
M. Kamrul Islam / Computing, 2009, Vol. 8, Issue 1, 8-15 
 

 8 

 
 
 

AN IMPROVED ARCHITECTURE FOR COMPETITIVE AND 
COOPERATIVE NEURONS (CCNS) IN NEURAL NETWORKS 

 
M. Kamrul Islam 

 
School of Computing, 
Queen’s University, 

Kingston, K7L 3N6, ON, Canada 
islam@cs.queensu.ca 

 
Abstract: In neural networks, the associative memory is one in which applying some input pattern leads to the response 
of a corresponding stored pattern. During the learning phase the memory is fed with a number of input vectors and in 
the recall phase when some known input is presented to it, the network recalls and reproduces the output vector. Here, 
we improve and increase the storing ability of the memory model proposed in [1]. We show that there are certain 
instances where their algorithm can not produce the desired performance by retrieving exactly the correct vector. That 
is, in their algorithm, a number of output vectors can become activated from the stimulus of an input vector while the 
desired output is just a single vector. Our proposed solution overcomes this and uniquely determines the output vector 
as some input vector is applied. Thus we provide a more general scenario of this neural network memory model 
consisting of Competitive Cooperative Neurons (CCNs). 
 
Keywords: Competitive cooperative neuron, associative memory, vector, frequency bands. 

 
 

1. INTRODUCTION 
The ability to store and retrieve information is 

critical in any type of neural network. In neural 
network, the memory, particularly associative 
memory, can be defined as the one in which the 
input pattern or vector leads to the response of a 
corresponding stored pattern (output vector). That is, 
when an input vector is presented, the network 
recalls the corresponding output vector associated 
with the input vector. There are two types of 
associative memories: autoassociative and 
heteroassociative memory. In the case of 
autoassociative memory, both input and output 
vectors range over the same vector space. For 
example, a spelling corrector maps incorrectly 
spelled words (e.g. “matual”) to correctly spelled 
words (“mutual”). Heteroassociation involves the 
mapping between input and output vectors over a 
different vector space. For example, given a name 
(“John”) as input, the system will be able to recall its 
corresponding phone number (“657-9876”) stored in 
memory. 

In the context of neural network, an associative 
memory consists of neurons (known as conventional 
McCulloh-Pitts [2] neurons) that are capable of 
processing input vectors and recalling output 
vectors. These conventional model neurons use 

inputs from each source that are characterized by the 
amplitude of input signals. In this way each neuron 
can receive, process, and recall only one component 
of a memorized vector. Towards realizing the 
concept of associative memory, one of the 
commonly used techniques uses correlation matrix 
memory [3] which encodes all input and output 
vector pairs {yk,xT

k}(k=1,2,3,...,n) into a correlation 

matrix, ∑
=

=
n

k

T
kk xyM

1

. Later in the recall phase the 

matrix M is decoded to extract the output vector 
when the corresponding input vector is introduced to 
the network. The limitation of correlation matrix 
memory, in terms of memory capacity, is that it 
requires exactly n neurons to recall n components of 
a vector. In this paper we study the problem of 
increasing memory storage and recall capacity of a 
general associative memory and offer an idea that 
provides and ensures more storage and correct recall 
ability of the memory model (one layer Competitive 
Cooperative Neuron (CCN) network model) 
proposed in [1]. Our proposed method has an 
improved architecture of the CCN network where 
we need only N neurons (CCNs) to store and recall 
NR memories where R is the number of zones 
(defined later) of a CCN. 

The organization of the paper is as follows. First 

 

computing@computingonline.net 
www.computingonline.net 

ISSN 1727-6209 
International  Journal  of  Computing 



M. Kamrul Islam / Computing, 2009, Vol. 8, Issue 1, 8-15 
 

 9

in Section 2, we provide a general description of a 
CCN. In Section 3 we show how a network of such 
neurons can be formed and how they work by 
providing an example. Section 4 provides evidence 
to show the limitations found in the CCN network. 
Our result, that is, the improvement of the CCN 
network model is given in Section 5 which 
overcomes the shortcomings of the model [1]. 
Experimental results are described and shown in 
Section 6 followed by future research direction in 
Section 7. Finally, we conclude in Section 8. 

