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Abstract: This paper presents an original architecture of Wavelet Neural Network (WNN) based on multi Wavelets 
activation function and uses a selection method to determine a set of best wavelets whose centers and dilation 
parameters are used as initial values for subsequent training library WNN for color image compression and coding 
which consists to transform an RGB image into Luminance-Chrominance space and then segment the luminance in a 
set of m blocks n by n pixels. These blocks should be transferred row by row (1D input vector) to the input of our 
wavelet network. Every input vector will be considered as unknown functional mapping and then it will be 
approximated by the network. 
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1. INTRODUCTION 
Wavelet Neural Networks (WNN) were 

introduced by Zhang and Benveniste [1-3] in 1992 
as a combination of artificial neural networks and 
wavelet decomposition. WNN have recently 
attracted great interest, because of their advantages 
over radial basis function networks (RBFN) as they 
are universal approximators but achieve faster 
convergence and are capable of dealing with the so-
called “curse of dimensionality.” In addition, WNN 
are generalized RBFN. However, the generalization 
performance of WNN trained by least-squares 
approach deteriorates when outliers are present. 

Feed forward neural networks such as multilayer 
perceptrons (MLP) and radial basis function 
networks (RBFN) have been widely used as an 
alternative approach to functions approximation 
since they provide a generic black-box functional 
representation and have been shown to be capable of 
approximating any continuous function defined on a 
compact set in Rn with arbitrary accuracy [4]. 
Following the concept of locally supported basis 
functions such as RBFN, a class of wavelet neural 
networks (WNN) which originate from wavelet 
decomposition in signal processing has become 
more popular lately [5, 6, 7, 8, 9]. In addition to the 
salient feature of approximating any non-linear 
function, WNN outperforms MLP and RBFN due to 

its capability in dealing with the so-called “curse of 
dimensionality” and non-stationary signals and in 
faster convergence speed [10]. It has also been 
shown that RBFN is a special case of WNN. 

This paper comprises four sections. Section 2 
discusses the architecture of Multi Library Wavelet 
Neural Networks (MLWNN) and a new training 
algorithm based on selection. Section 3 contributes 
to Beta MLWNN and its performance function 
approximation. Section 4 presents a direct solution 
method based on wavelet networks for lossless color 
image compression. Finally, Section 5 gives 
conclusions and summary for present research work 
and other possibilities of future research directions.  

 
2. THEORETICAL BACKGROUND 

2.1 CLASSICAL WAVELET NEURAL 
NETWORK ARCHITECTURE 

Wavelets occur in family of functions and each is 
defined by dilation ai which controls the scaling 
parameter and translation ti which controls the 
position of a single function, named the mother 
wavelet ψ(x). Mapping functions to a time-
frequency phase space, WNN can reflect the time-
frequency properties of function. Given an n-
element training set, the overall response of a WNN 
is: 
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where Np is the number of wavelet nodes in the 
hidden layer and wi is the synaptic weight of WNN. 

This can also be considered as the decomposition 
of a function in a weighted sum of wavelets, where 
each weight jw is proportional to the wavelet 
coefficient scaled and shifted by ai and ti. This 
establishes the idea for wavelet networks [11, 12]. 

This network can be considered composed of 
three layers: a layer with Ni inputs, a hidden layer 
with Np wavelets and an output linear neuron 
receiving the weighted outputs of wavelets. Both 
input and output layers are fully connected to the 
hidden layer.  

 
2.2 MULTI LIBRARY WAVELET NEURAL 
NETWORK ARCHITECTURE  

A MLWNN can be regarded as a function 
approximator which estimates an unknown 
functional mapping: 

 
y = f(x) +ε (2)

 
where f is the regression function and the error term 
ε is a zero-mean random variable of disturbance. 
Constructing a MLWNN involves two stages: First, 
we should construct a wavelet library W={W1, 
W2,…,Wn} of discretely dilated and translated 
versions of some mothers wavelets function Ψ1, 
Ψ2,…, Ψn : 
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where xk is the sampled input and L is the number of 
wavelets in each sub library Wj. Then select the best 
M wavelets based on the training data from multi 
wavelet library W, in order to build the regression. 
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2.3 AN INITIALIZATION PROCEDURE 
USINGA SELECTION METHOD 

It is very inadvisable to initialize the dilations 
and translations randomly, as is usually the case for 
the weights of a standard neural network with 
sigmoid activation function. In the case of wavelet 
neural network and due to the fact that wavelets are 

rapidly vanishing functions, a wavelet may be too 
local if its dilation parameter is too small (it may sit 
out of the domain of interest), if the translation 
parameter is not chosen appropriately.  

