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Abstract: Most traditional clustering algorithms are limited to handle data sets that contain either continuous or 
categorical variables. However data sets with mixed types of variables are commonly used in data mining field. In this 
paper we introduce a weighted self-organizing map for clustering, analysis and visualization mixed data 
(continuous/binary). The learning of weights and prototypes is done in a simultaneous manner assuring an optimized 
data clustering. More variables has a high weight, more the clustering algorithm will take into account the 
informations transmitted by these variables. The learning of these topological maps is combined with a weighting 
process of different variables by computing weights which influence the quality of clustering. We illustrate the power of 
this method with data sets taken from a public data set repository: a handwritten digit data set, Zoo data set and other 
three mixed data sets. The results show a good quality of the topological ordering and homogenous clustering. 
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1. INTRODUCTION 
Large quantity of mixed data, containing 

continuous, categorical variables, is commonly used 
in modern data sets. Most of clustering algorithms 
assume that all variables are either continuous or 
categorical. Note that categorical variable is ordinal 
or nominal encoded using the binary coding. When 
mixed-type data are encountered, some data 
preprocess is performed to convert the inappropriate 
types of variables to the desired type prior to the 
application of the algorithms.  

Visualization is an advantageous feature in terms 
of data mining, especially, in the initial data 
exploration stage. In this paper, we present an 
approach for visually analyzing multivariate mixed 
data. The proposed approach is based on an 
extended self-organizing map methods. The 
topological map proposed by Kohonen [12] uses a 
self-organization algorithm (SOM) which provides 
quantization and clustering of the observation space. 
More recently, new models of topological maps 
dedicated to specific data were proposed in [3, 10, 
15, 14]. Some of these models are based on a 
probabilistic formalism and the others are 
quantization methods. Like the conventional self-

organizing map (SOM), the extended SOM can 
project high dimensional data to a lower-
dimensional space for visual inspection. Most 
previous clustering algorithms focus on continuous 
or binary data. As pointed in many papers, 
continuous data clustering are not appropriate for 
categorical variable and vice-versa. There are also 
not suitable algorithms for the task of clustering 
mixed data. Especially in this work we are interested 
by clustering model using weighting approach that 
involves numerical value to each type of variable. It 
allows us to give information about the relevance of 
the variable. Thus, variables with strong weight are 
relevant and has participated actively in the process 
of clustering. In recent years, more attention has 
been paid to clustering mixed variable using 
weighting approaches. Reducing the dimensionality 
of high-dimensional mixed data is beneficial for 
visualization and also is an important preprocessing 
step for many problems in machine learning and 
statistical pattern recognition. In the literature there 
are approaches based on weighting as [8, 4, 7, 5]. 
For the continuous data, a model for local variables 
weighting using SOM was proposed, called lw -
SOM [6]. This algorithm is an adaptation to SOM of 
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the weighting approach proposed for K -means by 
[8]. The model lw -SOM is dedicated to continuous 
variables and is not directly applicable to categorical 
data. In this paper we propose a topological self-
organizing algorithm for analyzing mixed variables 
(continuous and categorical encoded with binary 
coding). It is a quantization model which provides a 
set of interpreted prototypes. The variable weights 
provide to a user the relevance and the degree of 
each variable for the clustering process. 

The remaining of the article is organized as 
follows. In section 2, we present the model and the 
iterative algorithm. In the section 3, we present some 
applications of proposed method. The experiments 
concern handwritten numerals ( 90 − ), and three 
other data sets available in [2]. These data sets allow 
us to prove the importance of the weighting for the 
clustering process. Our conclusions are reported in 
section 4. 

 
2. LOCAL WEIGHTED MIXED 

TOPOLOGICAL MAP 
To enable the analysis of mixed data (categorical 

and continuous data, we present lw -MTM which is 
based on Self-Organizing Map model. 

As with traditional self-organizing map, we 
assume that the lattice C  has a discrete topology 
(discrete output space) defined by an indirect graph. 
Usually, this graph is a regular grid in one or two 
dimensions. We denote the number of cells in C  as 

cellN . For each pair of cells ( i , j ) on the map, the 
distance ),( jiδ  is defined as the length of the 
shortest chain linking cells i  and j . The lw -MTM 
(Local Weighted Mixed Topological Map) model is 
based on the quantization formalism of topological 
maps. 