 
2. DESCRIPION OF A CCN 

Here we provide a concise description of the 
CCN which is the building block of a CCN neural 
network, the reader is referred to [1] for details. In 
order to increase the memory storage and the recall 
capacity of an associative memory compared to 
correlation matrix memory, the paper [1] introduces 
a novel type of model neuron called CCN as the 
building block of an associative memory. This 
model offers two new features: one is that the input 
signals are characterized by a two-dimensional 
parameter set representing the amplitude and the 
frequency of signals, whereas the conventional 
inputs have only component, the amplitude. The 
other feature of the CCN is that it consists of several 
distinct and autonomous receptor zones where each 
zone is able to receive a number of such input 
signals. Each zone is capable of selecting just one 
signal (called the winning signal) from the inputs 
signals it receives. A model of such a CCN is given 
in Figure 1. 

 

 
Fig. 1 – A CCN Model: the CCN on the left has five 

autonomous zones, each of which has a narrow 
bandwidth of frequencies that it can detect. Each zone 
receives m input signals. In each zone, only the input 
signals that have a frequency fi, r that falls within the 
zone’s bandwidth participate in the competition and 

the winner is the signal with the highest effective 
amplitude. All the winning signals are propagated to 
the cell’s body, where they cooperate and the cell is 

activated if the cumulative amplitude is greater than 
the cell’s threshold. 

 
The CCN consists of a number of zones R and 

each zone r∈R collects input from many sources, 

S(r) = {S1(r),S2(r),S3(r),...}. Each input signal Si(r) = 
(Fi(r),Ai(r)) has two components which are 
normalized to one - the frequency Fi(r)∈[0,1] which 
encodes the information [4] and the amplitude 
Ai(r)∈[0,1]-the strength of the signal. Each zone is 
sensitive to a small range of frequencies (also called 
bands) which means that any input signal whose 
frequency falls in the range can participate in the 
competition to be chosen by the zone.  

The center of the band of input zone r of a CCN n 
at time t is denoted by B(n,r,t) and the tolerance 
level is T(n,r,t). The tolerance level is the dispersion 
from the center of the band which defines the range 
of frequency zone r can handle, that is, [B(n,r,t)-
T(n,r,t),B(n,r,t)+T(n,r,t)]. The tolerance level and the 
center of band are not constant, they change over 
time. A zone can detect the input signals whose 
frequencies that are fall in the range of its 
frequencies and the amplitudes of these exceed a 
certain threshold value τ (n,r,t)∈[0,1]. An input i in 
zone r wins if Ai(r)>=τ (n,r,t)>0 and Fi(r)∈[B(n,r,t)-
T(n,r,t),B(n,r,t)+T(n,r,t)]. A zone is called active if it 
can select such an input signal. This way each zone 
propagates its winning signal to the cell body. 
Finally, the CCN fires if the combined amplitude of 
all the winning input signals from all the zones 
exceeds the threshold v(n,t) of the CCN body, that 

is,∑
=

≥
R

r
wi tnvrA

1
)( ),()(  where Ai(w)(r) is the 

amplitude of the winning signal of zone r. As the 
CCN is fired (activated) it sets the center of the 
frequency band of an active zone r to its 
corresponding winning signal, i.e., B(n,r,t)=Fi(w)(r) 
where Fi(w)(r) is the frequency of the winning signal 
of zone r. As the CCN fires, it generates the output 
vector whose components are the winning signals of 
all the active zones of the CCN. However, the output 
vector can be modified by using Hebbian learning 
[5] protocol. Initially, a CCN body threshold is set 
with the value v(n,t), which is greater than or equal 
to the sum of the zone thresholds, i.e., 

,),,(),( ∑≥
r

trntnv τ  so that in order for the CCN 

to fire, either all the zones must be active or some of 
them must receive a very strong signal to activate 
the CCN. 

