, which is decreased during 
seizures. The STLmax characterizes sensitivity to 
initial conditions [17, 18]. It is statistical measure of 
divergence between two orbits starting from slightly 
different initial conditions. The neural network 
diagnostic system is shown in Fig. 1. It consists of 
different modules, which are combined in diagnostic 
system. One can see from Fig. 1 the system inputs 
are multi-channel EEG patient data of patient. These 
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data can be interpreted as an observation of chaotic 
dynamical system generating electrophysiological 
waves. EEG data recorded from scalp electrodes 
contain different artifacts and consist of various 
signals combination. Therefore in the first stage the 
independent component analysis (ICA) is used for 

artifacts removal and extraction of the independent 
sources from their mixtures [24]. ICA separates the 
independent sources from their mixtures by 
measuring non-Gaussian. As a result we can get 
independent and clean EEG data without artifacts 
and noises. 

 

ICA Segmentation

The Largest 
Lyapunov’s 
exponent 
computing

Epileptic 
activity 

detection

Segments

Set
of EEG signals

Preliminary 
diagnosis

( )t

 

Fig. 1 – There is neural network system for epileptic activity detection. The set of EEG signals is used as input 
data for the system. λ(t) is time series of STLmax value. ICA – independent component analysis. 

 
In the second stage every EEG signal is divided 

into quasi-stationary segments, using adaptive 
segmentation algorithm. The segment is called 
quasi-stationary when its behavior does not change 
under a time shift. The multilayer neural network 
(MLP) is used for adaptive segmentation of EEG 
signal. The minimal initial length of EEG segment is 
70 points and is changed during adaptive 
segmentation. The computation of the STLmax for 
every extracted segment is performed on the third 
stage. As a result the sequence of the STLmax for 
every EEG signal is obtained: 

 

1 2( ) ( , ,.. ),pt     (1) 

 
where p is the number of selected segments. 

As a result the sequences of segments with 
different values of the STLmax are obtained. If the 
different segments have the same value of the 
STLmax they are combined into a one segment. 

Finally the epileptic seizure identification is 
performed in accordance with the following test: 

 

0, ;

0, .

normal activity

epileptic activity









 (2) 

 
As a result we obtain the segments in EEG 

signals with epileptic and non-epileptic activity. 
 

2.3. SEGMENTATION 

As it is mentioned in previous section the 
segmentation is partitioning of EEG signal into 
quasi-stationary zones (segments), where behavior 
do not change under a time shift. We propose 
adaptive segmentation algorithm for decomposition 
EEG signal into elementary intervals. The 
forecasting neural network, namely multilayer 

perceptron (MLP) is used for adaptive segmentation. 
At the beginning we should perform phase-space 
reconstruction of one-dimensional EEG signal. 
Phase-space of chaotic process can be reconstructed 
from only one time series of observation using 
embedding parameters. Phase-space reconstruction 
is a mapping, where every point x(t) of the time 
series associates with point 

( ( ), ( ),..., ( ( 1) ) Dx t x t x t D R     , where t – 

quantized time ( 1, t N D  ), τ – time delay and D – 

embedding dimension. 
Takens [25] shows, that using only one-

dimensional observation we can construct in pseudo-
phase space an attractor 
( ( ), ( ),..., ( ( 1) )x t x t x t D    , which preserves basic 

topological and dynamical properties of the attractor 
of the initial dynamical system. For this purpose we 
must take an embedding dimension as 2[ ] 1D d  , 

where [d] denotes the integer part of the attractor 
fractal dimension d, τ is appropriate time delay. In 
this case we can reconstruct an attractor in phase 

space DR  and the orbits don’t have self-
intersections in it. The reconstructed attractor also 
preserves the property, so that we can 
unambiguously calculate the latter for any (D – 1) 
phase coordinate. The embedding theorem states that 
only from a single measure of dynamical system is 
possible to reconstruct a state space, that equivalent 
to the unknown original.  

