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Abstract: In this paper we analyze the cheating detection and cheater identification problems for the secret sharing 
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1. INTRODUCTION 
A secret sharing scheme starts with a secret and 

then derives from it certain shares (or shadows) which 
are distributed to some parties. The secret may be 
reconstructed only by certain predetermined groups 
which belong to the access structure. Secret sharing 
schemes have been independently introduced by 
Blakley [4] and Shamir [3] as a solution for 
safeguarding cryptographic keys. Secret sharing 
schemes can be used for any situation in which the 
access to an important resource has to be restricted. 
We mention here the case of opening bank vaults or 
launching a nuclear missile. Modern applications of 
the secret sharing schemes can be categorized as 
secure multiparty computation protocols, i.e., 
protocols which allow to some users to compute f(x1, . 
. . , xm) such that the input xi is known only by the ith 
user. Threshold cryptographic protocols and some e-
voting or e-auction protocols are special cases of 
secure multiparty computation protocols. Usually, a 
secret sharing scheme is coordinated by a dealer (or 
administrator) who has to be a mutually trusted party, 
but there are secret sharing schemes which can be 
configured without the presence of a dealer. The 
reconstruction of the secret can be made by the 
participants after they pool together their shares or by 
a special party, called combiner, after receiving the 
shares from the users of an authorized group. 

Several solutions for the case in which the dealer 
or some users may behave maliciously have been 
proposed in the literature. The case of a possible 
dishonest dealer has been discussed for the first time 

by Chor, Goldwasser, Micali, and Awerbuch [5], who 
have introduced the notion of verifiable secret 
sharing schemes in which every user can verify that 
he has received a valid share. The problem of 
cheating in the reconstruction phase has been 
discussed by McEliece and Sarwate [6], and later on, 
by Tompa and Wool [7]. All the mentioned papers 
refer to Shamir’s secret sharing scheme, which is the 
most popular (and used) secret sharing scheme.  

The study of the secret sharing schemes based on 
the Chinese remainder theorem (Mignotte [1] and 
Asmuth-Bloom [2]) has been recently reactivated, 
due to the applications of these schemes in threshold 
cryptography (see [8], [9], [10]), e-voting (see [11]) 
or private integer comparison (see [12]). In this paper, 
we analyze the cheating detection and cheater 
identification problems for these secret sharing 
schemes. We prove that the majority of the solutions 
for Shamir’s scheme can be translated to these 
schemes and, moreover, there are some interesting 
specific solutions. To the best of our knowledge, this 
is the first paper dedicated to this topic.  

The paper is organized as follows. In Section 2 we 
present the Chinese remainder theorem (the standard 
variant and the general one). In the next section, after 
a short introduction to secret sharing, we present the 
secret sharing schemes based on the Chinese 
remainder theorem. In Section 4 we present our 
solutions to the cheating detection and cheater 
identification problems for the secret sharing schemes 
based on the Chinese remainder theorem. The last 
section concludes the paper. 
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2. THE CHINESE REMAINDER THEOREM 
We recall first some basic facts on number 

theory (for more details, the reader is referred to 
[13]). 

Let a, b, m ∈Z, m ≥ 2. The remainder of the 
integer division of a by m will be denoted by a mod 
m. We say that a and b are congruent modulo m, 
and we use the notation a ≡ b mod m, if a mod m = 
b mod m. Zm denotes the set {0, 1, . . . ,m − 1}. Let 
a1, . . . , an ∈  Z such that 022

1 ≠++ naa L . The 
greatest common divisor (gcd) of a1, . . . , an will be 
denoted by (a1, . . . , an). Let a1, . . . , an ∈  Z such 
that 01 ≠naa L . The least common multiple (lcm) 
of a1, . . . , an will be denoted by [a1, . . . , an]. 

We will present first the standard variant of the 
Chinese remainder theorem: 

Theorem 1: Let .,...,,2,...,,2 11 Zbbmmk kk ∈≥≥  
If (mi,mj) = 1 for all kji ≤≤≤1 , then the system 
of equations 

 
               11 modmbx ≡  
       : 
       : 
   kk mbx mod≡  
has a unique solution in 

kmmZ L1
. 

We will present next a more general variant of 
the Chinese remainder theorem: 

Theorem 2: (Ore [14]) The system of equations 
 

              11 mod mbx ≡  
      :     (1) 

         : 
  kk mbx mod≡  
has solutions in Z if and only if 
 

)),(mod)(,1( jiji mmbbkji ≡≤≤∀  (2) 
Moreover, if the above system of equations has 

solutions in Z, then it has a unique solution in 
],,[ 1 kmmZ K .Fraenkel has proposed an efficient 

algorithm in [15]. The main idea of his algorithm is 
that, having x, the solution for the first i equations 
of the system, by adding a well-chosen multiple of 
the least common multiple of the first i modules to 
x, we may obtain an integer that is also a solution 
for the (i + 1)th equation and iterate this 
construction until the final solution is obtained. The 
algorithm is presented next: 
CRT Fraenkel(b1,. . . , bk,m1,. . . , mk) 
input: b1,. . . , bk, m1,. . . , mk ∈  Z that satisfy (2); 
output: x, the solution modulo [m1,. . . , mk] of the 
system (1); 

        begin 
1.  for i:=1 to k − 1 do ci := [m1, . . . , mi]; 
2.  x := b1 mod m1; 
3.  for i:=1 to k − 1 do 

begin 
4.     y := 

),(
mod)
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ii

i

ii

i

ii

i

mc
m

mc
c

mc
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5.     x := x + y · ci; 
end 

        end. 
 