When fired, the CCN decreases tolerance levels 
of the corresponding active zones by some pre-
specified value and the amplitude of the threshold of 
the CCN is also decreased to some level. Similarly if 
the CCN is not fired the corresponding tolerance 
levels of active zones are increased (anti-Hebbian 
learning). However, when the CCN fires we say the 
CCN specializes or learns. Thus by modifying the 
tolerance levels and the amplitude threshold of the 
CCN, the CCN is trained. In this way, the training 

Zone i



M. Kamrul Islam / Computing, 2009, Vol. 8, Issue 1, 8-15 
 

 10 

phase stores an input vector whose components are 
the values of the frequencies of the winning signals 
which are set in the corresponding centers of the 
bands of the active zones. When it receives input in 
some but not all zones it uses that input to recall the 
previous inputs to the idle zones. For example [1], if 
a CCN has three zones and it fired when the input 
was the vector that represents the triple (Red, Sweet, 
Strawberry), then the next time it receives only 
“Red” and no input from the other zones, it will fire 
(“Red”, “Sweet”, “Strawberry”) provided that the 
amplitude of the input signal (“Red”) exceeds the 
cell’s threshold.  

 
2.1 CCN NETWORK MODEL 

A simple one-layer feedforward network with 
three CCNs and three input sources is shown in Fig. 
2. Each CCN has three receptor zones represented 
by the vertices of the triangles. The number of inputs 
to the different zones is not necessarily the same, but 
it can be made the same by adding zero-weight input 
signals. 

 

neuron(2) neuron(3)

output(1)

output(2)

output(3)

neuron(1)

 
Fig. 2 – A simple one-layer feedforward network with 
three CCNs and three input sources is shown. Each 
CCN has three receptor zones represented by the 

vertices of the triangles. 

 
3. HOW A CCN NETWORK WORKS 

In order to understand the function of the 
network explained above, consider a one layer feed-
forward network of CCN with N CCNs where each 
CCN n∈N has 3 zones. Assume the centers of the 
frequency bands B(n,r1,t), B(n,r2,t), B(n,r3,t) of zones 
1, 2 and 3 of CCN n are set to 0.150, 0.450, and 
0.750 respectively. Let the tolerance level T for all 
zones be 0.050. The range of frequencies for each 
zone becomes [B-T, B+T], i.e., [0.100, 0.200], 
[0.400, 0.500] and [0.700, 0.800] and let the 
thresholds of zones 1, 2, and 3 be 1τ =0.20, 2τ =0.15, 

3τ =0.15 respectively and the CCN body threshold 

v=0.32 
Assume that we want the network to store and 

recall vectors consisting of name, gender and id of 
students. Let the input vector be (“Sarah”, “Female”, 
“4781234”) which is represented by frequencies 
(0.130, 0.416, 0.725). Let 0.20 be the amplitude of 
each of the components of the vector. As the input 
vector (assuming first component of the input vector 
to zone 1, second component to zone 2 and so on) is 
applied to the network, all the zones become active 
and the CCN starts firing since 
0.20+0.20+0.20>0.32. If it does not fire then the 
tolerance level of inactive zones can be increased 
gradually to accommodate the frequency (anti 
Hebbian learning [5]). Now as the CCN fires the 
threshold to each zone is reduced to some minimum 
level (to some minimum value required to activate 
the corresponding zone) and the threshold to the cell 
body is also reduced to some minimum value. Let 
the cell body threshold be reduced to v=0.18. Now 
the center of the frequency band of each zone will be 
assigned the frequency of its winning signal, i.e., 
frequencies (0.130, 0.416, and 0.725) are assigned to 
zones 1, 2, and 3 respectively and the output vector 
becomes (0.130, 0.416, 0.725). 