Taking this into account we can conclude, that 
we must construct the neural network, which has 
k ≥ D – 1 input units.  

After that the EEG signal is divided into the 
initial short quasi-stationary segments. The quality 
of segmentation depends on initial length of 
segments. It is known that the period of time within 
which spectral properties of the EEG signal can be 
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considered as constant even if length of segment 
longer than 4 s [26]. Therefore we have chosen 
initial length of a segment equal 70 points, that 
makes approximately 0,3 s. 70 points is an enough 
length of segment for correct neural network training 
in the task of different epileptic events including 
short single spikes detection. When N < 70 then the 
number of false positives errors is increased, 
because is not enough points to train the neural 
network for qualitative forecasting. When N>70, the 
probability to detect a single short epileptic event is 
decreased. Such a length of initial segments has been 
confirmed by experimentally way and behavior of 
EEG inside of each segment is constant. 

Then, the multilayer perceptron is trained for first 
segment by means of the sliding window method: 

 

x(t+iτ)=F(x(t+(i–1)τ), x(t+(i–2)τ),…,x(t+ 

+(i–k)τ)), ,i k n . 
(3) 

 
Here τ is time delay that is computed as the first 

minimum of the mutual information method [27], k 
is the size of sliding window. It should be noted, that 
k ≥ D – 1, where D is embedding dimension. The 
embedding dimension is calculated using the false 
nearest-neighbors method [27]. Our experiments 
show that embedding dimension is changed from 7 
till 9. The multilayer perceptron consist of 7 units 
input layer, 5 units hidden layer and 1 output unit 
(Fig. 2). After training of MLP the border of first 
segment is specified by means of forecasting 
accuracy. Thus the forecasting accuracy is criterion 
of border detection. Then is chosen the next 70 
points in EEG signal, beginning from the border of 
the first segment and the second MLP is trained 
using the points of this segment. The border of the 
second segment is specified using prediction 
accuracy. 

 

 

Fig. 2 – Predicting neural network includes three 
layers. Each layer consists of k, p and one neurons. 

 
Hence the algorithm of the dividing initial EEG 

signal into elementary intervals by the neural 
network approach is as follows: 

1) EEG signal is divided preliminary into the 
short segments of the length of N points (N=70). 
The start point of the sliding window is t = 1. 

2) The training samples are formed: {x(t), 
x(t+1),… x(t+N-1)}. 

3) Multilayer perceptron is trained by means of 
sliding window approach.  

4) The perceptron begin to predict the points of 
segment. As a result the following points are 
obtained: {x’(t+N), x’(t+N+1), x’(t+N+2), …}. The 
data prediction is ended when expression (4)  
is fulfilled. 

 

max'( ) ( )x i x i x    (
4) 

 
where i = t+N, t+N+1,…, xmax=0,1 is a 
appropriate error of the forecasting. 

5) If i = t + N (expression (4) is fulfilled) then i is 
a point of the segment border and the next training 
data set are formed beginning from t= i. Otherwise 
the segment border moves on the number of the 
predicted points, i.e. t = i – N. 

6) The procedure is continued, when t < m – N, 
where m is common length of time series. 

After fulfillment of this algorithm we can get the 
set of different segments and multilayer perceptrons 
tuned on corresponding segments. 

 
2.4. LARGEST LYAPUNOV EXPONENT 

Let’s examine the neural network approach for 
calculating of largest Lyapunov exponent. As it is 
mentioned above the Lyapunov exponent is 
statistical measure of divergence between two orbits 
starting from slightly different initial conditions [27-
29]. Let d0 be initial divergence between two 
trajectories and dn be divergence between such 
orbits after n steps. Then largest Lyapunov exponent 
is defined by 

 

0

1
lim ln n

n

d

n d




 
  

 
 (5) 