We propose to make use of multi library wavelet 
using a selection method to initialize the translation 
and dilation parameters of wavelet networks trained 
using gradient-based techniques. The procedure 
comprises four steps: 

 
2.3.1 INITIALIZATION 

Let Y the signal to be approximated, we have the 
same library that previously. This library contains 
NMw wavelet. We associate to every wavelet a vector 
whose components are the values of this wavelet 
according to the examples of the training sequence. 
We constitute a matrix Vw thus constitutes blocks of 
the vectors representing the wavelet of every mother 
wavelet: 
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j
w iV (t,d) ={V }i=[1..N], j=[1..M]  (6) 

We note by : 
g(X) the constructed network, 
Nw=1, the wavelet number 
T={ti } i=[1..N]  , the translation vector 
D={di } i=[1..N], the dilation vector 
 
2.3.2 SELECTION 

The library being constructed, a method of 
selection is applied in order to determine the most 
meaningful wavelet for approximation the 
considered signal. In general the wavelets in W are 
not all meaningful to estimate the signal. Let's 
suppose that we want to construct a network g(x) of 
wavelets with m wavelets, the problem is to select m 
wavelets of W. 

To the first iteration, the signal is y = Y1, and the 
vector regressor is the Vw(t,ds) definite by (6), the 
selected regressor is the one for which the absolute 
value of the cosine with the Y1 signal is maximal. 
We define ipert1 as: 

,
ipert1(i,j) arg max

.

j
i

ji j
i

Y V

Y V
= , 

with i=[1..N], j=[1..M] 
 

(7) 
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Fig. 1 – Selection of the pertinent vector. 

The regressor 1
pertiV can be considered like an 

adjustable and temporal function used to 
approximate Y (see figure 1). We calculate the 
weight 1w  defined by: 

1 1
perti

Y
w

V
=  (8)

We calculate thereafter, the mean square error of 
training (MSET) definite by: 

2

1

1
( , , ) ( ( ) * )MSET

pert

N
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k

t d Y k V
N

ω ω
=

= −∑ (9)

Y(k) is the desired output correspondent to the 
example k, and *

perti pert iVω  is the wavelet network 

output to the example k.  
 
2.3.3 REGRESSOR OPTIMIZATION 

To optimize the regressor we used the pressure 
gradient method:   

We notes by: 
( ) ( ) ( )de x Y x Y x= − , with Yd: desired output and 

Y: the real network output. 
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This optimization has the advantage to be fast 
because we only optimize the three structural 
parameters of the network. 

To the exit of this optimization, the parameters:  
1

pert

opt
it , 1

pert

opt
id , 1

pert

opt
iω  of the regressor 1

pertiV  are 

adjusted, and are solutions of the optimization 
problem defined by: 

( , , )
pert pert pert pert pert

opt opt opt opt
i i i i iV V t dω=  (13)

Considering the optimal regressor, we reset the 
network with this regressor that is going to replace 
the old in the library. The orthogonalization will be 
done in relation to the optimal regressor as shown in 
figure 2. 
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After an iteration we will have: 

{ }j
w1 i i=[1..N], j=[1..M]V (t,d) ={V  }

pert

opt
iV∪  (15)

 

Fig. 2 – Regressor Optimization. 

