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Abstract: This paper presents an alternative approach for estimating task complexity. Construction of a self-organizing 
neural tree structure, following the paradigm “divide and rule”, requires knowledge about task complexity. Our aim is 
to determine complexity indicator function and to hallmark its’ main properties. A new approach uses IBM © Zero 
Instruction Set Computer (ZISC-036 ®) and applies for a range of the different classification tasks. 
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1. INTRODUCTION 
In this paper we present an alternative complexity 

estimating approach for a modular neural tree 
structure. This structure uses key module of the 
complexity estimation for solving classification 
problem following the paradigm “divide and rule”. 

This general modular tree structure [1 ] is Tree 
Divide To Simplify (T-DTS) Fig. 1. Complexity 
reduction is the key point on which the modular 
approach acts. Complexity reduction performs not 
only at the problem’s solution level but also at the 
processing procedure’s level. The main idea is to 
reduce the complexity by splitting a complex 
problem into a set of simpler sub-problems: this 
leads to “multi-modeling” where a set of simple 
models is used to sculpt a complex behavior. Thus, 
one of the foremost functions to be performed is the 
complexity estimation. 

We introduce in this paper the complexity which 
is based on ZISC-036 ® neurocomputer [2]. Before 
describing the proposed approach, we present in the 
second section T-DTS paradigm and the hardware 
tool used for complexity estimation, IBM © Zero 
Instruction Set Computer (ZISC-036 ®). 

Third section properly contains the description of 
a new approach. A validation and a definition of the 
classification complexity contain section four. 
Obtained results and their overview are presented in 
the sections five. Final section presents conclusion 

and further perspectives of the work. 
 
2. THE NEURAL STRUCTURE AND 

NEUROCOMPUTER 
In a very large number of cases dealing with real 

world dilemmas and applications (system 
identification, industrial processes, manufacturing 
regulation, optimization, decision, pattern 
recognition systems, plants safety, etc), information 
is available as data stored in databases [3]. An 
efficient data processing becomes a chief condition 
to solve problems related to above-mentioned areas. 

The use of machine learning approaches for such 
problems can be justified in the following way [4]: 
• machine learning approaches produce 
predictable models with comparable and often 
superior quality than models based on the statistical 
analysis.  
• they are more easy to understand, intelligible to 
human beings. 
• instead of trying to fit the data to the model, 
most of machine learning approaches build models 
by including a knowledge that will accommodate all 
cases in the sample population. Real life models can 
be sometimes approximated with mathematical 
models (liner or non-linear), but sometimes that is 
not possible. 
• machine learning approaches offer better 
solution when the knowledge describing the real life 
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world is incomplete, inexact, and imprecise. 
An issue of using machine learning approaches is 

a capability to model complexity reduction by 
splitting a complex problem into a set of simpler 
sub-problems: multi-modeling, where a set of simple 
models, is used to sculpt a complex behavior [5] [6]. 
For such purpose, a tree-like splitting process, based 
on complexity estimation, divides the problem’s 
representative database on a set of sub-databases, 
constructing a specific model (dedicated processing 
module) for each sub-database. That leads to a 
modular tree-like processing architecture including 
several models. 

In order to deal with real word problem, we 
propose, a modular approach based on divide and 
conquer paradigm [1] [3]. In this approach, Tree 
Divide To Simplify or T-DTS, we divide a problem 
into sub-problems recursively and generate a neural 
tree computing structure. 
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Fig. 1 - General bloc diagram of T-DTS. 
T-DTS and associated algorithm(s) construct(s) a 

tree-like evolutionary neural architecture 
automatically where nodes, call “Splitting Units”, 
are decision units and leafs, call “Neural Network 
based Models”, correspond to neural based 
processing units [6] [7] [8]. 

T-DTS includes two main operation modes. The 
first is the learning phase, when T-DTS system 
decomposes the input database and provides 
processing sub-structures, and tools for decomposed 
sets of data. The second phase is the operation 
phase. Fig. 1, gives the general bloc diagram of T-
DTS operational steps.  