Now in the recall phase if we apply only input 
“Sarah” to zone 1 and no input from the other zones, 
the CCN will fire (because the threshold 0.20 of 
signal “Sarah” is greater than the CCN threshold 
0.18) and produce the whole output vector (0.130, 
0.416, 0.725) representing the vector (“Sarah”, 
“Female”, “4781234”). Therefore, if there are R (R-
dimensional vector) zones in a CCN, then a single 
input signal to a zone will result in R recalled 
features (R-1, if we exclude the activating input) 
from the other zones, which is more efficient than 
recalling only one feature from every input 
compared with the correlation matrix memory. In 
general, if there are N CCNs each with R zones (i.e., 
a CCN can store and recall an R- dimensional 
vector) in a one-layer feed forward CCN network 
then it is able to recall total NR memories. This is 
because, after the training is complete a signal (as 
given in the previous example, only input 
component “Sarah”) to a zone in a CCN will be 
strong enough to fire the CCN and recall all the 
other signals of other zones of that CCN. As a 
whole, only N input signals to N CCNs will suffice 
to recall NR memories. On the other hand, the 
correlation matrix memory needs NR CCNs to recall 
NR memories. Therefore the achievement of 
performance in terms of stored-features/number-of-
CCNs ratio is higher in CCN network as compared 
to correlation matrix memory [3]. 

 
 
 



M. Kamrul Islam / Computing, 2009, Vol. 8, Issue 1, 8-15 
 

 11

4. LIMITATIONS IN CCN NETWORKS 
Here we consider a situation where the CCN 

model cannot achieve the performance as mentioned 
in the paper. First, we show that there are certain 
instances where the existing CCN model [1] fails to 
produce the expected output result. Then we offer an 
improvement to the architecture of the network 
model such that stipulated performance can be 
ensured. The associative network consisting of the 
proposed CCNs [1] functions well if only one input 
vector can be attracted to at most one CCN of the 
network during training. This is only possible when 
no two CCNs have all the centers of the frequency 
bands (B(n,r,t)) are equal. The network may suffer 
serious limitation in manipulating (storing and 
recalling) data when all the centers of the frequency 
bands of a CCN coincide with those of any other 
CCN. Mathematically this situation can be expressed 
as the following: if there are R zones of a CCN then 
there exist at least two CCNs ni and nj such that 

 
B(ni,r1,t)=B(nj,r1,t), 
B(ni,r2,t)=B(nj,r2,t),...,B(ni,rR,t)=B(nj,rR,t). 
 
Under these circumstances, the network reaches a 

situation where the same input vector, Mj is stored in 
different CCNs. This is because the input, Mj 
stimulates and fires all those CCNs which have the 
same centers of frequency bands of their zones. Here 
we show how storage capacity decreases for the case 
stated above. As mentioned earlier, if the associative 
memory network has N CCNs and each CCN has R 
zones then we can store and recall N memory 
vectors (total NR memories) where each memory 
vector Mi consists of R-components. In this way, we 
can say this is equivalent to recall exactly NR 
memories in total. Let S be the number of CCNs that 
have the same centers of frequency bands of in their 
zones. This means that there is a memory vector Ms 
whose input can simultaneously fire S CCNs. 

As Ms is stored in all the S CCNs, their centers of 
frequency bands will be assigned the corresponding 
frequencies of Ms(each component of Ms is 
represented by a frequency) and no other vector Mt, 
(Ms≠ Mt) can be stored in any of the S CCNs. So we 
have only N-S CCNs left to store N-1 vectors. If 
S>1, then we can not store all the remaining vectors 
(remaining N-1 vectors, since only one memory 
vector Ms is stored) to the memory. Therefore, this 
case does not allow us to store and recall N vectors. 
In the worst case, if all the N CCNs have the same 
centers of frequency bands then we can store only 
one vector in the whole network instead of N 
vectors. Thus the performance degrades down to 1/N 
percent which is quite worst for large values of N. In 
general, let S1 be the number of CCNs having the 

same centers of frequency band f1
1,..., f1

R, S2 be the 
number of CCNs with the same centers of frequency 
band f2

1,..., f2
R and Sp be the number of CCNs with 

the same centers of frequency band fp
1,...,fp

R, then 
we can achieve p/N percent of vectors to be stored 
and recalled correctly where S1+S2+...+Sp=N. The 
following example demonstrates such a case. 