 
The conventional approach to computation of the 

STLmax can be used on experimental data only 
when the sequence of data is very long [17, 18]. So, 
in accordance with [18] the data-set size should be 
N>10D. However, it is very problematic to reach for 
real data. Therefore the traditional approach has 
been limited in their applicability to many real world 
chaotic data. One way to avoid this problem is to use 
neural networks for computing STLmax [27, 29]. It 
is based on forecasting neural network techniques 
for measure of exponential divergence and permits 
to work well with small data set. Let us consider a 
forecasting neural network, which permits to trace 
the trajectory of any point in a reconstructed phase 
space. This network after its construction with the 
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appropriate embedding parameter (embedding 
dimension D and time delay τ) allow us to perform a 
more exact prediction of a time series and to 
reconstruct an attractor from an arbitrary initial 
point. As a result forecasting neural network can 
preserve a system dynamics. It means that for every 
point in the attractor we can take the nearest point, 
which is far from it at some distance, and then trace 
its trajectory.  

Thus the key idea of proposed method [29, 30] is 
to compute by help of neural network divergence 
between two orbits on n step ahead, using iterative 
approach. In this case the neural network for 
computing of the STLmax will consist of k ≥ D – 1 
input units, where D is embedding dimension, p 
hidden units and one output unit (Fig. 2). 

First of all we must train such a neural network 
according to sliding window method (3). 

In that case procedure of calculating of the 
STLmax using small data set can be described in 
accordance with the following algorithm [29]: 

1) Train neural network using sliding window 
technique. 

2) Select first point x(t), t=1 from selected 
segment and form the following data point: {x(t), 
x(t+τ),…, x(t+(k-1)τ }, where k is window size. 

3) Compute {x(t+kτ), x(t+(k+1)τ),…, x(t+nτ)}, 
using multistep prediction.  

x(t+iτ)=F(x(t+(i–1)τ,x(t+(i–2)τ,…, x(t+(i–k) τ), 

where ,i k n , F is nonlinear function. 

4) Compute 0'( ) ( )x t x t d  , where 8
0 10d   and 

using new input pattern  
{x'(t), x(t+τ),…, x(t+(k–1)τ)}repeat step 3 in 

order to get x'(t +iτ), ,i k n . 

5) Define ln ln '( ) ( ) , ,id x t i x t i i k n       and 

mark point for which ln 0id  . 

6) Plot the graph ln d  versus n. 
7) Build line of regression for marked point and 

compute its slope, which equals to the STLmax for 
t=1. 

8) Change the time t=t+1 and repeat this 
algorithm from step3 for all points of the segment. 

9) Compute the STLmax as arithmetic mean of 
allSTLmax. 

In Fig. 3 the procedure of the STLmax 
computation is presented in case of t=1.

 

 

Fig. 3 – The scheme of STLmax computing. Input vector Х consists of points X(1), X(2) and so on. The nearest 

trajectory for X is X’ = {X’(1), X(2)…X(k).}, k is number of neural network input neurons, X  is a result of a 
neural network forecasting, Di is a distance between forecasts of two nearest trajectories. 

 

By using this technique the STLmax for  
Henon and Lorenz time series are 0.43 (desired 
value is 0,418) and 0.98 (desired value is 0,906) 
respectively. Only the X-series has been used in  
both cases. The size of data set was 70 and 100 
points respectively. As can be seen, this  
result is very close to real values with error  

2,87% and 8,16% respectively. The results are  
better in comparison with [18], where error is  
16,7% for 1000 points of Lorenz time series and 
1,9% for 100 points of Henon time series. This 
method is highly advantageous as computational 
complexity, accuracy, and small data set are 
concerned.  
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As already said the neural networks are applied 
in order to compute the STLmax for EEG segments. 
It should be noted that we use for calculation of the 
STLmax the multilayer neural networks, received at 
the segmentation stage. As a result the sequences of 
segments with different values of the STLmax are 
obtained. If the different segments have the same 
value of the STLmax exponent they are combined 
into a one segment. Finally the epileptic seizure 
identification is performed for each segment. The 
proposed approach permits to detect exactly the 
epileptic and non-epileptic EEG segments of 
different duration and shape, in order to identify 
pathological activity in remission state and to detect 
paroxysmal activity in preictal period. 