Fig. 1 shows that T-DTS could be characterized 
by four main blocks: “data pre-processing”, 
“learning process”, “generalization process”, 
“complexity estimation module”. The tree structure 
construction is based mainly on the complexity 
estimation module. This module introduces a 
feedback in the learning process and control the tree 

building process. The reliability of tree model to 
sculpt the problem behavior is associated mainly to 
the complexity estimation module. This work 
focuses on the aspect of complexity estimation and 
proposes a new approach based on neurocomputer 
hardware ZISC-036 ®: 

IBM © ZISC-036 ® neuron-computer is a fully 
integrated circuit based on neural network designed 
for recognition and classification [2] [6] [9]. It is a 
parallel neural processor based on the Reduced 
Coulomb Energy (RCE) [10] and K-Nearest 
Neighbor (KNN) [11] algorithms. Each chip is the 
implementation of the RBF-like model [12]. 

RBF approach could be seen as mapping an N-
dimensional space by prototypes. Each prototype is 
associated with a category and an influence field. 
ZISC-036 ® system implements two kinds of 
distance metrics that we have used L1 and LSUP 
respectively. The first one, L1 corresponds to a 
polyhedral volume influence field and the second 
LSUP - to a hyper-cubical one. 

During estimation complexity the RCE is used. 
This hardware implemented method on ZISC-036 ® 
is effective in separating patterns classes by 
nonlinear boundaries. However, the RCE network 
depends on the user-specified parameters which are 
computationally expensive to optimize [10]. Each 
ZISC-036 ® neuron of the network is an element, 
which is able to: 

memorize a prototype composed of 64 
components, the associated category, an influence 
field and a context, 

compute the distance and compare basing on the 
selected norm L1/LSUP between its memorized 
prototype and the input vector, 

interact with other neurons adjusting their 
influence fields during learning phase in order to 
find the minimal distance, category, etc. 

The next section presents a complexity estimation 
approach that is based on such neurocomputer’s 
capabilities. 

 
3. COMPLEXITY ESTIMATION 

APPROACH 
It is clear that the efficiency of neural network 

models is the basic precondition of their practical 
applicability in the artificial intelligence. With 
respect to the fact that neural networks models were 
inspired by living organisms which perform the 
relevant function efficiently, this approach leads to 
the complexity-theoretic definition of intelligence: 
the way of efficient knowledge representation.  

We can understand the efficiency in three senses: 
an efficient creation and adaptation of this 
representation (learning complexity), its memory 
demands (descriptive complexity) and efficient 
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knowledge retrieval (computational power). [13] 
The complexity estimating in T-DTS is used to 

understand the behavior of classifiers. A chief aim of 
the complexity estimating is to check, to measure the 
difficulty of a classification task before proper 
processing and to construct an optimized modular 
tree-like system. 

The definition of the classification complexity as 
a complexity in general term relates the difficulty in 
formalization of the whole compared to that of its 
fundamental parts (from the point of view of the 
language). It is only applicable in cases where there 
is at least a possibility of gaining almost complete 
information about the components, thus clearly 
separating ignorance from complexity. We have 
different concepts of complexity depending on the 
base language chosen, the type of difficulty focused 
on and the type of formulation desired within that 
language [14].  

In our work we determine a complexity as the 
amount of computational resource that it takes to 
solve a classification problem. Thus, a complexity 
here is the related to the amount of the resource 
supplied. 

Thus way of defining complexity as a computing 
complexity of classification is adopted for our 
approach, because of hardware limitation of the 
classification tools [15]. 

Supposing a classification problem has a 
collection of m objects of database associated to 
labels/categories. We classify and estimate the 
classification complexity using the neurocomputer 
without regard to a classifier. 

Firstly, we learn the ZISC-036 ® neurocomputer 
to classify objects using the associated database. 
Then estimate the task computational complexity, 
analyzing the generated ZISC-036 ® neural network 
structure that has been created by this 
neurocomputer. In general, we expect that a method 
which satisfying demands of the classification 
method will involve a more complex structure for a 
more complex problem, or being more precisely, the 
neural network structure will be an archetypal 
platform for extracting underlying 
properties/parameters of the classification 
complexity [16]. 