Let A  be the learning data set, where each 
observation ),...,,...,,(= 21 dk xxxxx  is made of two 
parts: continuous part ),...,,(= ][[2][1][.] nrrrr xxxx  
( nr R∈[.]x ) and categorical part 

),...,,...,,(= ][][[2][1][.] kclcccc xxxxx  where the thl  
component ][lcx  have lM  modalities. Each 
categorical variable can be coded with a binary 
variable. Thus, each categorical variable ][lcx , is 
coded with the vector ),...,(= ][[1][.] Mlbbb xxx  where 

β={0,1}][ ∈lbx . The categorical part can be 
represented by a binary part 

),...,,...,,(= ][][[2][1][.] mblbbbb xxxxx  such as each 
observation x  is thus, a realization of a random 
variable which belongs to mnR {0,1}× . Using these 

notations a particular observation ),(= [.][.] br xxx  is 
a mixed vector (continuous and binary variables) of 
dimension mnd += . In our model, we assume that 
a given data set has been drawn from cellN  clusters. 

For each cell c  of the grid, we associate a 
prototype vector ),(= [.][.] b

c
r
c wwwc  of dimension 

d , where nr
c R∈w  and mb

c β∈[.]w  which is a 
binary coding of multidimensional categorical 
variable [.]c

cw . We denote by W  the set of the 

referents vectors, by rW  the set of the numerical 
part and by bW  the binary part of the referent 
vectors. 

In the following section we present a new model 
of topological map dedicated to mixed data. The 
associated learning algorithm is derived from the 
batch version of the Kohonen algorithm dedicated to 
continuous data [13] and the BinBatch algorithm 
which is dedicated to binary data [15]. This model is 
improved to take into account the variable weights. 
In this algorithm, the similarity measure and the 
estimation of the referent vectors are specific for 
each type of data: it is the Euclidian distance with 
the mean vector in the continuous case and the 
Hamming distance with the median center in the 
binary case. 

 
2.1. MINIMIZATION OF THE COST 
FUNCTION 

We propose to minimize the following new cost 
function. 

2||||))),(((=),,( jj
T

CjA
jKYWG wxyx

x
−∑∑

∈∈

τφδφ  (1) 

where τ  is a fitting parameter necessary for 
estimation of the set of the weight vectors Y , and 
the function φ  assigns each observation x  to a 
single cell in C . 

TK  is a neighborhood function depending on the 
parameter T  (called temperature): 

)/(=)( TT δδ KK , where K  is a particular kernel 
function which is positive and symmetric 
( 0=)(lim || xx K∞→ ). Thus K  defines for each cell 
j  a neighborhood region in C . The parameter T  

allows to control the size of the neighborhood 
influencing a given cell on the map. As with the 
Kohonen algorithm, we decrease the value of T  
between two values maxT  and minT . 

The vector ),(= [.][.] c
j

r
jj yyy  is the weighted 

vector, where [.]r
jy  is the continuous weight part and 
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[.]c
jy  is a categorical weight variable (not binary 

variable). 
In this expression 2|||| jwx −  is the square of 

the Euclidian distance. Since for binary vectors the 
Euclidian distance is no more than the Hamming 
distance H , then the Euclidian distance can be 
rewritten by:  

),(||=|||||| [.][.]2[.][.]2 b
c

br
c

r
c H wxwxwx +−−  

Thus, this expression allows to rewrite the cost 
function as follows: 

),())),(((=),,( [.][.][.] r
j

r
euc

r
j

T

CjA
DjKYWG wxyx

x
φδφ ∑∑

∈∈  

)],())),((( [.][.][.] b
j

b
i

c
j

CjA
HjK wzyx

x
φδ∑∑

∈∈

+  (2) 

Where  

2[.][.][.] ||||))),(((=),,( r
j

rr
j

T

CjA
som jKYWG wxyx

x
−∑∑

∈∈

φδφ  (3) 

is the classical cost function used by the weighted 
Kohonen Batch algorithm [6], and 

),())),(((=),,( [.][.][.] b
j

bb
j

T

CjA
bin HjKYWG wxyx

x
φδφ ∑∑

∈∈

 (4) 

is the new cost function dedicated to handle 
categorical variables using binary coding. Hence, in 
this paper we propose a new cost function to deal 
with mixed data and we define a new function for 
binary data. 