 
3. EXPERIMENTAL RESULTS 

In our research we used sets (A-E) of the EEG 
signals [22, 23]. There are 100 EEG segments in 
each set. Each EEG segment contains 4096 
consecutive amplitude points; its duration is 23.6 
seconds with sampling 173.61 Hz. We made 
experiments on the EEG signals that are 
characterized pathological (epileptic) and normal 
activities. Sets A and B consist signals recorded 
from healthy patients with eyes open (A) and eyes 
closed (B), respectively. Set C and set D includes 
EEG fragments during seizure-free intervals that 
were recorded from within the epileptogenic zone 
(C), and from the hippocampal formation of the 
opposite hemisphere of the brain (D). Set E 
contained activity during epileptic seizure. 

All sets were used in experiment. Signals were 
classified on two classes: first class consisted signals 
with epileptic activity detected with using our 
system, second class included signals with only non-
epileptic activity.  

In the Table 1 the experimental results are 
presented. 

 

Table 1. Classification results for sets A-E. Each set 
consist of 100 EEG signals. 

Set Class 1:  
epileptic activity 

Class 2:  
normal activity 

A 0  100  
B 0  100  
C 6  94  
D 32  68  
E 92  8  
 
It is significant, that there are no false detections 

of epileptic activity in sets A and B (see example in 
the Fig. 4 a). In surgical treatment it is necessary to 
find the epileptic zone (the source of epileptic 
seizures). It is interesting, that 6% epileptic activity 
detections in the set C were only single detections 

(only one segment with epileptic activity in each 
signal is detected). Example of the single detection 
presented in the Fig. 4 b). When sets C and E were 
analyzed system had multiple detections in the 
signals in most cases (Fig. 4 c). Fig. 4 b) and 
Fig. 4 c) clearly show that the system can not only 
detect the presence of epileptic activity, but also to 
allocate the segments in which it is contained. 
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Fig. 4 – Representative EEG signal fragments (sets A, 
C and E) analyzing. a) The fragment from set A hasn’t 
epileptic activity detection. b) The fragment from set 
C has one segment with epileptic activity (gray color). 
c) Four segments with epileptic activity (gray color) 

are detected in the fragment from set E. 

 
The next experiment is made with use EEG 

data given by the 5th City Clinical Hospital (Minsk, 
Belarus). The data represent set of 21 registrations of 
16-channel EEG. EEG data was recorded from eight 
adult patients during 8 seconds for each registration. 
In the result of EEG data digitalization with 
frequency 250 Hz each signal in EEG was presented 
as time series of 2000 points. Total number of EEG 
signals is 336. In comparison with previous database 
these data contain different artifacts. As it was 
mentioned early for removing artifacts from EEG 
records we use independent component analysis 
(ICA), which can detect independent source signals 
from linear mixtures. The EEG signals of one 
registration are divided into six sets as it is shown in 
the Fig. 5. All records of one registration are divided 
into six sets.  
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The number of sets is selected by 
experimentally way according to the number of 

signals in the set for the correct filter, and to location 
of the electrodes. 

 

 

Fig. 5 – There is ICA for EEG data processing. All records of one registration are divided into six sets.  
The ICA method are applied to each set and from it we extract one useful EEG signal. The number of sets is 

chosen by experimentally way according to the number of signals in the set for the correct filter, and to location 
of the electrodes. 