In case (mi,mj) = 1, for all 1 ≤ i < j ≤ k, we 

obtain Garner’s algorithm [16]. 
The Chinese remainder theorem has many 

applications in computer science (see [17] for an 
interesting survey on this topic).  

 
3. SECRET SHARING BASED ON THE 

CHINESE REMAINDER THEOREM 
A secret sharing scheme starts with a secret and 

then derives from it certain shares (or shadows) 
which are distributed to users. The secret may be 
reconstructed only by certain predetermined groups 
which belong to the access structure. Suppose we 
have n users labeled with the numbers 1, . . . , n and 
let A be a set of subsets of {1, 2, . . . , n}. 
Informally1, an A-secret sharing scheme is a method 
of generating (S, (I1, . . . , In)) such that 

• (correctness) – for any A ∈  A, the problem of 
finding the element S, given the set {Ii | i ∈  A}, is 
“easy”; 

• (security) – for any A ∉  A, the problem of 
finding the element S, given the set {Ii | i ∈  A}, is 
intractable. 

S will be referred to as the secret, I1, . . . , In will 
be referred to as the shares (or the shadows) of S, A 
will be referred to as the authorized access structure 
(or simply as the access structure), the elements of 
the authorized access structure are called authorized 
groups and the rest are called unauthorized groups. 

The schemes in which the unauthorized groups 
gain no information about the secret are referred to 
as perfect. In an ideal (perfect) secret sharing 
scheme the shares are as long as the secret. 

In the first secret sharing schemes (e.g., Blakley’s 
scheme [4] and Shamir’s scheme [3]) only the 
number of the participants in the reconstruction 
phase was important for recovering the secret. Such 
schemes have been referred to as threshold secret 
sharing schemes. In this case, the access structure is 

 

                                                 
1 For the most important mathematical models for secret sharing, the 
readers referred to Chapter 2 of [18]. 
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A }|},...,2,1{{ kAnA ≥⊆= , 
 
for some n ≥ 2, 2 ≤ k ≤ n – this access structure will 
be referred to as the (k, n)-threshold access structure 
and, in this case, any A-secret sharing scheme will 
be referred to as an (k, n)-threshold secret sharing 
scheme.  

We review next the most important secret sharing 
schemes based on the Chinese remainder theorem. 

 
A. MIGNOTTE’S SCHEME 

Mignotte’s threshold secret sharing scheme [1] 
uses special sequences of integers, referred to as 
Mignotte sequences. 

Definition 1: Let n be an integer, n ≥ 2, and 2 ≤ k 
≤ n. 

An (k, n)-Mignotte sequence is a sequence of 
pairwise coprime positive integers p1 < p2 < · · · < pn 
such that 

 

∏∏
=

−

=
− <

k

i
i

k

i
in pp

1

2

0

 

The above relation is equivalent with 
 

)(min)(max
111111 11 kkkk iiniiiinii pppp LL LL ≤≤≤≤≤≤≤≤ <

−−
 

Given a publicly known (k, n)-Mignotte 
sequence, the scheme works as follows: 

• The secret S is chosen as a random integer such 
that  
β < S < α, where α = ∏=

k

i ip
1

 and β = ∏−

= −
2

0

k

i inp ; 

• The shares Ii are chosen as Ii = S mod pi, for 1 ≤ 
i ≤ n; 

• Given k distinct shares 
1i

I , . . . ,
ki

I , the secret S 
is reconstructed using the standard variant of the 
Chinese remainder theorem, as the unique solution 
modulo 

kii pp L
1

 of the system 

                 
11

mod ii pIx ≡  
         : 
                      : 
    

kk ii pIx mod≡  

Indeed, the secret S is an integer solution of the 
above system by the choice of the shares. Moreover, 
S lies in Z

kii pp ...
1

 because S < α. On the other hand, 

having only k − 1 distinct shares 
1i

I , . . . ,
1−ki

I , we 

obtain only that S 
11

...mod0 −
≡

kii ppx , where x0 is 

the unique solution modulo
11

...
−kii pp of the resulted 

system (indeed, S 0x≠  because S > β 

011
... xpp

kii >≥
−

). Therefore, in order to assure a 
reasonable level of security, (k, n)-Mignotte 

sequences with a large factor 
β
βα −  must be chosen 

(a method of generating such sequences is presented 
in [19, page 9], these sequences being formed by 
consecutive primes).  

