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Abstract: This article was originally written for the purpose of breaking the ice in the round table discussion held in 
the conference. Since the name of the conference is ‘Neural Network and Artificial Intelligence’ the topic of this article 
is, “What is intelligence?” when we talk about artificial intelligence in general, and artificial neural network in 
particular. In the history of the field of artificial intelligence, we have had many arguments claiming that artificial 
intelligence was not intelligent enough yet, or would not be possible to be intelligent even in the future. We take a brief 
look at such arguments in the history, and then try a speculation concerning if a machine intelligence is as flexible as 
human intelligence or not. Some experiments of path-finding, with spiking neurons, from this point of view are shown. 
These were discussed in the roundtable discussion. Here, in this special issue, additionally one thought-experiment 
using a quantum random walk is discussed. Then a further consideration on a role of consciousness for a machine to be 
intelligent is followed. 
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1. INTRODUCTION 
In the ‘Star Trek’ prequel, Spock’s father 
tells him, “You will always be a child of 
two worlds,” urging him not to keep such 
a tight vise on his emotions. And Spandexy 
Old Spock, known as Spock Prime, tells 
his younger self: “Put aside logic. Do 
what feels right.” – by Maureen Dowd, 
from her article in the New York Times on 
10th May 2009.  

Once my friend, who worked with a world 
famous electric company as an engineer, told me, 
“It’s amateurish,” when I admired a food in a 
Chinese restaurant telling him, “It’s really wonderful 
that they cook every time in a slightly different way 
whenever I order the same one, and every time it’s 
delicious.” He told me, “Real professional should 
cook exactly the same way every time.”  

In 1986, McClelland, one of the authors of the 
seminal book ‘Parallel Distributed Processing’ [1]1 
had started the book by asking, “Why are people 
smarter than machines?” asked in 2009, more than 
two decades later, “Is it still true that people are 

                                                 
1 The book introduced the connectionist model of 
cognition using neural networks. Also known as 'PDP' 
from its abbreviation. 

smarter than machines? And if so: Why?” in his 
recent paper entitled ‘Is a machine realization of 
truly human-like intelligence achievable?” [2].  

Quite pessimistic. However, as far as its 
application to industry is concerned, the state of the 
art of machine intelligence reaches an impressive 
level nowadays. But what is human-like 
intelligence?  

In his forward in the book by Trappenberg [3], 
John Taylor wrote, “Neural anetworks have been 
developed for over 50 years, ... This result helped 
spark off a revolution in artificial intelligece ... 
However ... not in the important but still limited 
industrial applications ... It is now necessary to 
attempt to create really intelligent machines, even 
up to seemingly conscious ones (if not actually so) 
...”  

Assume, for example, we are in a foreign country 
where we are not so conversant in its native 
language, and assume we ask, “Pardon?” to show we 
have failed to understand what they were telling us. 
Then intelligent people might try to change the 
expression with using easier words so that we 
understand this time, while others, perhaps not so 
intelligent, would repeat the same expression, 
probably a little louder.  

Or, what if your canary stops singing? There are 
legendary three different strategies for this in Japan: 

 

computing@computingonline.net 
www.computingonline.net 

ISSN 1727-6209 
International  Journal  of  Computing 



Akira Imada / Computing, 2011, Vol. 10, Issue 1, 66-76 
 

 67

(i) Wait until she sings again; (ii) Do something so 
that she sings again; and (iii) Kill her if she doesn’t 
sing any more. A good suggestion to be intelligent, 
however, might be “Be always flexible. Don’t stick 
to one strategy even if you encounter a similar event 
as you met before.”  

The title of this conference includes “Artificial 
Intelligence and Neural Network,” expecting an 
establishment of artificial intelligence by means of 
neural network. In fact, we have had lots of 
successful reports proudly declaring like, “We have 
designed an intelligent machine.” Then question 
arises. What is intelligence?  

Some of what they call an intelligent machine 
may indeed perform the given task much more 
efficiently, effectively, or precisely than human. 
However, we human are not usually very efficient, 
effective nor precise, but rather spontaneous, 
flexible, unpredictable, or even erroneous sometime.  