2.3.4 ORTHOGONALIZATION 

The vectors j
iV  are always linearly independent, 

(because N >> MW) and non orthogonal. The vectors 
j

iV  generate one sub-vector-space of M*N 
dimension. We orthogonalize the N*MS-1 remaining 
regressors, and the vector Y1 in relation to the 
adjusted regressor 1

pert

opt
iV : 

1 1
pert pert

j j j opt opt
i i i i iV V V V V⊥ = −  (16)

1 1 1
pert pert

opt opt
i iY Y Y V V⊥ = −  (17)

We make then, the updating of the library: 
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We obtain:  
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pert

j
w i (i=[1..N], j=[1..M]) \ { i  }V (t,d) ={V  }⊥  (18)

1Y ⊥  and { }j
iV ⊥  are respectively what remains 

the signal and regressors in the space orthogonal to 
1

pert

opt
iV . 

The model being to this stage, 
( ) 1* 1

pert

opt
i ig X Vω= ,  is shown in figure 3. 

 
Fig. 3 – Orthogonal projection on the optimal 

regressor. 

To the following iteration we increment the 
number of wavelet Nw=Nw+1. We applied the same 
stages decry above. Let's suppose achieved i-1 
iterations: we did i - 1 selections, optimizations, and 
orthogonalizations. To get the i-1 adjusted regressors 
we reset i-1 parameter of the network. 

At the end of the iteration i -1, the expression of 
the network g(X), is given by: 

1

1
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pert

i
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i i
i

g X Vω
−

=
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We have Nw-i+1 régressors to represent the 
signal Yi in a space of N*M - i +1 dimension 

orthogonal to (
1

pert

opt

iV
,...,

1
pert

opt

iV i −
) 

We apply the same procedure of selection as 
previously, the indication iperti of the selected 
regressor is the one for which the absolute value of 
the cosine with the signal Yi is maximal; iperti is 
given by (7) 

Finally and after N iteration, we construct a 
wavelet network with N wavelet in the hidden layer 
that approximates the input signal Y. 

So the parameters of the network are: 
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The obtained model g(X) can be written under the 

shape: 
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3. BETA MULTI LIBRARY WAVELET 
NETWORK 

3.1 BETA WAVELET FAMILY 
The Beta function [14] is defined as: 
if p>0, q>0, (p, q) ∈ IN 
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We prove in [15] that all the derivatives of Beta 
function ∈ L²(ℜ), are of class C∞ and satisfy the 
admissibility wavelet condition for p=q.  

 
3.2 EXAMPLE 1:1-D FUNCTION 
APPROXIMATION 

The first example is the approximation of a 
function of a single variable function, without noise, 
given by: 
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First, simulations on the 1-D function 
approximation are conducted to validate and 
compare the proposed MLWNN with the classical 
WNN. The input x is constructed by the uniform 
distribution on [-10 10]. The training sequence is 
composed of 101 points. The performance of the 
model is estimated using a test set of 101 equally 
spaced examples different from the training set. 

We define the NMSE (Normalized Mean Square 
Error) as evaluation criteria. 
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In the following, we present the results obtained 
with a network of 12 Beta wavelets, chosen as 
mother wavelets (second and third derivative of Beta 
function), for training network. Figure 4 shows the 
initial error histogram (a) obtained when the 101 
input patterns are initialized with the classical 
architecture and the final error histogram (b) 
obtained when the 101 input patterns are training 
after 1000 iterations. Figure 4 (c) shows the initial 
error histogram obtained when the 101 trainings are 
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initialized with the initialization by selection 
procedure using MLWNN and the final error 
histogram (d) obtained when the 101 input patterns 
are training after 1000 iterations. We can see clearly 
that the initialization by selection using MLWNN 
leads to:  

- The best result in term of NMSE, 
- Less scattered results both on the training set 

and on the test set.  
- Using multi wavelet mothers as activation 

function gives best approximation. 
 

 
(a) 

 
(b) 

 

(c) 

 

(d) 

Fig. 4 – Evolution of the initial and final error for each 
sample after initialization using classical WNN 

architecture and MLWNN architecture. 