We have extended Mignotte’s threshold secret 
sharing scheme in [20] by introducing the 
generalized Mignotte sequences whose elements are 
not necessarily pairwise coprime. 

Definition 2: Let n be an integer, n ≥ 2, and 2 ≤ k 
≤ n. A generalized (k, n)-Mignotte sequence is a 
sequence p1, . . ., pn of positive integers such that 

 
]),...,([min]),...,([max

111111 11 kkkk iiniiiinii pppp ≤≤≤≤≤≤≤≤ <
−− LL  

It is easy to see that every (k, n)-Mignotte 
sequence is a generalized (k, n)-Mignotte sequence. 
Moreover, if we multiply every element of a 
(generalized) (k, n)-Mignotte sequence p1, . . ., pn by 
a fixed element δ ∈  Z, (δ, p1 ··· pn) = 1, we obtain a 
generalized (k, n)-Mignotte sequence. The 
generalized Mignotte scheme works like Mignotte’s 
scheme, with α = ]),...,([min

111 kk iinii pp≤≤≤≤ L and β 

= ]),...,([max
11111 −− ≤≤≤≤ kk iinii ppL . In this case, the 

general variant of the Chinese remainder theorem 
must be used for reconstructing the secret. 
Obviously, Mignotte’s scheme is not perfect, but it 
can lead to small shares and, thus, can be used in 
applications in which the compactness of the shares 
is the deciding factor. 

 
B. ASMUTH-BLOOM SCHEME 

Asmuth and Bloom have proposed a slightly 
different scheme in [2], by choosing the shares as 

 
 ii ppSI mod)( 0⋅+= γ , 
for all 1 ≤ i ≤ n, where γ is an arbitrary integer such 
that 

kppZpS ...0 1
∈⋅+ γ , providing that p0 is a prime 

number less than 
β
α and the secret S is a positive 

integer less than p0 – in this case the secret is 
reconstructed as S = x0 mod p0, where x0 is the 
solution of the system of k modular equations. 
Goldreich, Ron, and Sudan [21] have proposed 
choosing p0, p1, . . . , pn as prime numbers of the 
same size. Quisquater, Preneel, and Vandewalle [22] 
have proven that, by choosing p0, p1, . . . , pn as 
consecutive primes, the resulted schemes are 
asymptotically perfect and asymptotically ideal (for 
technical details, the reader is referred to [22]). 

In [11] we have proved that more general access 
structures can be realized using the Chinese 
remainder theorem. 
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4. CHEATING DETECTION AND 
CHEATER IDENTIFICATION IN CRT-

BASED SECRET SHARING SCHEMES 
Usually, a secret sharing scheme is coordinated 

by a dealer (or administrator) who has to be a 
mutually trusted party, but there are secret sharing 
schemes which can be configured without the 
presence of a dealer. The reconstruction of the secret 
can be made by the participants after they pool 
together their shares or by a special party, called 
combiner, after receiving the shares from the users 
of an authorized group. Dealing with a possible 
malicious behavior of some users in the 
reconstruction phase has two aspects: 

• cheating detection – when the frauds are 
detected but not the parties involved; 

• cheater identification – when the authors of the 
frauds are identified. 

Two main models for secret sharing schemes that 
deal with cheating have been proposed in the 
literature: 

• The CDV Model, proposed by Carpentieri, De 
Santis, and Vaccaro in [23], in which the cheaters 
know the secret and they try to make another user 
obtain an invalid secret; 

• The OKS Model, proposed by Ogata, 
Kurosawa, and Stinson in [24], in which the cheaters 
do not know the secret in advance.  

In our opinion, the most natural model is when 
the cheaters form an unauthorized group and they 
combine with a group of honest users in order to 
reconstruct the secret. The cheaters modify their 
shares such that the reconstruction phase leads to an 
invalid secret but they will be able to obtain the 
correct secret. 

As Schoenmakers has remarked in [25], 
verifiable secret sharing can also be seen as a 
solution for the problem of cheating – the shares 
presented in the reconstruction phase may be 
verified with respect to the distribution phase. Thus, 
the method proposed by Kaya and Selçuk in [26] for 
assuring verifiability in CRT-based secret sharing 
schemes, can also be used in order to detect 
cheating, but this method is rather expansive, 
requiring zero-knowledge proofs and special2 
sequences of modules. 

We further discuss our solutions for cheating 
detection and cheater identification. 

 
 

                                                 
2 The verifiability feature described in [26] requires Asmuth-Bloom 
sequences p0, p1, . . . , pn such that p1, . . . , pn are Sophie Germain primes 
- the existence of such sequences and the magnitude of their elements 
have not been precisely stated. 
 

A. CHEATING DETECTION FOR 
MIGNOTTE’S SCHEME 

In this subsection we prove that, in the case of the 
original Mignotte secret sharing scheme, a single 
participant can deceive other k−1 users with 
probability 1 in the CDV model and with high 
probability in the OKS model.   