What we expect when we address a human-like 
intelligence is, somewhat of a different behavior 
than the one as we behaved before, not exactly the 
same one, even when we come across a same 
situation again.  

Assume a neural network that has a fixed 
configuration of synaptic strengths. It will repeat 
exactly the same action whenever it comes across 
the same situation as the one in which the neural 
network learned the action. However may it be a 
very sophisticated one, could we call it an intelligent 
behavior? This is the main topic of this article.  

Before we proceed into this topic, let’s take a 
brief look at what happened in the history of 
artificial intelligence community. 

 
2. WHAT IS INTELLIGENCE? 

As when Dreyfus asks “How can a 
determinate process give rise to 
experienced indeterminacy?” (Pheno-
menology) one could equally well ask: 
“How can small neural activity give rise 
to experienced largeness or blueness or 
anger?” and so reject neurology as well 
as Artificial Intelligence.-from MIT 
Artificial Intelligence Memo. No. 154. by 
Seymour Papert.  

 
2.1. IS ARTIFICIAL INTELLIGENCE 
INTELLIGENT? 

In fact, the topic is not a new at all. As long ago 
as the 1960’s, in an early days when the research 
area of artificial intelligence just started to attract 
people’s interests, Hubert Dreyfus [4] posed a harsh 
criticism in his paper ‘Alchemy and Artificial 
Intelligence.’  

What then was the reaction of artificial 
intelligence community? Seymore Papert, one of the 
founders of the field of artificial intelligence, 
rebuffed Dreyfus’ claim in his article ‘The Artificial 
Intelligence of Hubert L. Dreyfus: A budget of 
Fallacies.’ [5]2.  

Papert started the dispute by writing, “In 
December 1965 a paper by Hubert Dreyfus revived 
the old game of generating curious arguments for 
and against Artificial Intelligence.” Papert 
continued to write his motivation as, “What does 
affect me is that so many people praise his papers 
because they like his conclusions, and show no 
concern for the quality of his arguments.”  

The other founders of the field of artificial 
intelligence, such as Herbert Simon and Alan 
Newell, also strongly rebuffed. McCorduck [6] 
described well about this rivalry between the two 
parties in her book ‘Mind as machine: a history of 
cognitive science.’ Edward Feigenbaum told in the 
interview by McCorduck, “What does he offer us? 
Phenomenology! That ball of fluff. That cotton 
candy!” Or others ignored like Marvin Minsky who 
said, “They3 misunderstand, and should be ignored.” 
(See [7], p. 143).  

When Dreyfus expanded ‘Alchemy and Artificial 
Intelligence’ and published as a book titled ‘What 
Computers Can’t Do?’ [8], no one from the artificial 
intelligence community responded any more. 
Nevertheless, Dreyfus kept his criticism. The 3rd 
edition of the book was published by changing the 
title to ‘What Computers still Can’t Do: a critique of 
artificial reason’ [9]4.  

McCorduck [6] quoted Papert as saying (p. 230), 
“... all social sciences are, for Dreyfus, as wrong-
headed as AI. This is not an attitude widely held in 
universities.” And then McCorduck posed a 
question, “If Dreyfus is so wrong-headed, why 
haven’t the artificial intelligence people made more 
effort to contradict him?”  

Though it would be hard to know what 
computers can and what computers can’t do, or to 
judge which side had well predicted the future at that 
time, Brooks who was then with Artificial 
Intelligence Lab at Massachusetts Institute of 
Technology as Dreyfus did too, wrote, “Artificial 
intelligence started as a field whose goal was to 
replicate human level intelligence in a machine. 

                                                 
2 Also available at http://dspace.mit.edu/bitstream/ 
handle/ 1721.1/6084/AIM-154.pdf?sequence=2, with a 
stump 'Draft -Not for distribution.' on it. 
3 3 Who are they? One is Dreyfus and others seem to be 
also critiques from philosophy such as Searle whom we 
will mention later. 
4 Also available at http://www.rand.org/pubs/papers/ 
2006/P3244.pdf. 
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Early hopes diminished as the magnitude and 
difficulty of that goal was appreciated. ... No one 
talks about replicating the full gamut of human 
intelligence any more.” [10]  

We also have another claim by John Searle that 
even if a system passes the Turing test, still the 
system cannot be described as thinking, by his 
thought experiment called ‘Chinese Room’ [11]. We 
will skip this philosophical topic since we now are 
running out of space. 