The minimization of the cost function (1), is 
made using an iterative process with three steps:  

• 1) Assignment step: assuming that W  and Y  
are fixed, we have to minimize ),,( YWG φ  with 
respect to φ . This leads to use the following 
assignment function:  

( )),()(||||)(minarg=)( [.][.][.]2[.][.][.] b
j

bc
j

r
j

rr
j

j
H wxywxyx ττφ +−

 

• 2) Quantization step: assuming that φ  and Y  are 
fixed, this step minimizes ),,( YWG φ  with respect 
to W  in the space mnR β× . The minimization of 
the cost function (1) leads to minimize the function 

),,( YWGsom φ  (3) in nR  and ),,( YWGbin φ  (4) in 
mβ . It is easy to see that these two minimizations 

allow to define: 

- the numerical part [.]r
jw  of the referent vector 

jw  as the mean vector as: 

,
)),((

)),((
=

[.]

=)(,[.]

i
T

Ci

r

i

T

Cir
j njiK

jiK

δ

δ
φ

∑
∑∑

∈

∈∈

x
w xx A      (5) 

where in  represents the corresponding number of 
assigned observations.  

- the binary part [.]b
jw  of the referent vector jw  

as the median center of the binary part of the datum 
A∈x  weighted by )))(,(( xφδ jK T . Each 

component ),...,,...,(= ][][[1][.] mb
j

lb
j

b
j

b
j wwww  is then 

computed as follows:  

⎪
⎪
⎪

⎩
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⎥
⎦
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jKif
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j
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)))(,((

))))(1(,((0

= ][

][

][ xx

xx

x

x

φδ

φδ

 (6) 

Note that the update for the median center jw  in 
our lw -MTM model coincides with the BinBatch 
model in which each datum x  is weighted 
proportionally to the neighborhood function centered 
at the winning prototype for that data vector and 
evaluated at the prototype jw . 

• 3) Weighting step: assuming that φ  and W  
are fixed, this step minimizes ),,( YWG φ  with 
respect to Y  in the space mnR + . The weights are 
computed in the following way: 

 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎦

⎤

⎢
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=
−

∑

otherwise

D
D

Dif

y

l
t

l
j

t

l
j

l
j ,1

0=0,

1
1

τ

  (7) 

where  

2

1=
)))(,((= l

j
l
i

T
C

iA

l
j wxjiKD −∑∑

∈

δ
x  

The minimization of ),,( YWG φ  is run by 
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iteratively performing the three steps. At the end the 
vector jw , which shares the same code with the 
observations can be decoded in the same way, 
allowing a symbolic interpretation of binary and 
continuous part of referent vectors. 

The nature of the topological model reached at 
the end of the algorithm, the quality of the clustering 
and those of the topological order induced by the 
graph greatly depend on the neighborhood function 
K . In practice, as for traditional topological map we 
use a smooth function to control the size of the 

neighborhood as ⎟
⎠
⎞

⎜
⎝
⎛ −

T
rcrcK T ),(exp=)),(( δδ . 

Using this kernel function, T  becomes a parameter 
of the model. As in the Kohonen algorithm [13], we 
repeat the preceding iterations by decreasing T  
from an initial value maxT  to a final value minT . 

We can define two steps in the operating of the 
algorithm:  

• The first step corresponds to high T  values. In 
this case, the influencing neighborhood of each cell 
i  on the map is important and corresponds to higher 
values of )),(( rcK T δ . Formulas (5), (6) and (7) 
use a high number of observations to estimate model 
parameters. This step provides the topological order.  

• The second step corresponds to small T  
values. The number of observations in formulas (5), 
(6) and (7) is limited. Therefore, the adaptation is 
very local. The parameters are accurately computed 
from the local density of the data.  

 
3. EXPERIMENTAL VALIDATIONS 

To evaluate the quality of clustering, we adopt 
the approach of comparing the results to a “ground 
truth”. We use the clustering accuracy to measure 
the clustering results. This is a common approach in 
the general area of data clustering. In general, the 
result of clustering is usually assessed on the basis of 
some external knowledge about how clusters should 
be structured. This may imply evaluating separation, 
density, connectedness, and so on. The only way to 
assess the usefulness of a clustering result is indirect 
validation, whereby clusters are applied to the 
solution of a problem and the correctness is 
evaluated against objective external knowledge. This 
procedure is defined by [9] as “validating clustering 
by extrinsic classification”, and has been followed in 
many other studies [1, 11]. We feel that this 
approach is the reasonable one if we don’t want to 
judge clustering results by some cluster validity 
index, which is nothing but a bias toward some 
preferred cluster property (e.g., compact, or well 
separated, or connected). 