The simplest neural network structure feature is 
the number n of neurons created during the learning 
phase. The following indicator is defined (1), where 
parameter n is a value that reflects complexity and m 
– database size that have been used to train neural 
network structure: 

We suppose that there exists some function of 
complexity n=g(.) ,where the arguments of it may be 
the signal-to-noise ratio, the dimension of the 

representation space, boundary non-linearity and/or 
database size. 

In a first approach, we consider only g(.) 
function’s variations according to m axis: g(m). We 
suppose that our database (e.g. the used database) is 
free of any incorrect or missing information. 

On the basis on gp(m), where p is vector of 
parameters, a complexity indicator Qp defines: 

m
mg

mQ p
p

)(
)( = 0)(,1, ≥≥ mgm p

 (2) 

We expect that for the same problem, as we 
enhance m, the problem seem to be less complex: 
more information reduces problem ambiguity. On 
the other hand, for problems of different and 
increasing complexity, an evolution of Qp indicator 
should have a relevant trend. 

Also we can interpret obtained structure of 
neurons as the result of computational process [17]. 
The process consists of a program plus data. This 
idea underlies efforts to define both classical 
algorithmic complexity (eg. Chaitin, Kolmogorov 
[13]) and information entropy (eg. Papentin, 
Brooks). 

Most definitions of this kind (eg. Gramma, 
Bennett’s and Logren’s complexity [14]) hinge on 
the notion of the shortest program. This idea is 
unworkable in practice because in general we cannot 
prove that a particular program is the shortest. An 
alternative point of our approach is a computing of 
the complexity in the context [17]. Of course, this is 
another definition of computational complexity [18]. 
However, the strong feature of this definition is a 
strong orientation on the limitation of computational 
capabilities. 

In order to check the behavior of the indicator-
function (2), we have defined a specific bench-mark 
and applied extracted approach to DNA, Tic-tac-toe 
classification problems present in the following 
sections. 

Specific benchmarking database. 
Basically, we construct 5 databases representing 

a mapping of a restricted 2D space to 2 categories, 
Fig. 2. Each pattern is divided into two and more 
equal striped sub-zones, each of them belonging to 
the categories 1 or 2 alternatively. 

In learning phase we create samples using 
randomly generated plots (objects) with coordinates 
(x,y). The number of samples m, in our case of 
uniform random distribution, naturally has an 
influence on the quality of the striped zones 
(categories) demarcation. According to the value of 
the first coordinate x, and according to the amount 
of the striped sub-zones, the appropriate category c 
is assigned to the sample, and such structure (xj ,yj, 
cj) sends to neurocomputer on the learning. 

m
nQ =  , 0,1 ≥≥ nm  (1) 
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Fig. 2 – Test patterns. 

The second phase is classification or in the other 
words real testing of the generalizing ZISC-036 ® 
neurocomputer abilities. We again, randomly and 
uniformly, generate m samples and their associated 
category. Gaining classification statistics, we 
compute the indicator-function Qp. 

DNA patterns classification problem. 
Deoxyribonucleic acid (DNA) is a nucleic acid 

that contains the genetic instructions for the 
development and function of living organisms. This 
is two long strands entwine like vines, in the shape 
of a double helix. 

 
Fig. 3 – Genes DNA (black) transcription into RNA in 

the nucleus of the cell. 

The major function of DNA is to encode the 
sequence of amino acid residues in proteins, using 
the genetic code. To read the genetic code, cells 
make a copy of a stretch of DNA in Ribonucleic 
acid (RNA) [19]. These RNA copies can then be 
used to direct protein synthesis [20] [21]. During the 
protein creation in higher organisms take a place a 
process of elimination of the superfluous DNA 
sequence. Points on a DNA sequence at which 
redundant DNA is removed calls splice junctions. 
The problem posed in this dataset is to recognize, 

given a sequence of DNA, the boundaries between 
exons (the parts of the DNA sequence retained after 
splicing) and introns (the parts of the DNA sequence 
that are spliced out). This problem consists of two 
subtasks: recognizing exon/intron boundaries 
(referred to as EI sites), and recognizing intron/exon 
boundaries (IE sites). (In the biological community, 
IE borders are referred to an “acceptors” while EI 
borders are referred to as “donors”.) For our 
complexity estimation purpose we use molecular 
biology database titled as “Primate splice-junction 
gene sequences (DNA) with associated imperfect 
domain theory” donated by G. Towell, M. 
Noordewier, and J. Shavlik that is available in 
Machine Learning Repository of Bren School of 
Information and Computer Science University of 
California, Irvine (ftp site: ics.uci.edu) This 
benchmark data has the following main features: 