 
Then each set of EEG signal is processed by ICA 

module. As a result we have obtained six clean 
without artifacts EEG signals. After that the 
segmentation of each obtained EEG signals is 
performed. As a result we detected 1775 segments 
from EEG signals of all registration (6x21=126). 
The results of epilepsy detection for one registration 
are presented in a two-dimensional map, as it is 
shown in the Fig. 6, Fig. 7 and Fig. 8. In the Fig. 6 
the system detects one segment in the 
temporal part of the right hemisphere of the brain 
(the detection in the figures marked in a gray color 
that overlaps on a fragment of EEG and selects it). 
The next result (Fig. 7) shows us that system detects 
one outbreak of the epileptic activity in the all area 
in the right hemisphere of the brain. In the Fig. 8 we 
can see, that our system detects two outbreaks in the 
all areas of the brain. It may be noted that practically 
impossible to indicate the seizure event in these 
EEG signals by visual inspection even for high 
quality the neurologist experts. 

The results of classification all selected segment 
in the EEG data by the designed system are 
summarized in the Table 2.  

 

Table 2. Epileptic activity classification using database 
from hospital for 8 patients. 

Real 
state 

Number of 
all segments 

Classification results 
Class 1: 
epileptic 
activity 

Class 2: 
normal 
activity 

Epileptic 
segments 

32 29 3 

Normal 
segments 

1743 4 1739 

 
We can see that our system correctly detects 29 

segments with epileptic activity from total number 
of 32 segments. The test performance of the 
presented approach can be defined by the 
computation of sensitivity, specificity and total 
classification accuracy.  
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Fig. 6 – Two-dimensional map with a result of the epileptic activity detection for set of the EEG signals of one 
registration. There is one spike in the temporal area of the right hemisphere of the brain. 

 

 

 

Fig. 7 – Two-dimensional map with a result of the epileptic activity detection for set of the EEG signals. There is 
one outbreak in the all areas of the right hemisphere of the brain. 
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Fig. 8 – Two-dimensional map with a result of the epileptic activity detection for set of the EEG signals. There 
are two outbreaks in the all areas of the brain. 

 
Let’s FP (false positives) is the number of normal 

segments labeled as epileptic, FN (false negatives) is 
the number of epileptic segments labeled as normal, 
TP (true positives) is the number of epileptic 
segments detected correctly, TN (true negatives) is 
the number of normal segments detected correctly. 
Thenthe evaluation metrics includes the following 
criteria to measure the performance of proposed 
approach: 

- sensitivity also known as true positive rate 
 

;
P

TP

FNTP

TP
SeTPR 




 
(6)

 
- specificity also known as true negative rate 
 

;
N

TN

FPTN

TN
SpTNR 




 
(7)

 
- total accuracy  
 

NP

TNTP

FNFPTNTP

TNTP
ACC











 
(8)

 
The values of these statistical parameters 

calculated on the base of Tables 1 (sets A, B and E ) 
and 2 are presented in Table 3. 

Table 3. Performance comparison on two dataset 

 Statistical 
parameters  

Values for  
sets A, B, E 

Values for 
clinical data 

 Specificity 100,0% 99,7% 
 Sensitivity 92,0% 90,6% 

 Total classification 
accuracy 

96,0% 99,6% 

 
The results show that the presented in the paper 

methodology of EEG analysis are very specifically 
(99.7%), it means that there are small counts of false 
epileptic activity detection. It is important because a 
misdiagnosis can have serious consequences. The 
value of the sensitivity means that the system in 
90.6% cases has right epileptic activity detection in 
real EEG data. The total accuracy of the segments 
classification in two classes (non-epileptic activity 
and epileptic activity) is equal 99.6%. 

 
4. CONCLUSION 

In this paper the novel method for epileptic 
seizure detection using EEG waveforms have been 
addressed. The proposed approach is based on 
selection of the different time segments in EEG 
signals with epileptic and non-epileptic activity. The 
value of the STLmax is used for classification of 
epileptic and non-epileptic segments in EEG data. 
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The neural network techniques are proposed both for 
segmentation of EEG signals and computation of 
STLmax. The proposed approach uses the same 
neural networks both for time segment selection and 
for STLmax computation in each segment using 
small data sets and faster in comparison 
conventional approach. This allows both for 
reducing the computationally complexity and for 
limit the observation time. 