Thus, to adopt this approach we need labeled data 

sets, where the external (extrinsic) knowledge is the 
class information provided by labels. Hence, if lw -
MTM finds significant clusters in the data, these will 
be reflected by the distribution of classes. Therefore 
we operate a vote step for clusters and compare them 
to the behavior methods from the literature. The so-
called vote step consists in the following. For each 
cluster C∈c :  

• Count the number of observations of each class 
l  (call it clN ).  

• Count the total number of observation assigned 
to the cell c  (call it cN ).  

• Compute the proportion of observations of each 
class (call it )/= cclcl NNS .  

• Assign to the cluster c  the label of the most 
represented class )(maxarg=( cll Sl .  

A cluster c  for which 1=clS  for some class 
labeled l  is usually termed a “pure” cluster, and a 
purity measure can be expressed as the percentage of 
elements of the assigned class in a cluster. The 
experimental results are then expressed as the 
fraction of observations falling in clusters which are 
labeled with a different class from that of the 
observation. This quantity is expressed as a 
percentage and termed “error percentage” (indicated 
as %Err  in the results).  

 
3.1. CATEGORICAL DATA SETS 
3.1.1. ZOO DATA 

This example is taken from UCI. We use this 
simple data set to show the good performance of the 
lw -MTM algorithm. The data set contains 101 
animals described with 16 qualitative variables: 15 
of the variables are binary and one is numeric with 6 
possible values. Each animal is labelled 1 to 7 
according to its class. Using disjunctive coding (see 
Appendix A) for the categorical variable with 6 
possible values, defined in table 1, the data set 
consists of a 21101×  binary data matrix. All 101 
animals are used for learning with a map with the 
dimensions 55×  cells. 

 
Table 1: Categorical variable with 6 possible values. 

Each modality is coded in the same way using 
disjunctive complete coding 

Modalities Binary code 
1 1 0 0 0 0 0 
2 0 1 0 0 0 0 
3 0 0 1 0 0 0 
4 0 0 0 1 0 0 
5 0 0 0 0 1 0 
6 0 0 0 0 0 1 
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The results of our approach on Zoo data set are 
presented on figure 1. We can visualize the 
prototypes and the variables which characterize 
these prototypes for every cell of the map. Figure 1 
shows the animal names collected by each cell. We 
use the same names used in original data set. 

In order to visualize the coherence of the map 
with animals assigned to each cell, we chose only 
the variables associated to the modality “yes”, which 
have a weight greater than 0.02. We observe that we 
have homogeneous groupings which are better 
separated. We notice that some kinds of fishes are 
grouped around neighboring cells (cells 12,13,17,19 
on the map of the figure 1) with some commons 
variables: “aquatic”, “toothed”, “backbone”, “tail”. 
The same analysis can be done on the rest of the 
cells. 

 
3.1.2. HANDWRITTEN DATA 

This experiment concerns a data set consisting of 
the handwritten numerals (“0”− “9”) extracted from 
a collection of Dutch utility maps, UCI. There are 
200 samples of each digit such that there is a total of 
2000 samples. Each sample is a 1615×  binary pixel 
image. The data set consisted of a 2402000×  
binary data matrix. Each qualitative variable is a 
pixel with two possible values “On=1” and “Off=0”. 

The figure 2 shows four maps obtained from the 
learning of lw -MTM map of 1616×  size with the 
fitting parameters 2=τ  and 3=τ . In the first 
column, we can visualize a binary part of the 

prototypes 
bW  displayed as an image, where each 

pixel “black/white” denotes the state of the binary 
variable (“On/Off”). In the second column, the grey 
shading shows the relevance of the variables. We 
observe that these pixels correspond to the contour 
associated to each image (number). We notice the 
clear topological organization of the reference 
images. 