 
Can computer play chess?  

Yet another hot topic in the history of developing 
artificial intelligence is, chess playing computer.  

Again a crappy event of acrimonious slander to 
Dreyfus by Papert. Dreyfus wrote, “In fact, in its 
few recorded games, the Newell, Shaw, Simon 
program played poor but legal chess, and in its last 
official bout (October 1960) was beaten in 35 moves 
by a ten-yea-old novice.” [9] (p.83).5 Later, without 
his intention, the expression was appeared in ‘The 
New Yorker’ January 11, 1966 edition as an article 
in ‘The Talk of the Town.’ It was to cause a 
sensation as to what’s going on in computer world, 
and the article was concluded with the phrase, “We 
don’t care what the machine is going to do.6 

Then, one day Papert arranged a chess match 
between Dreyfus and a computer chess program.7 
McCorduck [6] (p.231) quoted Papert as saying, “I 
organized the famous chess match. That was 
beautiful.” McCorduck went on to write, “The 
results of the game were printed in the bulletin of the 
Special Interest Group in Artificial Intelligence, the 
Association for Computing Machinery,  

‘A ten-year-old can beat the machine’  
Dreyfus: But the machine can beat Dreyfus.” 

Aside from this tiny event in the history, much 
more sensational news was, the first real chess 
match in the history between a human world 
champion and a computer, which was held in 1996. 
That is, the then world champion Garry Kasparov 
vs. IBM’s Deep Blue. In a six-game match Deep 
Blue won one game, tied two and lost three. The 
next year, Deep Blue defeated Kasparov also in a 
six-game match. Kasparov had won the 1st game, 
lost the 2nd, tied 3rd, 4th and 5th, then lost the 6th.  

Nowadays, however, everyone knows the Deep 
                                                 
5 Also see the 3rd edition of his book 'What computers 
still can't do.' 
6 Nothing to do with topic of chess, but also sarcastic 
description regarding machine translation at that time can 
be read in this same article. That is, Machine translated 
'Time flies like an arrow,' in Russian into 'Time flies enjoy 
eating arrows,' in English. 
7 Program called MacHack designed by Richard 
Greenblatt. 

Blue did not employ an intuitive skill of a human 
grandmaster but instead, relied on a brute force to 
evaluate billions of future positions. Is it intelligent 
employing a brute computing power to search for all 
the possibilities to select the optimal one? Most 
people do not think in that way these days. 

 
Is intelligence for a perfect performance?  

Dreyfus wrote “... a little intelligence is not 
intelligence at all but stupidity. Any program that 
does just one thing well is at best more like an idiot 
savant than like an intelligent man.” [4] 

As already suggested, we doubt this assertion by 
Dreyfus, more or less. Brooks [10] wrote, “It is clear 
that their domain of expertise is somewhat more 
limited, and that their designers were careful to pick 
a well circumscribed domain in which to work. 
Likewise it is unfair to claim that an elephant has no 
intelligence worth studying just because it does not 
play chess.”  

In this article, however, our aim is not “revealing 
the secrets of the holy grail of artificial intelligence,” 
as Brooks [12] put it, or we don’t expect artificial 
intelligence to be as efficient or perfect as human, 
but focus on its flexibility, spontaneity, or 
unpredictability. Frosini [13] wrote “... contradiction 
can be seen as a virtue rather than as a defect. 
Furthermore, the constant presence of 
inconsistencies in our thoughts leads us to the 
following natural question: is contradiction 
accidental or is it the necessary companion of 
intelligence?”  

 
2.2. IS NEURAL NETWORK 
INTELLIGENT? 

What will be necessary in order for us to be able 
to expect a different action of the agents every time 
whenever the agents come across an identical 
situation? Any neural network with a set of fixed 
synaptic weight values would never behave in that 
way. So, why don’t we try to make an agent learn 
during its action? In other words, let’s make it by 
modifying those synaptic weights while the agent 
acts.  