Suppose the network is required to store input 
vectors {0,1,0,0}, {1,1,0,0}, {1,0,1,0} and recall 
when any of the vectors is presented to the network. 
Assume we have a network consisting of three 
CCNs each with four zones. Let the first, second, 
and third CCN’s band centers are 0.1, 0.2, 0.1, 0.1; 
0.1, 0.2, 0.1, 0.1 and 0.2, 0.2, 0.1, 0.1, respectively. 
Let 0 and 1 be encoded by the frequencies 0.1 and 
0.2 respectively. Therefore, we obtain the equivalent 
representation of the four input vectors as {0.1, 0.2, 
0.1, 0.1}, {0.2, 0.2, 0.1, 0.1} and {0.2, 0.1, 0.2, 0.1}, 
respectively. As we apply the input {0.1, 0.2, 0.1, 
0.1} to activate some CCN, we find all the zones of 
CCNs 1 and 2 become active and they fire. Thus, the 
same input vector {0, 1, 0, 0} is stored in both 
CCNs. In this way, the two CCNs are stimulated and 
their centers of frequency bands are assigned the 
frequencies 0.1, 0.2, 0.1, and 0.1. When the second 
input pattern {0.2, 0.2, 0.1, 0.1} is presented it 
stimulates the third CCN and causes it to fire by 
storing the input frequencies to the corresponding 
centers of frequency bands. Now for the last input 
there is no CCN that can be activated since all the 
CCNs are already attracted to the two previous input 
vectors. Although we have three CCNs to store and 
recall three vectors according to the algorithm 
presented in the paper [1], we cannot store more 
than two input patterns in the associative memory 
for this particular example. Thus the performance of 
the proposed technique degrades in this case. 

 
5. SOLUTION PROPOSED FOR CCN 

NETWORKS 
In this section, we provide the improvement for 

the architecture of the CCN network to remedy the 
situation illustrated above. This is intended so that at 
most one CCN in the network can be stimulated 
(attracted) by a single input pattern. The modified 
network is shown in Fig. 3. 

 



M. Kamrul Islam / Computing, 2009, Vol. 8, Issue 1, 8-15 
 

 12 

neuron(1) neuron(2) neuron(n)

output(1)

output(2)

output(3)

interconnected CCNs  
Fig. 3 – An improved simple one-layer feedforward 
network with three CCNs and three input sources is 

shown. CCNs are connected. 

 
The main idea is to connect a CCN to its left and 

right neighbors and assign indices to them, except 
for the leftmost and rightmost CCNs which are only 
connected to their right and left CCNs, respectively. 
These indices, beginning from 1 to the number of 
CCNs, will be assigned arbitrarily among the CCNs. 
It is assumed that the CCN with the lowest index has 
the highest priority and priority will decrease with 
the increase of indices. After an input pattern is 
applied to the network, if a CCN gets stimulated 
(call it active) then it sends its index to all other 
CCNs. If it is not active then it refrains from sending 
its index. We ensure that the highest priority active 
CCN will be the one to be attracted to the input if 
there are more than one such active CCNs. 

As each active CCN sends its index to all other, 
every active CCN compares the index it receives 
from other active CCNs and if any of the indices is 
smaller than its own index then it does not update its 
center of frequency band. This means that although 
it is a candidate for the input to store, it withdraws 
its candidacy and let other higher priority CCNs be 
attracted to the input. In this way, only the smallest 
indexed CCN wins and processes the input and 
changes its centers of frequency bands of its zones to 
the corresponding winning frequencies. 
Mathematically, this is a one-to-one function f: S → 
N, where S denotes the set of CCNs in the network. 
Let S⊆S denote the set of CCNs simultaneously 
attracted to an input. It is obvious that there will be 
exactly one C’∈S where f(C’)≠f(C’’) (C’’∈S-
{C’}). By following the above procedure to 
propagate the indices among the CCNs, we obtain 
exactly one active C’ which has the smallest index 
among the indices of the CCNs in S since f is one-
to-one. For example, in a network of 11 CCNs, if 
CCNs with indices 2, 7, 11 become active for some 
input pattern, then the CCNs 7 and 11 will withdraw 

because they find the index 2 is smaller. As a result, 
CCN 2 will take over and become stimulated and 
attracted to the input. The introduction of priority 
ensures that at any time when an input pattern is 
presented in the network at most one CCN will be 
attracted to that input. Thus we eliminate the chance 
of firing more than one CCNs by a single input 
which overcomes the problem mentioned in earlier 
section. 