Suppose that the participants i1, i2, . . . , ik pool 
their shares and that the participant i1 decides to 
cheat. Then, the user i1 should change his share 

1i
I  

in 
1i

I ′  such that a new secret S′ ≠ S, S′ ∈(β,α) is 

reconstructed. Let l = 
kii pp L

2
 and r = 

kii pp L
1

. 
From the reconstruction phase, it follows that S has 
the form pl + q, where p∈

1ipZ  and q∈Zl. 

Moreover, using the Chinese remainder theorem, we 
can conclude that S mod l = S′  mod l = q. Thus, S′  
has the form p′ l + q. Since the Mignotte sequence 
p1, . . . , pn is publicly known, the cheater can easily 
compute l. Thus, he can choose p′= p ± 1, adjusts 
his share 

1i
I ′  = (

1i
I  ± l) mod 

1i
p , thus leading to 

S′ = (p ± 1)l + q = (S ± l) mod r. 
In the CDV model the cheater knows the secret, 

so, using the relation S′  = (S ± l) mod r, he can 
assure that S′ ∈(β,α) (see Figure 1). The existence 
of such S′  is granted since k−1 participants cannot 
uniquely determine the secret. Thus, the cheater can 
deceive honest participants with probability 1. 
Moreover, in the CDV model the cheater has control 
over the fake secret S′ . Instead of using the relation 
S′  = (S ± l) mod r, he can compute q directly from 
S. The cheater can use 

1i
I ′  = S′  mod 

1i
p , where S′  

= p′ l + q, by choosing p′ ∈Zβ such that S′ ∈(β,α).  

 
Fig. 1 

The above statement does not hold in the OKS 
model. Since the cheater does not know the secret, 
he cannot verify whether S − l < β or S + l > α. In 
this case he may always use 

1i
I ′  = (

1i
I  + l) mod 

1i
p . 

The only case when cheating is detected is S + l > α, 
this leading to S′  = (S + l) mod r < β (see Figure 2) 
or S′  = (S + l) mod r > α (see Figure 3). Thus, 
honest participants are deceived with probability 

⎥⎥
⎤

⎢⎢
⎡ −

−
l
βα11  
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Fig. 2 

 
Fig. 3 

The next example illustrates this kind of attack: 
Example1: (with artificially small parameters) 
Let n = 5, k = 3, and p1 = 661, p2 = 673, p3 = 677, 

p4 = 683, p5 = 691. In this case, α = 301165481 and 
β = 471953. For the secret S = 500000, the dealer 
computes I1 = 284, I2 = 634, I3 = 374, I4 = 44, and I5 
= 407. Now, suppose that participants 1, 2, and 3 
pool their shares and participant 1 decides to cheat. 
Then, he can easily compute p2 · p3 = 455621 and 
adjust his share according to 1I ′  = (I1 + p2p3) mod p1 
= 476. Thus, by solving the system of equations  

 
     661mod476≡x  
     673mod634≡x  
     677mod374≡x  

 
the participants reconstruct the invalid secret S′  = 
(S + p2p3) mod p1p2p3 = 955621 that is also between 
β and α. The user 1 can obtain the real secret as S = 
( S′  – p2p3) mod p1p2p3 = 500000. 

We propose the following solution for cheating 
detection in Mignotte’s secret sharing scheme: 

• The dealer generates an (k, n)-Mignotte 
sequence p1,p2, . . . , pn. The dealer also generates n 
distinct prime numbers m1, . . . ,mn such that  

)(max
12111 ...1 −−

⋅
−

<<<≤ kk iiinii mmm Lβ
βα

 is large 

enough; 
• The secret S is chosen such that β < S < α; 
• The shares Ii are (S mod pi, S mod mi, pi, mi). 
The reconstruction phase is done exactly the 

same as in the original Mignotte’s secret sharing 
scheme. After the secret S′ is reconstructed, any 
participant i can detect cheating by comparing 
S′mod mi with the information provided by the 
dealer. Thus, the cheaters can deceive participant j 
with probability 

jm
1 . 

 
 

B. CHEATING DETECTION FOR 
ASMUTH-BLOOM SCHEME 

The attack presented in the previous subsection 
can be adapted to the Asmuth-Bloom secret sharing 
scheme. Here, we must note that (S + γ p0) = pl + q, 
where q∈Zl and p∈

1pZ . It follows that (S + γ p0) 
mod l = ( S′+ γ p0) mod l = q, thus ( S′+ γ p0) has 
the form p′ l +q. Indeed, the cheater i1 only controls 
the parameter p0 in the above expression. Moreover, 
if the cheater chooses p′= p+y, then his fake share 
would be 

1i
I ′  = (

1i
I  + yl) mod 

1i
p . Thus, the 

reconstructed fake secret S′  would satisfy the 
equality 

 
0mod)mod)(( prqylplS ++=′     (3) 