Floreano et al. [14] reported their interesting 
experiment in which their mobile robot, who is 
controlled its movement by a neural network, 
navigates properly in the given environment by 
modifying the synaptic weights of its own neural 
network during navigation. The modification was 
based on a set of four Hebbian-like rules with each 
of the rules being specified by a number of 
parameters. Each of the connection weights 
determines which rule with which parameters to 
modify itself during its navigation. Starting with a 
random configuration of the weights, a population 



Akira Imada / Computing, 2011, Vol. 10, Issue 1, 66-76 
 

 69

search eventually converges an optimal 
configuration. Later, Stanley [15] united these four 
rules into one equation with two parameters. 
Recently, Durr [16] proposed a more general 
equation of learning, to which we will go back later 
a little more in detail.  

The experiments above were made using 
McCulloch & Pitts neurons with a sigmoid function, 
that is, states of neurons are represented by 
continuous values.  

Later Floreano [17] performed a similar 
experiment using spiking neurons. The 
implementation was somehow cleverly tricky as 
follows. He exploited a fully connected neurons of 
spike response model8 with additional sensory 
neurons. The network consists of excitatory and 
inhibitory neurons with outgoing synaptic weights 
all being either 1 or -1 depending on its pre-synaptic 
neuron, i.e., excitatory or inhibitory, which is 
genetically pre-specified. Then a genetic algorithm 
determines just which connections to be pruned. 
Though it worked amazingly well, it was not an 
implementation of modifying weights during action.  

Now we want to modify weights of spiking 
neural network during a run. One possible option for 
that is, as Di Paolo [18] suggested, an application of 
above mentioned more general learning rule 
proposed by Durr [16] to a spiking neuron network 
using the equation:  

 
( )jiijjijiijijijij zzAzAzAAw 3210 +++=η&  

 
where ijη  is learning ratio and iz  is firing rate of 
neuron i. We can search for the optimal parameter 
set of η , 0

ijA , 1
ijA , 2

ijA  and 3
ijA  for each of the 

connections by an evolutionary algorithm.  
In the next section, we use a neural network with 

spiking neurons with spike-timing-dependent-
plasticity, or STDP -a counterpart of Hebbian 
learning for the McCulloch & Pitts neurons. 

 
3. A PATH-FINDING PROBLEM 

Path-finding or path-integration is not a simple 
toy problem. Since the theoretical suggestion of the 
role of Hippocampus as a spatial map of a free 
moving rat by O’Keefe [19], or empirical discovery 
of a role of place cell firing for a sensory control by 
O’Keefe et al. [20], lots of meaningful researches to 
reveal brain mechanisms concerning hippocampus 
have been made. See McNaughton et al. [21], Poucet 
et al. [22] and references therein. 

We consider possibilities of applying two neural 
                                                 
8 which is the simplest model of spiking neuron according 
to Izhikevich [24]. 

network models to seemingly the simplest problem 
ever, to see whether the resultant behaviors of the 
agent are intelligent or not. The problem is the 
shortest path-finding in a virtual world where we 
have no obstacles such as wall, corridor, or 
dangerous river, as Stolle et al. [23] once made the 
agents explore in it, for a different purpose though.  

Ironically, such an empty environment is not as 
easy to be explored as imagined. In fact, in many 
applications of path-finding, obstacles sometimes 
are not obstacle but implicit guides to the goal.  

Anyway, our benchmark is to find a shortest path 
in the Cartesian coordinate from (0,0) to (m,n) 
without no obstacle in between. Assuming now a 
grid-world to make calculation simple, the number 
of paths with minimum Manhattan distance from 
(0,0) to (m,n) is  

 

∑
+

=
−+×

nm

i
inmi CC nm

0
. 

 
So, we have a infinitely large number of such 

routes of the identical minimum Manhattan distance 
for a large enough m and n. The question could be, 
“Can the agent be flexible to follow a different 
shortest path whenever it tries anew?”  

Here, for a change, let me try a little different 
scenario. As it might be easily pointed out that we 
have only unique shortest path, say, from (0,0) to 
(m,0). And we change the question to, “Nevertheless 
the agent takes its route spontaneously?” It implies if 
the agent follows its feeling rather than pursuing the 
optimal efficiency.  

In the following two subsections we speculate 
two models of spiking neurons which are already 
published in the literature to solve the other more 
complicated problem.  