 
6. EXPERIMENTAL RESULTS 

According to the method presented in the 
previous section, we provide the numerical results 
and analyze the outcome by computing the percent 
of memory that can be stored and retrieved 
successfully. We compare the outcome of our results 
with the conventional network as proposed in [1]. 
There are two phases, namely, the training phase and 
the recall phase. In the training phase, we setup the 
network with a certain number of CCNs and the 
number of features or vector elements for each of the 
CCNs. After feeding the inputs in the network, we 
train the network to memorize the vectors in the 
CCNs. That is, the individual CCNs memorize the 
vectors by the technique mentioned above. The 
number of vectors to be stored equals the number of 
CCNs in the network and the number of elements in 
each vector is equal to the number of zones of each 
CCN. After we finish training the network, we 
perform the recall phase in which we provide only 
some element, mi of a vector, M=(m1,m2,...,mR) to 
the network and the network produces the whole 
vector (i.e., all the elements of M). 

 
Input1

3

2

4
5

10
1

3

2

4
5

10
1

3

2

4
5

10
1

3

2

4
5

10
1

Input2 Input10

3 101Neurons 2  
Fig. 4 – The CCN network model of our experiment is 

shown for 10 CCNs. 

 
We perform our experiment with the network 

shown in Fig. 4 consisting of N=10 CCNs and each 
CCN has R=10 zones meaning each input vector 
M=(m1,m2,...,m10) has 10 elements that can be 
accommodated by a single CCN. First, we remove 
the interconnections (denoted by the double arrow 
line segments between CCNs) among the CCNs so 
that the network becomes the one as described in [1] 
and then we perform the following experiments. 

We have 10 sets of centers of frequency bands 
uniformly distributed over [0,1]. For example, the 
centers of frequency bands B(ni,r1,t), B(ni,r2,t), 



M. Kamrul Islam / Computing, 2009, Vol. 8, Issue 1, 8-15 
 

 13

B(ni,r3,t),...,B(ni,r9,t), B(ni,r_10,t) for a CCN ni can be 
0.01,0.02,...,0.10 for zone 1,2,...,10, respectively. 
Thus, each set of frequency bands starts with 
0.10*k+0.01 and ends with 0.10*k+0.10 where 
k=0,1,2,...,9. And the value of the tolerance level T 
for all zones is set to 0.005. In the experiment, 
randomly 10 sets of centers of frequency bands are 
assigned to 10 arbitrary CCNS. 

Recall from the notation S1, S2,...,Sp in Section 4 
where Si is the number of CCNs having the same 
centers of frequency band fi

1,..., fi
10, and 

∑
i

iS =10. We now give one sample of our 

experiment and then we provide the simulation 
results. In one random input for the network model, 
we find S1=2, S2=1, S3=1, S4=3, S5=1, S6=1, S7=1 
and S1+S2+S3+S4+S5+S6+S7=10. This amounts to 
store and retrieve only seven (7) vectors (S1,S2,..., 
S7) of 10*7=70 vector elements in total by the 
network model of the experiment. 

 

1 2 3 4 5 6 7 8 9 10
40

45

50

55

60

65

70

75

80

(a) Test

P
er

ce
nt

 o
f V

ec
to

rs
 c

or
re

ct
ly

 s
to

re
d 

&
 re

tri
ev

ed

CCN Experiment

 
Fig. 5 – Showing result for a set of 10 runs where for 

each run the corresponding percentage of 
performance of correctly storing and retrieving 

vectors is shown along the y-axis.  