All examples taken from Genbank 64.1 (ftp site: 
genbank.bio.net) 

Number of Instances: 3190 
Number of Attributes: 62 
Missing Attribute Values: none 
Class Distribution: 
EI: 767 (25%) 
IE: 768 (25%) 
Neither: 1655 (50%) 
We create on the learning phase file(s) that 

consist of the samples randomly chosen from 
database. The number of samples m, in this case is 
the amount of instances. Each instance has a 
category c and 60 sequential DNA nucleotide 
positions aj (0 < j < 61) and in this case the structure 
(aij , ci) where i is the sample number which is sent 
to neurocomputer on the learning. 

The second classification phase is identical to 
bench-mark testing. We generate m samples 
(instances) and their associated category, than 
compute the indicator-function Qi. 

Difference between those two bench-mark 
examples is that the probabilities of coincidence are 
different, because of different database size and 
classes’ distributions. Moreover, the sequence of 
DNA encoded in aj reflects a part of 3D (not 2D) 
space of a DNA double helix. 

Tic-tac-toe endgame classification problem 
The tic-tac-toe endgame dataset encodes the 

complete set of possible board configurations at the 
end of tic-tac-toe games, where “x” is assumed to 
have played first. The target concept is “win for x” 
(i.e., true when “x” has one of 8 possible ways to 
create a “three-in-a-row”). The dataset contains 958 
instances without missing values, each with 9 
attributes, corresponding to tic-tac-toe squares and 
taking on 1 of 3 possible values: “x”, “o”, and 
“empty”. 
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From the view of data structure the tic-tac-toe 
endgame problem is similar to DNA patterns 
recognition, that’s why technically we easy apply 
identical approach for learning and classification. 
Moreover, tic-tac-toe problem “seems to be” simpler 
from the data size view.  

There are only 2 classes. Each array of attributes 
is shorter at least in 6 times. Every attribute has 
twice less variants of the value, plus it is 2D space. 
In next sections, especially section 6, we show 
delusiveness of such assumption. 

 
4. APPROACH VALIDATION 

To validate proposed approach we have 
conducted the experimentations with the following 
settings: 

two IBM © ZISC-036 ® modes: LSUP/L1; 
five different databases with increasing 

complexity; 
eight variants of m value: 50, 100, 250, 500, 

1000, 2500, 5000, 10000. 
For each set of parameters, tests are repeated 10 

times in order to get statistical average and to check 
the deviations of the tests Totally, 800 tests have 
been performed. 

Fig. 4, Fig. 5, shows the charts of Qi where i is 
the database index or pattern index. We expect that 
Q5 for 10 sub-zones reaches a higher value than Q1. 
Intuitively the problem corresponding to 
classification of 10 stripped sub-zones (Q5) is more 
complex than for 2 (Q1). 

Fig. 4 – Coefficients of complexity Qi(m) - LSUP 
ZISC-036 ® mode. 

Consider a simple concept of view on the 
complexity of the learning process, in which a 
neurocomputer attempts to build complex neural 
structure in order to infer an unknown classifying 
concept, so regarding this process, Qi(m) is a 
complexity learning curve. The values of Qi(m) are 
clearly closely related to each other. In either 
measuring we are interesting in the asymptotic 

behavior of a complexity of learning [22] as m 
becomes large. Since the curve can be used to 
determine how large m must be before the other 
parameters of classification such the rate of success 
reach a desire value. 

 
Fig. 5 – Coefficients of complexity Qi(m) - L1 ZISC-

036 ® mode. 