 
3.1. RECURRENT NEURAL NETWORK 
WITH EVOLVED SPIKE TIMING 
DEPENDENT PLASTICITY 

To control a robot, Di Paolo [18] used a recurrent 
neural network composed of conductance-based 
integrate-and-fire model of spiking neurons. See, 
e.g., [25]. Let’s summarize the method. Membrane 
voltage of each neurons v(t) evolves with time as:  

 
))(())(( υυυυτ −+−+−= ininexexrest EtgEtgVm

&  
 

where mτ  is the membrane time constant, restV  is the 
rest potential, exE  and inE  are reversal potentials, 
and exg  and ing  are conductance, with suffix ‘ex’ 
and ‘in’ being meant excitatory and inhibitory, 
respectively.  



Akira Imada / Computing, 2011, Vol. 10, Issue 1, 66-76 
 

 70 

When no income spike exists conductance decay 
exponentially as:  

 
exexex gg −=&τ ; ininin gg −=&τ . 

 
If a spike arrives to neuron j from an excitatory 

presynaptic neuron i, then exg  of neuron j is 
increased by the current value of the synaptic weight 

)(twij . That is,  
 

)(twgg ijexex +=  
 
If the incoming spike is from inhibitory pre-

synaptic neuron, then  
 

)(twgg ijinin +=  
 
The Poisson spike trains coming from the two 

sensors are fed into specific two neurons in the 
recurrent neural network. Florian [26] who also 
exploited this model explained the reason as follows.  

“Each sensor of activation s drives two input 
spiking neurons, one being fed with activation s and 
the other with activation 1-s. Thus, both the 
activation of the sensor and its reciprocal was fed to 
the network, ... The reason of this duplication of the 
sensory signal in the spiking neural network is 
twofold. First, this allows the network to be active 
even in the absence of sensory input. For example, if 
the agent is in a position where nothing activates its 
sensors (there is no object in its visual range, no 
tactile contact etc.), there must be however some 
activity in the neural network, in order for the 
effectors to be activated and the agent to orientate to 
stimuli. Second, this mechanism implies that the 
total input of the network is approximately constant 
in time (the number of spikes that are fed to the 
network by the input).”  

 
Spike timing dependent plasticity 

To simply put, spike timing dependent plasticity 
is an algorithm to potentiate (strengthen) synapses 
when post-synaptic spike immediately follows pre-
synaptic spike, and to depress (weaken) the synapse 
if the order of these two spikes is opposite. To be 
more specific,  

 

⎪⎩

⎪
⎨
⎧

<∆∆−−

>∆∆−
−−

++

0   if    )/exp(
0   if    )/exp(   

ttA
ttA

τ

τ
 

 
where t∆  is a time from pre-synaptic firing to post-
synaptic firing. As for the other parameter, see 
below.  

To perform this implicitly, Di Paolo changed 
synaptic weights by means of two recording function 
per synapse  )(tP+  and  )(tP−  following Song et 
al. [27]. He clearly describes:  

“Every time a spike arrives at the synapse the 
corresponding  )(tP+  is incremented by  )(tA+ , 
and every time the post-synaptic neuron fires the 
corresponding  )(tP−  is decremented by  )(tA− . 
Otherwise, these functions decay exponentially with 
time constant  )(t−τ  and  )(t+τ  respectively. 

 )(tP−  is used to decrease the synaptic strength 
every time the pre-synaptic neuron fires: 

 )(max tPwww ijij
−−→ . Analogously,  )(tP+  is 

used to decrease the synaptic strength every time the 
pre-synaptic neuron fires:  )(max tPwww ijij

+−→ .” 
Then with those four parameters for each of 

synapses being a chromosome, the optimal values of 
these parameters from one synapse to the next in the 
whole network are searched for by a genetic 
algorithm. Fitness is simply the Euclidean distance 
between the point the agent reaches after pre-
specified time and the point of destination, in our 
problem in this paper. 