 
This is because, for some Si, i∈{1,2,...,7} we can 

store only one vector (consisting of 10 elements) 
instead of all 10 vectors of Si*R elements whereas 
our proposed method can store and retrieve all N=10 
vectors of N*R=10*10=100 vector elements in total. 
Thus in this particular instance the performance of 
conventional method in terms of storing and 
retrieving vectors of around 70 percent of the total 
vectors. 

Fig. 5 shows the graph for a set of 10 test runs 
where the test numbers are put along the x-axis and 
the corresponding percentage of vectors that can be 
stored and retrieved uniquely are shown in the y-
axis. This random set of 10 test runs gives us an 
overview of how the CCN network [1] performs. Of 
the 10 runs we can achieve 80 percent performance 

once, i.e., eight vectors out of 10 are stored and 
retrieved correctly (on the 9th test run). And in 
general, the performance lies around 70 percent for a 
number of times and shows poor percentage (40 
percent) once. 

However, these random runs do not tell us about 
the true characteristics of the conventional CCN 
network. Thus we perform 100 runs and then 
average the results of the 100 runs which is depicted 
in Figure 6. Here we put the value of percentage of 
correctly storing and retrieving vectors in the x-axis 
and the number of times (out of 100 runs) the 
corresponding percentage is obtained is shown in the 
y-axis. This gives us a clear view of the 
characteristics of the CCN network [1]. 

 

10 20 30 40 50 60 70 80 90 100
4

6

8

10

12

14

16

N
um

be
r 

of
 ti

m
es

(b) Percentage of correctness

Average CCN result

 

 

 
Fig. 6 – The average result of 100 runs where the 

percentage of performance is shown in the x-axis and 
the number of times the corresponding percentage 

achieved is shown in the y-axis. 

 
We observe that full percentage (100%) of 

performance is achieved only 14 times (out of 100 
times) and the low (10%) of performance is 
achieved only 4 times (out of 100 times). That 
means, we could excite or fire all (10) the CCNs in 
our experiment 14 times and only one CCN in 4 
times for storage and retrieval of vectors. But these 
irregularities are alleviated by our proposed method 
when we perform experiments with the 
interconnections among the CCNs. 

In order to get a broader view of how the system 
works for large networks, we changed the number of 
CCNs to N = 1000. We also have different values 
for the number of zones, namely, R has values in 
{10, 12, 14, 16, 18, 20, 22}. As can be understood 
by the intuition that the higher the number of zones, 
the fewer the error rate of correctly retrieving stored 
vectors. This is because, if the number of zones is 
higher then it will be less likely that two or more 
zones will have the same set of winning signals. The 



M. Kamrul Islam / Computing, 2009, Vol. 8, Issue 1, 8-15 
 

 14 

algorithm in [1] does better when the number of 
zones in each CCN is higher. Figure 7 shows the 
graph for a network of 1000 CCNs where in the x-
axis we have the values of different R and the y-axis 
shows the percentage of vectors correctly retrieved 
and stored by their algorithm [1]. The graph shows 
that as the number of zones increases the percentage 
of vectors manipulated (i.e., stored and retrieved) 
increases and vice versa. It can be observed from the 
graph that in almost all cases their algorithm 
achieves more than (96%) success. However, 
applying our algorithm results in correctly 
manipulating all the vectors. For each value of R, we 
conducted 100 runs to figure out the overall of the 
performance. Figure 8 shows the average results for 
different values of R. The performance of the 
average result is quite stable. 

 

10 12 14 16 18 20 22
96.5

97

97.5

98

98.5

99

99.5

100

Number of zones/CCN

%
 o

f v
ec

to
r 

co
rr

ec
tly

 s
to

re
d 

&
 r

et
rie

ve
d

 
Fig. 7 – The graph shows the relationship between the 

number of zones and the percentage of correctly 
storing and retrieving the number of vectors. 