In both the OKS and CDV models the cheater 
can deceive the other participants with probability 1 
− 1/p0, by choosing y randomly. Indeed, the only 
case when he does not succede is when S = S′ . 
Furthermore, we prove that if the cheater has access 
to the other shares (i.e., if he pools his share last), he 
has full control over the secret S′ . More exactly, for 
any secret S′ ∈

0pZ  he can find y such that the 
equality (3) holds. Knowing the other shares, the 
cheater can compute x0 = (S+ γ p0) by solving the 
system of k modular equations. Then he can 
compute p and q such that x0 = pl + q, by taking q = 
x0 mod l and p = (x0 −q)/l. Now, the cheater has to 
fiind y such that (3) is satisfied. Let y = y0+y1, where 
y0 is chosen such that (pl+y0l+q) mod r = q. From 

1i
p l = r, it follows that y0 = p1−p. Next, we prove 

that for any fake secret S′ ∈
0pZ the cheater can 

choose y1 such that equality (3) written as  
010 mod)mod))((( prqlyyplS +++=′  holds.  

The above relation can be written as  
010 mod)mod)(( prqlylyplS +++=′ . Since  

pl + y0l = r, it follows that S′ = ((y1l + q) mod r) 
mod p0. When y1 ∈ 0pZ  we obtain S′ = (y1l + q) 

mod p0, because q ∈  Zl and 
0i

p <
1i

p . Since (p0, l) = 

1 it follows that such y1 exists for any S′ ∈  
0pZ . 

The next example illustrates this type of attack, 
when the cheater knows others’ shares and controls 
the secret. 

Example 2: (with artificially small parameters) 
Let n = 5, k = 3 and p1 = 661, p2 = 673, p3 = 677, 

p4 = 683, p5 = 691, p0 = 23, γ = 1254895, and S = 10. 
The dealer computes S+ γ p0 = 28862595 and the 
shares I1 = 30, I2 = 317, I3 = 54, I4 = 381, and I5 = 
216. Now, suppose that participants 1, 2 and 3 pool 
their shares and the participant 1 decides to cheat, 
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and chooses S′  = 18. The cheater computes l = 
455621 and r = 301165481. Solving the resulted 
system, he can compute x0 = 28862595. After that, 
he obtains q = 158472 and p = 63. Furthermore, the 
cheater computes y0 = p1 − p = 598, and solving the 
equation S′ = (y1l + q) mod p0 he obtains y1 = 11. 
Thus, he can adjust his share 1I ′= (I1 + (y0 + y1)l) 
mod p1 = 622. Then, by solving the system of 
equations 

 
     661mod662≡x  
     673mod317≡x  
     677mod54≡x  

 
the participants obtain the solution 0x′ = 5170303 
and S′  = 5170303 mod p0 = 18. 

We propose the following solution for cheating 
detection in Asmuth-Bloom secret sharing scheme: 

• The dealer computes an (k, n)-Asmuth-Bloom 
sequence p0, p1, p2, . . . , pn; 

• The secret S is chosen as a random element 
in

0pZ ; 
• The shares Ii are chosen as  

))mod))((,mod)(( 00 iii ppfSppSI ⋅+⋅+= γγ , 
where f is an one way function such that f(γ) 
∈

kppZ ...1
. 

The reconstruction is done same as in the original 
Asmuth-Bloom secret sharing scheme. Every 
participant can now verify if the reconstructed secret 
S′  is the real secret. He can compute γ and check if 
( S′ + f(γ) · p0) mod pi is equal with the information 
provided by the dealer. In this way, k−1 cheaters can 
deceive the kth participant with probability kp1 .  

Now we prove that in our scheme k−1 
participants cannot narrow down the key space. Let 
i1, ..., ik−1 be the coalition that tries to find the secret, 
l = 

11 −kii pp L  Let q′  be the solution in Zl of the 

first resulted system of equations and q ′′  the 
solution of the second resulted system of equations 
(with the values used for verification). It is easy to 
see that for any honest participant ik, the solutions 
modulo p0 for the two systems (with k equations) 
satisfy the relation ( q′+ j′  · l) mod p0 = ( q ′′ + j ′′ · l) 
mod p0.  

From p0 · pn−k+2 · · · pn < p1 · · · pk, both q′+ j′  · 
l and q ′′ + j ′′ · l are smaller than l· 

ki
p , for any ik ≠ 

ij,(j<k) and j′ , j ′′ ∈
0pZ . Thus, since (p0, l) = 1, if we 

take j′  = 0, 1, . . . , p0−1, q′+ j′  ·l will all be 
different. This is also valid for j ′′ . Since we have p0 
different values less than p0, it follows that for any q 

∈
0pZ  there exist j′ , j ′′ ≤ p0 such that q = ( q′+ j′ · 

l) mod p0 and q = ( q ′′ + j ′′ · l) mod p0. 
 