Figure 5 shows the evolution of the NMSE 
according to the iteration; (a) shows the initial error 
for each sample after initialization using classical 
WNN architecture, (b) gives the final error for each 
sample after initialization using classical WNN 
architecture, when figure (c) and (d) show 
respectively the initial and final error for each 
sample after initialization using MLWNN 
architecture. We can see the superiority of the 
proposed initialization selection algorithm based on 
multi wavelet library over the classical WNN based 
on one mother wavelet. 

 

 
Fig. 5 – Evolution of the NMSE according to the 

iteration. 
 

3.3 EXAMPLE 2: 2-D FUNCTION 
APPROXIMATION 

The process to be modeled is simulated by a 
function of two variables without noise. The 
expression of this function is given by: 
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In the following, we present the results obtained 
with a network of 9 Beta wavelets, chosen as mother 
wavelets (second and third derivative of Beta 
function), for training network. The training set 
contains 11x11 uniform spaced points. The test set V 
is constructed by 21x21 stochastic points on 
[-1,1]x[-1,1]. Figure 6 shows the final error 
histogram (a) obtained when the 121 trainings are 
initialized with the classical architecture 
initialization and the final error histogram (b) 
obtained when the 121 trainings are initialized with 
a selection procedure using MLWNN. 

 
(a) 

 
(b) 

Fig. 6 – Final error for each sample after initialization 
using classical WNN architecture (a)  and MLWNN 

architecture (b). 

These results show that the effect of the classical 
WNN initialization is much smaller than when the 
wavelet centers and dilations are initialized by 
selection using a multi library WNN, used together 
with Beta wavelets, it makes wavelet neural network 
training very efficient because of the adjustable 
parameters of Beta function. 

 
4. BETA WAVELET NEURAL NETWORK 

FOR LOSSLESS COLOR IMAGE 
COMPRESSION  

The idea consists to transform an RGB image 
into luminance-chrominance space. Compression is 
achieved by determining the value of Np. The input 
(Luminance) is split up into blocks or vectors of 
8x8, 16x16 or 32x32 pixels. When the input vector 
is referred to as 1-dimensional which is equal to the 
number of pixels included in each block, each 
wavelet at the hidden layer can be represented by 
three parameters: weight, translation and dilation, 
which can also be described by three matrix of order 
3x Np. Image compression is achieved by training 
the network in such a way the network output scale 
the input and produces the optimum output value 
which makes the quadratic error between input and 
output minimum.  

In accordance with the neural network structure 
shown in Fig.1 the encoding phase can be described 
as follows: 

( ) ( ) ( )e x y x xy
∧

= −  (28)

The energy function is define as  
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The mean square error is optimised according to 

these equations 
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( )1 ( ) ww n w n wµ+ = + ∆  (35)

( )1 ( ) tt n t n tµ+ = + ∆  (36)

( )1 ( ) dd n d n dµ+ = + ∆  (37)

µ is the training constant. 
where x∈ [0, 1] denotes the normalized pixel values 
for RGB images with intensity levels [0, 255]. The 
reason for using normalized pixel values is due to 
the fact that wavelet networks can operate more 
efficiently when both their inputs and outputs are 
limited to a range of  [0, 1] [5].  

In the first phase, a set of image samples is 
designed to train the network via the descent 
gradient learning rule which uses each input vector 
as the desired output. This is equivalent to 
compressing the input into the narrow channel 
represented by the hidden layer and then 
reconstructing the input from the hidden to the 
output layer. 

The second phase simply involves the entropy 
coding of the state vector Ψ at the hidden layer. 
Since the hidden wavelet output is real valued, 
quantization is required for fixed length entropy 
coding which is normally designed as 32 level 
uniform quantization corresponding to 5 bits entropy 
coding [9,14]. 

 
4.1 PERFORMANCE ASSESSMENTS  

Around the Wavelet Neural Network, we have 
described the scheme to achieve image data 
compression can normally be assessed by 
considering two measurements. One is the 
compression ratio or bit rate which is used to 
measure the compression performance, and the other 

is mainly used to measure the quality of 
reconstructed images with regards to a specific 
compression ratio or bit rate. The definition of this 
measurement, however, is a little ambiguous at 
present [16]. In practice, there exists two acceptable 
measurements for the quality of reconstructed 
images which are PSNR (peak-signal-to noise ratio) 
and NMSE. Their definitions can be given, 
respectively, as follows: 
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Where ijP is the intensity value of pixels in the 

reconstructed images; and ijP the intensity value of 
pixels in the original images which are split up into 
n input vectors: xi={Pi1, Pi2,…, PiN}. 