We also note that the parameter τ  does not need 
to be great, but it must be as input parameter. In [14] 
the same data set are used with an algorithm based 
on mixture models using Bernoulli distribution 
(BeSOM), which has as parameters binary 
prototypes and the probability of being different 
from this prototype for each variable. 

Figure 3 shows two maps corresponding to the 
parameters of mixture models (referents, 
probabilities). We observe clearly that both 
approaches (probabilistic and lw -MTM) are able to 
produce topological maps representing well the data 
and variables, though lw -MTM determines the 
parameters in a deterministic manner, with a 
computational complexity less than BeSOM mixture 

model. 
3.2. MIXED DATA SETS 

We use the following three mixed data sets 
obtained from UCI repository [2]. 

Heart disease 
This is D. Detrano’s heart disease data set that 

was generated by the Clevelande Clinic [2]. The data 
set has 303 observations, each one is described by 6 
continuous and 8 categorical variables. The 
observations are also classified into two classes, 
each class is either healthy (buff) or with heart-
disease (sick). In both cases we use a binary coding 
to code a categorical variable. Hence, using a 
disjunctive coding we obtain 17=m  binary 
variables for Heart disease data set. The variable 
with two modalities is coded using only one binary 
variable indicating a presence or absence of 
modalities. The learning of a map with the 
dimensions 713×  cells is made with all 
observations. 

Credit Approval 
This file concerns credit card applications. All 

attribute names and values have been changed to 
meaningless symbols to protect confidentiality of the 
data. This dataset is interesting because there is a 
good mix of attributes – continuous, nominal with 
small numbers of values, and nominal with larger 
numbers of values. There are also a few missing 
values. The data set has 666 observations, each one 
is described by 9 continuous and 6 categorical 
variables. Examples represent positive and negative 
instances of people who were and were not granted 
credit. 

Thyroid disease 
This dataset contains thyroid disease records 

supplied by the Garavan Institute and J. Ross; 
Quinlan, New South Wales Institute, Syndney, 
Australia in 1987. The data set has 3163 
observations, each one is described by 7 continuous 
and 12 categorical variables. Five laboratories tests 
are used to try to predict whether a patient’s thyroid 
to the class hypothyroidism or hyperthyroidism. The 
diagnosis (the class label) was based on a complete 
medical record, including anamnesis, scan etc. Table 
2, provides a short description of used data sets. 

 
Table 2: Data sets used in the experimentation. #obs: 

data set size; #cl: number of classes; dim.Cat: 
categorical dimension; dim.Re: continuous variable 

dimension 

Data sets dim.Cat dim.Re #obs #cl 
Heart disease 8 6 303 2 
Credit 6 9 666 2 
Thyroid 12 7 3163 2 
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We use the clustering accuracy for measuring the 
clustering results. This index is a purity measure 
which can be expressed as the percentage of 
elements of the assigned class in a cluster. This is a 
common approach in the general area of data 
clustering. We compared the proposed lw -MTM 
model with similar algorithm MTM without using 
weight and the probabilistic algorithm PrMTM. We 
computed the purity index on 50 experiences. The 
table 3 shows the performances obtained by the 
proposed model lw -MTM and the other models 
MTM and PrMTM. We observe an improvement of 
map purity on all datasets. 

 

Table 3: Comparison of lw -MTM, MTM and 
PrMTM using the purity index on 50 

experimentations. MTM: topological map dedicated to 
mixed data without using weights. PrMTM: 

Probabilistic mixed topological map using Gaussian 
and Bernoulli distributions 

% Purity MTM PrMTM lw -MTM 
Heart 

disease 
( 713× ) 

 
83.39  

 
84.45  

 
85.76  

Credit 
( 1013× ) 

 
82.66  

 
84.57  

 
86.44  

Thyroid 
( 1421× ) 

 
95.38  

 
97.41 

 
97.53  

 
Analyzing the table 3 we observe for the Heart 

disease data set, an improvement of the purity index 
from 83.39%  to 85.76%  using the same map size. 
For Credit  data set, we observe also an 
improvement of the purity index from 82.66%  to 
86.44% . Finally with Thyroid data set, we improve 
the performance from 95.38%  to 97.53% . 
Through to the weights introduced during the 
learning process, we observe a clear improvement in 
the purity rate with lw -MTM model. 