C. A CHEATING DETECTION METHOD 
BASED ON DOUBLING THE SHARES 

This method has been proposed by Ghodosi and 
Pieprzyk in [27] for cheating detection in Shamir’s 
secret sharing scheme. For simplicity, we will 
present it only for Mignotte secret sharing scheme 
but it can be adapted to Asmuth-Bloom scheme in a 
straightforward manner. The main idea is to double 
the shares, using the second component for detecting 
a possible malicious behavior of some users in the 
reconstruction phase. 

• Generate a (2k−1, 2n)-Mignotte sequence p1, . . 
. , p2n; 

• The secret S is chosen as a random integer such 
that β < S < α, where α =∏ −

=

12

1

k

i ip  and β 

=∏ −

= −
32

0 2
k

i inp  

• The shares Ii are chosen as 
)mod,mod( 212 iii pSpSI −= , for all 1 ≤ i ≤ n; 

• Given the shares ),( 21
111 iii III = ,…, 

),( 21
kkk iii III =  the secret S is recovered using the 

standard variant of the Chinese remainder theorem, 
as the unique solution modulo 12 1−ip

12ip  · · · 

12 1 −−ki
p

12 −ki
p 12 −ki

p  of the system 
 

 12
1

11
mod −≡ ii pIx  

 
11 2

2 mod ii pIx ≡  
       : 
 12

1 mod −≡
kk ii pIx  

 
The cheating detection can be performed by 

verifying 
 

  
kk ii pIS 2

2 mod≡  
The next example illustrates this method of 

cheating detection: 
Example 3: (with artificially small parameters) 
Let n = 5 and k = 3. Let us consider the following 

(5, 10)-Mignotte sequence: 661, 673, 677, 683, 691, 
701, 709, 719, 727, and 733. In this case, α = 
142135952254393 and β = 271652377961. Let the 
secret be S = 500000000000. 

The dealer computes the shares of each user: I1 = 
(28, 350), I2 = (151, 457), I3 = (309, 539), I4 = (547, 
52), and I5 = (157, 80). 

Let us consider the case when the first three users 
try to reconstruct the secret and the second user tries 
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to cheat and sends the value 470 instead of 457. 
 

 661mod28≡x  
 673mod350≡x  
 677mod151≡x  

683mod470≡x  
691mod309≡x  

 
By solving the above system, the secret obtained 

( S′ ) is 9601918653364 (fake). However, the 
cheating is detected because S′  mod 701 = 138 
which is different from 539. 

 
D. METHODS BASED ON EXTRA 
SHARES 

In the paper [28] of Harn and Lin, the 
detection/identification of cheaters is done using the 
extra shares – if the threshold is k, then the number 
of participants required in the reconstruction phase, 
denoted by j, is strictly greater than k (j > k). The 
main idea is that, if the number of honest users 
(denoted by h) is strictly greater than the number of 
cheaters (denoted by c) then the most frequent 
reconstructed secret (considering all groups of k 
users from the total j participants), will be the one 
reconstructed by the honest users, thus, the correct 
secret. In the rest of this subsection, we will show 
that the methods described by Harn and Lin can be 
adapted to Mignotte’s scheme (and, similary, to 
Asmuth-Bloom scheme). 

Let X be a set of j users. X is consistent if by 
solving all the systems of equations corresponding to 
any k users from X, the result obtained is the same 
for each system. For Mignotte’s scheme we can use 
a more efficient algorithm. We choose arbitrary k 
users from X and solve the resulted system. Let S be 
the value we obtain. For all the other users from X 
we verify the following congruence: 

 
ii pIS mod≡  

It is obvious that the set X is consistent if and 
only if all these congruences are satisfied. In order to 
detect if there are cheaters, we test if the given set of 
j users is consistent or not. If this set is consistent 
then there are no cheaters and the result obtained is 
the correct secret. In order to identify the cheaters, 
we have to solve all the )( j

k systems in order to 
obtain the most frequent reconstructed secret. A 
more efficient solution is to solve all the systems of 
k −1 equations and then solve the needed systems by 
adding an equation to these systems (using 
Fraenkel’s algorithm). We have implemented and 
tested both methods on a Toshiba Satellite A200-
23W having Intel Core 2 Duo T7500 processors. 

The results are presented in Table 1 (we have 
considered the case j=10, k=5, for different bit-
lengths of the modules).  

 
Table 1 

Bit-length of 
the modules 

Solving all the 
systems Our method 

256 805 ms 480 ms 
512 1840 ms 1413 ms 
1024 9972 ms 9554 ms 

 
Now that we have obtained the most frequent 

reconstructed secret, denoted by S, we can identify 
the cheaters by verifying the following congruence: 

 
  ii pIS mod≡  

If the above congruence is satisfied then the 
current user is honest and will be put in the set of the 
honest users (the initial users that have reconstructed 
the secret S will be put in the set of the honest 
users); otherwise, the user is a cheater and will be 
put in the set of the cheaters. 

We will analyse next three types of attacks. The 
bounds for detection and identification, for these 
attacks, remain the same as in [28]. 