 
3.2. FEEDFORWARD NEURAL 
NETWORK WITH REWARD-MODULATED 
SPIKE TIMING DEPENDENT PLASTICITY 

Next of our speculation is following the model by 
Florian [28] -a neural network made up of stochastic 
leaky-integrate-and-fire neurons. Membrane 
potential  )(tvi  of neuron i at time t evolves in 
discrete time tδ  according to:  

 

∑ −+−−=
j

ijijiii tfttwtttt )()()/exp()()( δτδδυυ  

 
where iτ  is a time constant of neuron i, ijw  is 
synaptic weight value from neuron j to neuron i, and 

1)( =tf j  if neuron j fires at time t otherwise 0.  
The neuron i fires stochastically with probability 

))(exp()/( iivt θβτ δδ −∆  if the value is less than 1, 
otherwise 1.  

If the neuron fires, then the membrane potential 
is reset to a rest-potential restV . 

We experiment here, among others, with a feed-
forward architecture with two sensor neurons, input 
layer with 4 neurons, hidden layer with 8 neurons, 
and output layer with 2 neurons. All neurons from 
one layer to the next layer are fully connected. At 
the beginning of a run, the synaptic weights were 
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initialized with random values from -1 to 1 except 
for those from the sensor neurons which take a value 
from 0 to 1 at random.  

Since we have no obstacle, the activation of the 
sensor neurons takes a random value between 0 and 
1. The sensor neurons fire Poisson spike trains, 
proportional to the activation, with a firing rate r = 
200 Hz. The probability of emitting one spike during 

tδ  is trδ .  
The motor activations )(tai  (i = 1, 2) of the 

output neurons evolve according to the following 
equation with time constant eτ  = 2 sec.  

 
)/exp()()( eii tttata τδδ −−=  

)())/1exp(1( tfv ieeτ−−+  
 

The factor of )(tfi  is to normalize the activation 
to 1 when the neuron fires regularly with frequency 

ev  = 25 Hz. One output neuron’s activity determines 
the distance d, the amount the agent moves at time t, 
and the other output neuron’s activity determines the 
direction θ  toward which the agent should move, 
that is, )(2 taiπθ =  from the direction of the x-axis. 
Then agent moves with its increment being 

θδ cosdx =  and θδ sindy = . Note that the world 
is no more discrete grid-world.  

Florian’s learning formula of the synaptic weight 
values is a sort of reinforcement learning. (See, e.g., 
Baxter et al. [29].) Weights are modified as:  

 
)()()()( tttrtwttw ijijij ζδγδ ++=+ , 

 
where )(tr  is reward at time step t and γ  is 
discount rate by which eventual reward is estimated 
as  

 
...)3()2()()( 32 +++++++ ttrttrttrtr δγδγδγ  

 
Dynamics of ijζ  is given by:  
 

)()()()()( tftPtftPt iijiijij
−+ +=ζ  

 
and )(tPij

±  are  
 

)()/exp()()( tfAtttPtP jijij ++
++ +−−= τδδ  

)()/exp()()( tfAtttPtP iijij −−
−− +−−= τδδ  

 
where ±τ  and ±A  are constant parameters. In our 
problem of finding a shortest path, reward )(tr  

could be an inverse of distance to the goal from the 
position of agent at time t. The closer to the goal, the 
larger the reward. 

 
3.3. SIMPLE HEURISTICS 

Are we happy with the above two experiments?  
We can make an agent explore by a walk with a 

heuristic with an occasional random derail 
controlled by a random number. As shown in Figure 
1, a walk starting at (0,0) with the goal being (N,0) 
might be able to look like a spontaneous path more 
or less, and we can see a different spontaneity from 
run to run. Clearly, however, it is not a result of an 
intelligent action.  

 
Fig. 1 – An example of a path starting from (0,0) to the 

goal (300,0) by a random walk incorporated with a 
heuristic strategy. Heuristic says “Go strait to the 

goal,” in this extreme case, but agent is still allowed to 
derail from time to time by a random number 

 
Hence ‘an always different reaction in a similar 

situation’ is a necessary condition at the best but not 
sufficient for the neural network to be intelligent.  

This might be an example of “a very simple 
algorithm can sometimes obtain the same results as 
the holistic, intuitive human mind,” as Papert [5] put 
it. 