The data set from hospital have been used for 
experiments performing. The main advantages of 
presented neural technique is the ability to select in 
EEG small time segments with epileptic and normal 
activity, training without desired data set about 
epileptic and non-epileptic activity, the ability to 
assist the doctor in making decision and to visualize 
the zones (segments) of epileptic and non-epileptic 
activity in EEG signals using two-dimensional map 
[31, 32]. Thus the proposed method has: 

- high accuracy of segments classification for 
epileptic and non-epileptic activity; 

- automatic detection of epileptic activity in 
the EEG; 

- classification without prior training on the 
special desired data set; 

- the ability to detect seizure activity of different 
shapes and duration; 

- resistance to noise in the signals of the EEG. 
It permits to detect exactly the EEG segments of 

different duration with epileptic and non-epileptic 
activity, to identify pathological activity in remission 
state and to detect paroxysmal activity in preictal 
period. 

 

5. ACKNOWLEDGEMENTS 

We appreciate The 5th City Clinical Hospital 
(Minsk, Belarus) for the experimental data supply 
very much. 

 

6. REFERENCES 

[1] P.J. Lisba, A. Taktak, The use of artificial 
neural networks in decision support in cancer: 
A systematic review, Neural networks, (19) 4 
(2006), pp. 408-415. 

[2] L. Guo, D. Rivero, A. Pazos, Epileptic seizure 
detection using multiwavelet transform based 
approximate entropy and artificial neural 
networks, Journal of Neuroscience Methods, 
(193) 1 (2010), pp. 156-163. 

[3] L.D. Iasemidis, J.C. Principe, J.C. Sackellares, 
Measurement and quantification of 
spatiotemporal dynamics of human epileptic 
seizures, Nonlinear signal processing in 
medicine, (2) (2000), pp. 1-27. 

[4] A. Sheb, J. Guttag, Application of machine 
learning to epileptic seizure detection, in 

Proceedings of the 27th International 
Conference on Machine Learning, Haifa, 
Israel, (2010). 

[5] E. D. Übeyli, Statistics over featuers: EEG 
signals analysis, ComputBiol Med, (39) 8 
(2009), pp. 733-741. 

[6] K. Polat, S. Gunes, Classification of 
epileptiform EEG using a hybrid system based 
on decision tree classifier and fast Fourier 
transform, Applied Mathematics and 
Computation, (187) (2007) pp. 1017-1026. 

[7] L. Guo, D. Rivero, J. Dorado, et al, Automatic 
epileptic seizure detection in EEGs based on 
line length feature and artificial neural 
networks, Journal of Neuroscience Methods, 
(191) (2010) pp. 101-109. 

[8] B. Yaoa, J.Z. Liu, R.W. Brown, et al, Nonlinear 
features of surface EEG showing systematic 
brain signal adaptations with muscle force and 
fatigue, Brain research, (1272) (2009),  
pp. 89-98. 

[9] S.N. Sarbadhikari, K. Chakrabarty, Chaos in 
the brain: a short review alluding to epilepsy, 
depression, exercise and lateralization, Medical 
Engineering & Physics, (23) (2001) , pp. 445-
455. 

[10] X. Wang, J. Meng, G. Tan, T. Zou, Research 
on the relation of EEG signal chaos 
characteristics with high-level intelligence 
activity of human brain, Nonlinear Biomedical 
Physics, doi:10.1186/1753 (2010),  
pp. 4631-4642. 

[11] V.P. Nigam, D. Graupe, A neural-network-
based detection of epilepsy, Neurological 
Research, (26) (2004), pp. 55-60. 

[12] L.M. Patnaika, O.K. Manyam, Epileptic EEG 
detection using neural networks and post-
classification, Computer methods and programs 
in biomedicine, (91) (2008), pp. 100-109.  