The first type of attack considers honest users 
who accidentally give bad shares or cheaters who 
give fake shares, but do not collaborate with other 
cheaters (stand-alone cheaters). The bounds in this 
case are: 

• Detection : j ≥ k + 1 (we must have strictly 
more than k users participating in the reconstruction 
phase); 

• Identification : j − c ≥ k (number of honest 
users must be greater than the threshold so that the 
most frequent reconstructed secret will be the one 
reconstructed by the honest users, thus, the correct 
one). 

The next example illustrates this type of attack: 
Example 4: (with artificially small parameters) 
Let n = 5, j = 5, k = 3, and one cheater. Let us 

consider the following (3, 5) Mignotte-sequence: 
661, 673, 677, 683, 691. In this case, α = 301165481 
and β = 471953. Let the secret be S = 500000.  

The dealer computes the shares of each user: I1 = 
284, I2 = 634, I3 = 374, I4 = 44, and I5 = 407. 

Let us consider the case when the first user 
accidentally types the value 280 (instead of the 
correct share 284). The solutions to all the systems 
corresponding to 3 users are presented next: 

• System for I1 I2 I3 : 82056159 
• System for I1 I2 I4 : 5096590 
• System for I1 I2 I5 : 208839264 
• System for I1 I3 I4 : 156788158 
• System for I1 I3 I5 : 157683152 
• System for I1 I4 I5 : 2387812 
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• System for I2 I3 I4 : 500000 
• System for I2 I3 I5 : 500000 
• System for I2 I4 I5 : 500000 
• System for I3 I4 I5 : 500000 
The set of all the 5 users is not consistent, 

therefore there are cheaters. The most frequent 
reconstructed secret is S = 500000 and, thus, the 
users 2, 3, 4, 5 are honest. All the systems in which 
the first user has taken part lead to different results 
and, therefore, the cheater (the first user) is easily 
identified. 

The second type of attack is when the cheaters 
collaborate in order to obtain “better faked” shares 
but they do not see the shares of the honest users (all 
shares are released simultaneously). The bounds in 
this case are: 

• Detection : (c < k∧  j ≥ k+1)∨ (c ≥ k∧  j−c ≥ 
k); 

• Identification:   (c < k∧ j − c ≥ k + 1)   ∨  
 (c ≥ k∧ j − c > c + k − 1). 

The next example illustrates this type of attack, 
for the case c < k. 

Example 5: (with artificially small parameters) 
Let n = 6, j = 6, c = 3, h = 3, and k = 4. In this 

example we will show that we cannot always 
identify the cheaters. We can only detect cheating. 
Let us consider the following (4, 6) Mignotte-
sequence: 719, 727, 733, 739, 743, 751. We obtain α 
= 283146836831 and β = 412356827. Let the secret 
be S = 500000000. 

The dealer computes the shares of each user: I1 = 
210, I2 = 661, I3 = 176, I4 = 729, I5 = 379, and I6 = 
722. 

Let us consider the case when the first three users 
are cheaters. They cannot reconstruct the secret only 
by themselves. They can only modify their shares. 
Suppose the new (faked) shares for the first three 
users are: I1 = 200, I2 = 660, and I3 = 170. 

The solutions to all the systems corresponding to 
4 users are presented next: 

• System for : I1 I2 I3 I4 : 93542325129 
• System for : I1 I2 I3 I5 : 148332579076 
• System for : I1 I2 I3 I6 : 41050962956 
• System for : I1 I2 I4 I5 : 88134336431 
• System for : I1 I2 I4 I6 : 159210759319 
• System for : I1 I2 I5 I6 : 195326045915 
• System for : I1 I3 I4 I5 : 26942450166 
• System for : I1 I3 I4 I6 : 279320923710 
• System for : I1 I3 I5 I6 : 113481864647 
• System for : I1 I4 I5 I6 : 9571850194 
• System for : I2 I3 I4 I5 : 138830066764 
• System for : I2 I3 I4 I6 : 48254583494 
• System for : I2 I3 I5 I6 : 2231452279 
• System for : I2 I4 I5 I6 : 82146651746 
• System for : I3 I4 I5 I6 : 163380946665 
As you can see, there is no result that appears 

more than once. Therefore, we detect the presence of 

the cheaters, but we cannot identify them. Interesting 
is the case when c ≥ k. In this case the cheaters can 
reconstruct the secret by themselves. Moreover, they 
can create fake shares so that they will not be 
detected. This attack succeeds only if the number of 
cheaters is greater than the number of honest users (c 
> h). If c ≥ k ∧  j−c > c+k−1, the cheaters, even if 
they can reconstruct to the secret, they cannot 
produce fake shares that will lead to a fake secret 
(because h > c). They can at most produce fake 
shares, combining with groups of k−1 honest users, 
but this is not enough. The most frequent 
reconstructed secret will be the one obtained by the 
honest users. 