 
4. CONCLUSION 

In this paper, we proposed a weighted self-
organizing map for clustering categorical and mixed 
data. The weighting of the distance during the 
learning phase allows to detect the degrees of 
participation of each variable during the clustering 
process. More variable has a high weight, more the 
clustering algorithm will take into account the 
informations associated to this variable. The 
weighting distance has the purpose to adapt the 
(dis)similarity measure between the observations 
and to improve the clustering results by mainly 

strengthening the most relevant variables. The 
weighting distance is very useful in the case of 
mixed data, because if for the learning data set the 
categorical part is much larger than the continuous 
part of the learning data set (and vice versa), the 
weighting process allows us to regularize the 
adaptations during the learning phase and to take 
into account the relevance of each variable. As 
perspective we can use the computed weights to 
select the most relevant variables in order to reduce 
the dimensionality of the data. 

 
5. APPENDIX:  

GENERAL INFORMATION ABOUT  
A BINARY DATA  

Very often, a binary vector represents a coding of 
discrete features which have a finite, usually small, 
number of possible values. Let nn {0,1}=β  be a 
binary data space and },1,=;{= Nii KxA  a set of 
observations, where each observation 

),...,,(= ][[2][1][.] nb
i

b
i

b
i

b
i xxxx  is a binary vector in 
nβ . Some of these variables, called ordinal 

variables, have an implicit order, the others are just 
nominal variables. The general coding used in order 
to obtain binary data are: (a) The additive binary 
coding: this coding respect the order existing 
between modalities, (see table 4). (b) The disjunctive 
complete coding: which transforms each nominal 
feature using the disjunctive coding (see table 4). 

 
Table 4: Coding of modalities  

Modalities Additive coding Disjunctive coding 
 1  1 0 0   1 0 0 
 2   1 1 0   0 1 0  
 3   1 1 1   0 0 1 

 
Euclidian distance is not adapted to binary data, it 

is often much more interesting to use an appropriate 
similarity index. In this paper, we use the Hamming 
distance H  which allows comparison of the binary 

vectors mx  and lx . The Hamming distance 

measures the number of mismatches between 
[.]b

mx  

and 
[.]b

lx :  

||=),( ][][][

1=

[.][.] jb
l

jb
m

j
n

j

b
l

b
m xxH −∑yxx  (8) 

The Hamming distance allows the binary median 
center to be calculated; in this case the most 
important characteristic in this case of the median 
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center is a binary vector that has the same 
interpretation (same coding) as the observations in 
the data space. 

For the following, we assume that each 
[.]b

ix  is 

taken with corresponding weight iγ . By definition 
the median center of A  is any point 

),...,,(= ][[2][1] nbbb wwww  included in 
nβ  

minimizing the inertia of A :  

),(=)( [.][.][.]

1=

bb
i

b
i

I

i
H wxyw γ∑I

 

Each component 
][ jbw  minimizes 

||][=)( ][][
1=

][ jbjb
i

b
i

N

i
jb wxjyw −∑ γI

 which can 
be rewritten as:  

( ),)(1=)( 1
][

0
][][][ Γ−+Γ jbjbjbjb wwywI  

where )(1= ][
1=0

jb
ii

N

i
x−Γ ∑ γ , represents the sum 

of weighted observations which the value is equal to 
0, and ][

1=1 = jb
ii

N

i
xγ∑Γ  represents the sum of 

weighted observations which the value is equal to 1. 
Thus, to find the median value jw  which minimizes 

)( ][ jbwI , we select {0,1}][ ∈jbw  so that )( ][ jbwI  
have minimum value 0Γ  or 1Γ . Hence, we take 

1=][ jbw  if 01 > ΓΓ  and 0=][ jbw  if 01 < ΓΓ . 
This rule is simplified when the weights are identical 
for all variables: ][ jbw  is the value 0 or 1 most often 
chosen by the observations on the binary variable j . 
 
 

 
 

 

Fig. 1 – 55×  lw -MTM map. The examples are presented in each cell followed by the relevant variables shown 
in red
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2=τ  

 

 
3=τ  

Fig. 2 – The map lw -MTM 1616×  representing the 

set of prototypes W  and weights Y  ( 3=2,= ττ ) 

 

 
(W) 

Fig. 3 – The BeSOM map 1616× . The map on the 
left represents the binary prototype and the map on 

the write the probability to be different from the 
prototype 

 
 

 
 

 
(Proba) 
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