[13] A. Subasi, Application of adaptive neuro-fuzzy 
inference system for epileptic seizure detection 
using wavelet feature extraction, Computers in 
Biology and Medicine, (37) (2007), pp. 227-
244. 

[14] A. Subasi, Automatic detection of epileptic 
seizure using dynamic fuzzy neural networks, 
Expert Systems with Applications, (31) (2006), 
pp. 320-328. 

[15] H. Ocak, Optimal classification of epileptic 
seizures in EEG using wavelet analysis and 
genetic algorithm, Signal Processing, (88) 
(2008), pp. 1858-1867. 

[16] K-Ch. Hsu, S-N. Yu, Detection of seizures in 
EEG using subband nonlinear parameters and 



Vladimir Golovko, Svetlana Artsiomenka, Volha Kisten, Victor Evstigneev / International Journal of Computing, 14(1) 2015, 36-47 

 

 46

genetic algorithm, Computers in Biology and 
Medicine, (40) (2010), pp. 823-830. 

[17] A. Wolf, J. Swift, H. Swinney, J. Vastano, 
Determining Lyapunov exponents from a time 
series, Physica D, (16) (1985), pp. 285-292. 

[18] M.T. Rosenstein’, J.J. Collins, C.J. De Luca, A 
practical method for calculating largest 
Lyapunov exponents from small data sets, 
Physica D, (65) (1993), pp. 117-134. 

[19] W. Chaovalitwongse, L. Iasemidis, P. Pardalos, 
P. Carney, D. Shiau, J. Sackellars, Performance 
of a seizure warning algorithm based on the 
dynamics of intracranial EEG, Epilepsy 
Research, (64) (2005), pp. 93-113.  

[20] S. Nair, D. Shiau, J. Principe, L. Iasemidis, 
P. Pardalos, W. Norman, P. Carney, K. Kelly, 
J. Sackellars, An investigation of EEG 
dynamics in an animal model of temporal lobe 
epilepsy using the maximum Lyapunov 
exponent, Experimental Neurology, (216) 
(2009), pp. 115-121. 

[21] N. Mammone, J. Principe, F. Morabito, 
D. Shiau, J. Sackellares, Visualization and 
modeling of STLmax topographic brain activity 
maps, Journal of Neuroscience Methods, (189) 
(2010), pp. 281-294. 

[22] R. Andrzejak, G. Widman, K. Lehnertz, 
C. Rieke, P. David, C. Elger, The epileptic 
process as nonlinear deterministic dynamics in 
a stochastic environment: an evaluation on 
mesial temporal lobe epilepsy, Epilepsy Res, 
(44) (2001), pp. 129-140. 

[23] EEG time series. http://www.meb.uni-
bonn.de/epileptologie/science/physik/eegdata.h
tml, Accessed (25 May 2011). 

[24] A. Hyvaerinen, E. Oja, Independent component 
analysis: algorithms and applications, Neural 
Networks, (13) (2000), pp. 411-430. 

[25] F. Takens, Detecting strange attractors in 
turbulence, Lecture Notes in Mathematics, 
Springer-Verlag, Berlin, (898) (1981),  
pp. 366-381. 

[26] F. Lopes da Silva, EEG analysis: theory and 
practice, in: Niedermeyer E., Lopes da Silva F.. 
editors. Electroencephalography: basic 
principles, clinical applications, a related 
fields, 4th ed. Baltimore: Lippincott, Williams 
and Wilkins, (1998), pp. 1153-1163. 

[27] V. Golovko, A. Doudkin, N. Maniakov, 
Application of neural networks techniques to 
chaotic signal processing, Optical Memory and 
Neural Networks, (13) (2004), pp. 195-215. 

[28] H. Kantz, A robust method to estimate the 
maximal Lyapunov exponent of a time series, 
Physics Letters A, (185) (1994), pp. 77-87. 