 
7. FUTURE RESULTS 

An improved and more general one-layer 
feedforward CCN network (more precisely 
associative memory network) depending upon the 
work of [1] has been introduced in the paper which 
can store R-dimensional input patterns in each of its 
neuron (each neuron has R-zones) and retrieve the 
whole vector with the presence of only a component 
of the input. We can further investigate the 
possibility of using recurrent network consisting of 
CCNs as recurrent network is well known and 
commonly used in the realm of neural network. In 
recurrent networks, the vector output of each of the 
neurons is fed back to that neuron’s input lines, 
where each element of the output vector is fed back 
only to its corresponding zone. This ability may help 
us store and recall higher-order memories. Higher-
order memory is one in which certain component of 
a vector can associate components or features with 

other vector. For example, consider the previous 
input pattern (“Sarah”, “Female”, “4781234”). After 
the network is trained, if we apply only the input 
“Sarah” we retrieve the whole vector (“Sarah”, 
“Female”, “4781234”) as output. In the case of 
recurrent network we may feed the component 
“4781234” back to the appropriate zone which might 
result in recalling another vector with elements 
School of computing, Queen’s University, Canada 
representing her department name, university name 
and the country where she is from. 

 

10 12 14 16 18 20 22
96.5

97

97.5

98

98.5

99

99.5

100

Avg Result: zones/CCN

%
 o

f v
ec

to
rs

 c
or

re
ct

ly
 m

an
ip

ul
at

ed

 
Fig. 8 – For each value of R, 100 runs were performed. 

y-axis shows the average of the percentage of 
manipulating vectors for each value of R. 

 
Another important direction of this research 

could be identifying the data types of the elements of 
vectors and manipulating the data accordingly. 
Currently, we do not have the mechanism to separate 
different data types, namely identifying between 
string and integer types. It would be interesting if we 
could incorporate the data type separating 
mechanism in the network. 

 
8. CONCLUSION 

Motivated by the resemblance of a pyramidal cell 
[6] found in brain, the authors of [1] proposed a new 
type of model neuron (called CCN) to imitate the 
behavior of a pyramidal cell. The pyramidal cell is 
believed [7] to process both the frequency and the 
amplitude of the input signals and there is some sort 
of competition among inputs. Attempts are made to 
follow the physical structure and functional behavior 
of the pyramidal cell to some extent in the CCN, 
such as competition among the inputs and finally 
select the winner. In this paper, we provide an 
improvement to the CCN model [1] which is more 
generalized and can handle situation where there is a 
possibility of getting activated more than one CCN. 
Furthermore, we can also increase the memory with 



M. Kamrul Islam / Computing, 2009, Vol. 8, Issue 1, 8-15 
 

 15

our proposed modification to the architecture of the 
CCN. Thus the modified neuron model can increase 
the memory capacity substantially as demonstrated 
in this paper. 

 
9. REFERENCES 

[1] H. Bar. W. Miranker. A. Ambash. Competition 
and Cooperation in neural processing. IEEE 
Transactions on Neural Networks 53 (3) 
(2004).  

[2] S. Haykin. Neural Networks, a Comprehensive 
Foundation. Upper Saddle River, NJ. Prentice-
Hall, 1999. 

[3] http://www.wikipedia.org/. 
[4] J. Singh. Great Ideas in Information Theory, 

Language and Cybernetics. New York, Dover, 
1966. 

[5] D. Hebb. The Organization of Behavior: A 
Neuropsychological Theory. New York, Wiley, 
1949. 

[6] M. Arbib. The Metaphoricalbrain. New York: 
Wiley-Interscience, 1972. 

[7] L. Rutherford. S. Nelson. G. Turrigiano. BDNF 
has opposite effects on the quantal amplitude of 
pyramidal neuron and interneuron exciatory 
synapses. Neuron, 21, (1998), p. 521-530 

 
 

Kamrul Islam is currently 
pursuing Ph.D in the School 
of Computing in Queen’s 
University, Kingston, Ontario, 
Canada where he obtained 
his Master’s degree in 2005. 
His research interests include 
algorithm designs, complexity 
analysis in the field of 
Computational Geometry, 

Sensor Networks and Neural Networks. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 