 
4.2 PERFORMANCES ACCORDING TO 
THE PSNR, AND NMSE FOR COLOR 
IMAGE COMPRESSION USING MLWNN 

We use 3 RGB test images: Nature1, Nature2 and 
Lena. For each image we compute The PSNR, SNR 
and NMSE using MLWNN composed of 4 and 10 
neurons in hidden layer. 

 

 
Fig. 7 – Variation of NMSE in term of wavelets library 
for Nature 1, Nature 2 and Lena, using 4 neurons and 

MLWNN architecture. 

 

 
Fig. 8 – Variation of PSNR in term of wavelets library 
for Nature 1, Nature 2 and Lena, using 4 neurons and 

MLWNN architecture. 
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Fig. 9 – Variation of NMSE in term of wavelets library 

for Nature 1, Nature 2 and Lena, using 10 neurons 
and MLWNN architecture. 

 

 
Fig. 10 – Variation of PSNR in term of wavelets 

library for Nature 1, Nature 2 and Lena, using 10 
neurons and MLWNN architecture. 

From these results (figure 7, 8, 9 and 10) we see 
that the NMSE depends on the wavelet library and 
the number of wavelets in the hidden layer. For 
example for nature1 we have an NMSE equal to 
2.9929e-9 for a library constructed by Beta1 and 
Beta2 and for a net of 4 neurons in hidden layer 
where it is equal to 1.8244e-9 when we used a net of 
10 neurons. Of course the time of compression is an 
essential factor: increasing the number of wavelets 
in hidden layer increases the time processing. For a 
multi library wavelet network based on selection 
procedure for initialization we can see that the 
difference of NMSE between 4 neurons and 10 
neurons is small. To minimize time processing 
without biggest variation in NMSE we can reduce 
the number of neurons in hidden layer. 

 
4.3 PERFORMANCES ACCORDING TO 
THE PSNR, AND NMSE FOR COLOR 
IMAGE COMPRESSION USING 
CLASSICAL WNN 

 
Fig. 11 – Variation of NMSE in term of wavelets 

library for Nature 1, Nature 2 and Lena, using 10 
neurons and classical architecture. 

 
Fig. 12 – Variation of PSNR in term of wavelets 

library for Nature 1, Nature 2 and Lena, using 10 
neurons and MLWNN architecture. 

Comparing results given for the classical and 
proposed architecture (figure 11 and figure 12), we 
can conclude that the proposed architecture wavelet 
network, for the same value of compression ratio, 
gives results more interesting in term of mean square 
error. We can confirm that using more than one 
regressor (more than one wavelet in the library) in 
the wavelet library fit better the real output to the 
desired output. 

 
5. CONCLUSION 

Wavelet networks are a class of neural networks 
consisting of wavelets. In this paper, we have 
proposed a new Initialization by Selection algorithm 
for Multi library Wavelet Neural Network Training 
for the purpose of lossless color image compressing 
that provides improved efficiency compared to the 
classical wavelet neural networks. 

From these results we can see the superiority of 
Beta wavelets family over the Mexican hat in the 
term of lossless color image compression. 

We have shown that, when used a multi library 
wavelet networks and a selection procedure leads to 
results that are much more interesting than the 
classical architecture initialization.  

Finally, although wavelet neural network 
approximation can be slow, we have shown that the 
loss in speed can be largely corrected by decreasing 
the number of wavelets in hidden layer without 
decreasing considerably the compression ratio and 
the PSNR. 

As future research directions, we propose to use 
MLWNN in the case of adaptive self tuning PID 
controllers. The MLWNN is needed to learn the 
characteristics of the plant dynamic systems and 
make use of it to determine the future inputs that 
will minimize error performance index so as to 
compensate the PID controller parameters. 
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