[29] V. Golovko, From Neural Networks to 
Intelligent Systems: Selected Aspects of 

Training, Application and Evolution, in book 
Limitations and Future Trends in Neural 
Computation: NATO book, IOS Press, 
Amsterdam, (2003), pp. 219-243. 

[30] V. Golovko, Y. Savitsky, N. Maniakov, Neural 
Networks for Signal Processing in 
Measurement analysis and Industrial 
Applications: the Case of Chaotic Signal 
processing, in book Neural Networks for 
Instrumentation, Measurement and related 
industrial Applications: NATO book, IOS 
Press, Amsterdam, (2003), pp. 119-144. 

[31] V. Kisten, S. Laurentsyeva, V. Evstigneev, 
V. Golovko, Automatic diagnostic system for 
paroxysmal activity detection, Epilepsia, (5) 4 
(2010), p. 55. 

[32] V. Kistsen, V. Evstigneev, V. Ulashchic, 
S. Laurentsyeva, Neural-net method for EEG 
analysis to estimate remission stage of epilepsy, 
European Journal of Neurology, (17) 3 (2010), 
р. 451. 

 

 
Prof. Vladimir Golovko was 
born in Belarus in 1960. He 
received M.E. degree in 
Computer Engineering in 1984 
from the Moscow Bauman State 
Technical University. In 1990 he 
received PhD degree from the 
Belarus State Technical 
University and in 2003 he 
received doctor science degree 

in Computer Science from the United Institute of 
Informatics problems national Academy of Sciences 
(Belarus). At present he works as a head of 
Intelligence Information Technologies Department 
and Laboratory of Artificial Neural Networks of the 
Brest State Technical University.  

His research interests include Artificial 
Intelligence, neural networks, autonomous learning 
robot, signal processing, chaotic processes, 
intrusion and epilepsy detection. He has published 
more than 300 scientific papers. 
 

Svetlana Artsiomenka was 
born in Russia in 1982. She 
received M.E. degree in 
Computer Engineering in 2005 
at the Brest State Technical 
University. In 2008 she finished 
postgraduate study at the Brest 
State Technical University. At 
present she works as a lecturer 
of Intelligence Information 

Technologies Department and Laboratory of Artificial 
Neural Networks of the Brest State Technical 
University.  

Her research interests include artificial 
Intelligence, neural networks, signal processing, 



Vladimir Golovko, Svetlana Artsiomenka, Volha Kisten, Victor Evstigneev / International Journal of Computing, 14(1) 2015, 36-47 

 

 47

chaotic processes, electroencephalogram analysis, 
epilepsy detection. 
 

Kisten Volha was born in 
Belarus in 1975. She is 
associate Professor of 
neurology and neurosurgery of 
the Belarusian medical 
Academy of Postgraduate 
Education, doctor of medical 
Sciences, PhD.  

She has published more than 
150 publications, co-author of 
one monograph, 7 manuals and 

9 patents for invention. The results of the scientific 
works presented at European and world congresses 
awarded 6 grants. Developed and applied the 
technique of transcranial magnetic stimulation in the 
recovery period of cerebral infarction, as well as in 
combined therapy of epilepsy. 

 

Evstigneev Victor was born in 
Russia in 1941. He is honored 
worker of science of the 
Republic of Belarus, doctor of 
medical Sciences, PhD, 
Professor of the Department of 
neurology and neurosurgery of 
the Belarusian medical Academy 
of Postgraduate Education, 
academician of the Royal 
Academy of Doctors of Spain. 

For the first time in the BSSR was performed 
stereotaxic surgery with long-term implantation of 
intracerebral electrodes in temporal lobe epilepsy. 
The author of the opening of the “Pattern of acoustic 
oscillations of the brain” published more than 400 
scientific papers, 8 monographs and textbooks, 16 
methodological recommendations and instructions, 
12 inventions. 

 

 
 