The next example illustrates the case c ≥ k : 
Example 6: (with artificially small parameters) 
Let n = 14, j = 12 , c = 4 , h = 8, and k = 3. Let us 
consider the following (3, 14)-Mignotte 

sequence: 719, 727, 733, 739, 743, 751, 757, 761, 
769, 773, 787, 797, 809, 811. We obtain α = 
383148629 and β = 656099. Let the secret be S = 
700000. 

The dealer computes the shares of each user: I1 = 
413, I2 = 626, I3 = 718, I4 = 167, I5 = 94, I6 = 68, I7 
= 532, I8 = 641, I9 = 210, I10 = 435, I11 = 357, I12 = 
234, I13 = 215, I14 = 107. 

Suppose that only the first twelve users 
participate in the reconstruction phase and that the 
first four users are cheaters. The first user can create 
a fake share in combination with a group of only k − 
1 = 2 honest users. Suppose that these users are the 
user 10 and the user 11. Suppose the first user 
changes his share to 222. The new secret obtained in 
association with the shares from user 10 and 11 is 
192330565. Now, the other three cheaters will adjust 
their shares. 

The new shares will be : I1 = 222, I2 = 534, I3 = 
161, I4 = 642, I5 = 94, I6 = 68, I7 = 532, I8 = 641, I9 = 
210, I10 = 435, I11 = 357, and I12 = 234. 

After solving all the )(12

3 = 220 systems, the 
original secret will appear 56 times, the fake secret 
will appear 20 times, and the other results, only 
once. Therefore, the cheaters will be easily 
identified. 

If c > h, the cheaters can give fake shares so that 
the honest users are lead to a wrong secret or, worse, 
they can be pointed out as cheaters (the cheaters can 
reconstruct S by themselves, and, thus, they have 
access to the shares of the honest users (see Example 
7). 

The third type of attack is that when the 
cheaters collaborate and, moreover, have access to 
the shares of the honest users. 

The bounds in this case are: 
• Detection : j − c ≥ k; 
• Identification : j ≥ k + 1∧ j − c > c + k − 1. 
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The next example illustrates this type of attack: 
Example 7: (with artificially small parameters) 
We will consider the worst case scenario: the 

cheaters are not identified and the honest users 
reconstruct an invalid secret. 

Let n = 12, j = 9, c = 7, h = 2, and k = 3. Let us 
consider the following (3, 12) Mignotte-sequence: 
661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 
739, and 743. We obtain α = 301165481 and β = 
549077. Let the secret be S = 750000. 

We now compute the shares of each user: I1 = 
426, I2 = 278, I3 = 561, I4 = 66, I5 = 265, I6 = 631, I7 
= 587, I8 = 83, I9 = 463, I10 = 141, I11 = 654, and I12 
= 313. 

Let us consider the case when the first nine users 
participate in the reconstruction, the first seven users 
are cheaters. The cheaters (any 3 of them) can easily 
reconstruct the secret. The cheaters also know the 
shares of the honest users. For instance, the seventh 
user (who is a cheater) computes a new share (200) 
and a new secret with the help of the shares of the 
two honest users: 

• I7 : 200   p7 = 709 
• I8 : 83   p8 = 719 
• I9 : 463   p9 = 727 
By solving this system, the obtained secret (an 

invalid one) is 129337398 which is also between β 
and α. Now, the other cheaters just have to compute 
their new share in the following manner: Ii = 
129337398 mod pi, for all i ∈  {1, 2, 3, 4, 5, 6}. 

The new shares will be: I1 = 189, I2 = 258, I3 = 
610, I4 = 420, I5 = 164, I6 = 94, I7 = 200, I8 = 83, and 
I9 = 463. Now, all the systems will have the same 
solution, namely, 129337398. In this way, the 
cheaters are not detected, they obtain the correct 
secret and the honest users obtain an invalid secret. 

 
5. CONCLUSIONS AND FUTURE WORK 

In this paper, we have analyzed the cheating 
detection and cheater identification problems for 
Mignotte and Asmuth-Bloom secret sharing 
schemes. We prove that the majority of the solutions 
for Shamir’s scheme can be translated to these 
schemes and, moreover, there are some interesting 
specific solutions due to particularities of the 
reconstruction phase based on the (general) Chinese 
remainder theorem. An interesting problem is 
preventing the cheaters from acquiring the secret. 
Indeed, let us suppose that, for instance, the secret is 
the launching code of a nuclear missile. If a group of 
cheaters have succeeded in reconstructing the 
correct code, it is irrelevant if the cheating is 
detected or if the cheaters are identified. It is too late 
– the missile has been already launched. The 
simplest solution, suggested by Tompa and Wool 
[7], is to iterate the process of secret sharing on a 

sequence of m secrets that includes, besides the real 
secret S, some “dummy” secrets. The probability 
that the cheaters acquire the correct secret before 
being detected and identified is m1 . The main 
disadvantage of this method is that each user will 
receive m shares, one for each secret. In our future 
work, we will consider finding more efficient 
methods for preventing the cheaters from acquiring 
the secret in CRT-based secret sharing schemes. 
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