The chart analysis suggests that exist(s) a point(s) 
mj such as: 
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It means that there exists one or more point(s) mj 
where the second derivative of Qi changes its sign. 
Then we are interesting in m0 defined by: 

kkj

kj

mmmmm
mmmm

=<<<<

=

01

10

,.....
),...,..,max(  (5) 

Where k is the number of points mj. Main 
characteristic of the point m0 is: 

constmQmmm i →⇒+∞→>∀ )(:0
 (6) 

In general case const ≥ 0. The feature of the 
second derivative sign changes presents on the chart 
of the rates of the success classification, Fig. 6. That 
supports the idea of the strong influence second 
derivate has on the complexity estimation task. That 
fact turns a look on the problems not from the 
quantity side of complexity, but from the quality 
one. 

It is clearly seen that in our specific bench-mark 
examples, the complexity of the classifying is lying  
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in the range from Example 1 (2 zones, the easiest 
case) to Example 5 (10 zones, the complex one). 

 
Fig. 6 – Rates of success of classification. Examples 1 – 

5. LSUP ZISC-036 ® mode. 

Analysis of the plots m0,Q1 (Example 1) till m0,Q5 
(Example 5) for related classification tasks implies 
the following property: 

54321 ,0,0,0,0,0 QQQQQ mmmmm <<<<  (7) 
In our particular tests we have (8), mentioning 

that in general (5), (7) and (8) are not obvious. 
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On the other hand, we consider a particular value 
of m (an interesting value is m0 for which the second 
derivative of Qi (m) changes the sign) stating Qi(m0) 
acting as a “complexity coefficient”. In our case, 
Qi(m0) acts as a critical checkpoint of classification 
process. The increase of m0 stands for the 
classification task’s complexity increasing. 

Actually, many researchers try to identify 
general feature(s) of self organizing processes, so 
there is no revolutionary new in our approach. In 
particular [23], we point out that in many emergent 
and self-organizing processes, phase changes (from 
local to global behavior) occur at a well-defined 
critical value of some order parameter. For example, 
water freezes at a fixed temperature, nuclear chain 
reactions require a critical mass of fuel. So in next 
section we search the critical point(s) which in our 
approach represents its’ complexity. 

 
5. RESULTS 

For DNA patterns recognition, we generate the 
100 (amounts of the test) pairs (for learning and 
classification phases) of the files. For each set of the 
global parameter such as m, ZISC-036 ® mode, etc. 
appropriate pairs of the data files randomly have 

been generated from the given database in order to 
test, get good average parameters and to check the 
deviations. Approximately, up to 8400 tests have 
been performed.  

After cubical polynomial approximation for 3 
different initial modes we compute the coefficients 
of complexity Qi(m0) Fig. 7. 

 
Fig. 7 – Evaluation of Qp(m) for DNA sequences 

recognition for different initializing parameter p, 
maximal influence field (MIF) of ZISC-036 ® : Q55(m), 

Q56(m), Q4096(m) modes.  

The Table 1 represents the summary of the 
obtained chart results. Global optimizing parameter 
MIF is a maximum influence field used to initialize 
the RCE algorithm. 
Table 1. Coefficient of complexity for DNA sequences 

recognition 

Initial mode m0 Qi(m0) 
MIF 55 730 0.618 
MIF 56 775 0.561 
MIF 4096 700 0.104 

 
Fig. 8, Fig. 9, Fig. 10 supports the idea of the 

strong influence of the second derivate feature on 
the complexity estimation on the quality level of the 
recognitions.  

For example on the Fig. 9, for calculated m0,Q56 = 
775 we can generally observe for m > m0,Q56 the 
rates of success classification has a strong tendency 
to increase and the rates of failure – decrease. For m 
greater than critical m0,Q55 the rate of uncertainty 
(the rate of the patterns, which cannot be classify by 
hardware tool, put to the special category) strongly 
concentrate around 14%  

The mentioned supports that Qp(m0) is the 
coefficient of the task complexity. 

Constructing cubical approximation for Qp(m) 
and calculating this coefficient for the best satisfying 
the initial ZISC-036 ® parameter is MIF = 56. The 
obtained rate of the success classification is 53.5%. 
The rate of failure – 15.6% are satisfied knowing 
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[21] that even using improved RBF methodology we 
cannot reach more than 66.3% of successful DNA 
pattern classifying [24]. That is why computed 
coefficient of complexity Q56 = 0.561, where m0,Q56 
= 775 Fig. 7, is acceptable and expected. Problem of 
DNA pattern classifying seems to be a priori 
complex.

 
Fig. 8 – Rates of success, failure and uncertainty of 

classification for Q55(m). 

Fig. 9 – Rates of success, failure and uncertainty of 
classification for Q56(m). 

The same experimental protocol as for DNA 
benchmark is used for tic-tac-toe endgame problem. 
The datasets from the UCI machine learning 
repository is taken [25]. The database is randomly 
divided as in the reference sources into learning 
(90% of data) and recognition (remaining 10% of 
data) sets and to be comparable to the previous range 
of tests we also divide database on 50% of data for 
learning and 50% - for classification. The tests are 
applied to the training sets and this process is 
repeated 32 times for each data set (a pair of data 
files). We change during a testing a tuning 
initializing parameter MIF, so totally we performed 
around 1728 tests. 

 

Fig. 10 – Rates of success, failure and uncertainty of 
classification for Q4096 (m). 

The tic-tac-toe classification problem from the 
point of view of the covering type of algorithms is 
difficult [26] Fig. 11, as well as it is difficult for the 
methods based on the approach divide and conquer 
[27]. 

 
Fig. 11 – A covering family of algorithms applied for 

the tic-tac-toe classification problem. 

Another group of methods, which use the idea of 
finding minimal description function and its’ 
approximation for the class of the examples, are 
proven [28] to be NP-complete. Generally, the class 
of problems such as DNA patterns and tic-tac-toe 
endgame recognition are time and resource 
consuming and in some cases even impossible to 
examine all possible examples. 

Table 2 contains the summary of the obtained 
chart results. Relatively optimal tuning factor of 
classification is MIF = 3. Even for this optimal 
initial parameter the rate of the successful 
classification reaches by default level 65% [26]. 

Table 2. Coefficient of complexity for tic-tac-toe 
endgame problem 

Initial mode m0 Qi(m0) 
MIF 3 545 0.6384 
MIF 56 522 0.0839 

 
Coefficient of complexity Q3(m0) = 0.6384 
In fact, tic-tac-toe problem for the proposed 

method of the classification is the most complex. 
We can state so, because the other parameters as 

sample distribution (the main of them) are equal for 
DNA pattern classification and tic-tac-toe endgame 
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problems. 

 
Fig. 12 – Evaluation of Qp(m) for tic-tac-toe endgame 

problem for different initializing parameter p, 
maximal influence field (MIF) of ZISC-036 ® : Q3(m), 

Q56(m), modes. 

 
Fig. 13 – Rates of success, failure and uncertainty of 

classification for Q56(m). 

 
Fig. 14 – Rates of success, failure and uncertainty of 

classification for Q3(m). 

The rates of the classification process for not 
optimal parameter MIF = 56, and optimal MIF = 3 

are shown on Fig. 13 and Fig. 14. 
 

6. CONCLUSION 
In this paper we describe a new method for 

complexity estimation based on an indicator-
function related to neurocomputing technology. 

The complexity indicator is extracted from some 
pertinent neural network structure parameter - the 
number of neurons in the structure. 

The presented approach uses the following 
hypothesis: more complex classification problem 
involves more complex neural network structures for 
its processing relating to the initial condition where 
the other basic parameters are equal.  

The presented concept has been implemented on 
IBM © ZISC-036 ® massively parallel 
neurocomputer and takes additional advantage of 
standard digital technology robustness and the high 
processing speed of this neuroprocessor.  

It has been validated using a two-classes bench-
mark set of classification paradigms with increasing 
complexity.  

The proposed concept has been applied and 
verified using a three-class set of DNA patterns and 
two-class tic-tac-toe endgame classification 
problem.  

Future research in this field will embed this 
approach in T-DTS in order to improve 
performance. A parallel stream of the development 
of this approach will be formalization a complexity 
indicator and specification of the other pertinent 
parameters to study their properties and their 
influence on the integrated complexity coefficient. 
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