 
3.4. TWO DIMENSIONAL QUANTUM 
RANDOM WALK 

The experiment of random walk mentioned 
above might remind us a quantum random walk 
[30], specifically here a 2-dimensional walk. See, for 
example, Mackay et al. [31], Inui et al. [32], Watabe 
et al. [33], or Baryshnikov et al. [34].  

Quantum random walk, starting from a special 
initial state, say (0,0), diffuses into the space as a 
clasical random walk. The way it diffuses, however, 
is totally different than a classical one. The location 
is expressed by a wave function which is a function 
of position (x,y) and time t. The most likely location 
of the walker to be found is the location where the 
wave function has its peak.  

We might imagine a quantum robot (See, e.g., 
Benioff [35], Benioff, [36]) controlled by a quantum 
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neural network (See, e.g., Ezhov et al. [37]) which 
has learned (See, e.g., Ricks et al. [38]) how to walk 
to a prespecified location, say (0,10), along the 
shortest route. The route includes all possible routes 
due to its parallelism of quantum computation. 
These all possible locations of the particle are called 
superpositions. It holds, however, unless a 
measurement is made until the robot finds the 
location. When we measure the location of the robot, 
the wave function collapses and the location is found 
at a specific point, but choice is totally at random, 
that is to say, there is no knowing it deterministically 
in advance.  

Inui et al. [32] gave how to simulate this two-
dimensional quantum walk. Let me summarize it. 
There are four quantum states at each site -R, L, U, 
and D corresponding to one step to right, left, up, 
and down, respectively. The value of wave function 
of R, for instance, is given by  

 
1,,, +tyxR  

tyxRatyxRa ,,1,,,1, 1211 −+−=  

tyxRatyxRa ,,1,,,1, 1413 −+−+  
 

where ija  is the element of 4.4 unitary matrix, which 
is called a quantum coin.  
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Those for L, U, D can be given similarly (See 

Inui et al. [32]).  
The wave function of the whole state at time t is  
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Then the probability of observing the quantum 

walker at a given point (x,y) and time t starting with 
an initial state is defined by  
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We now understand this implies that each time 

we measure the robot that reached to the goal has 
taken a different route from run to run out of all 
possible routes. Thus we assume quantum 
computation could give us more like a human 
behavior in the sense that we have argued so far 
above, although this is just a thought-experiment 
since no one has done empirical testing of this 
phenomenon.  

In fact, there is a hypothesis that quantum 
mechanical phenomena play a roll in brain, and 
thereby explanations of consciousness are 
challenged. Let’s name a few. Baer [39] discussed 
quantum computations in biological systems and 
suggested the brain executes a self-measurement 
process described by quantum theory through an 
analysis of the brain as a physical system. 
Bernroider [40] argued that quantum coherence may 
be sustained in ion channels for long enough to be 
possible in neural processes in brain and conjectured 
that consciousness can be explained by quantum 
entanglement and superposition. Penrose [41] 
asserted that brain has an additional function other 
than those based on algorithms. Hameroff [42] 
speculated that some structure of neurons in brain 
would be suitable candidate for quantum processing 
and ultimately for consciousness.  

These proposals have been strongly objected by 
not a few scientists and philosophers and are still 
under debate. For example, Tegmark [43] claimed 
that quantum systems in the brain, if any, would 
decohere too quickly to play a fundamental role for 
consciousness.  

It might be interesting to overview the debates, 
like the long history of debates on artificial 
intelligence described in this article, but let me give 
it at an another opportunity. 

 
4. CONSCIOUSNESS 

Science has always tried to eliminate the 
subjective from its description of the 
world. But what if subjectivity itself is its 
subject? from “A Universe of 
consciousness: How Matter becomes 
imagination” – by Gerald M. Edelman 
and Giulio Tononi.  

Now we see that spontaneity, flexibility, or 
unpredictability are not sufficient to be a human-like 
intelligence. What we should take into account next 
is, these properties should be made at least 
consciously.  
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What is conscious then?  
In their paper ‘Science of the conscious Mind,’ 

Ascoli et. al. [44] wrote: “We need to design 
mathematically sound metrics reflecting definite 
aspects and elements of our subjective experiences, 
and a corresponding system of quantitative 
measures. Important phenomenological experience 
may be tied to individuals (consciousness of beauty, 
responsibility etc.), rather than to concrete objects 
whose features could be explained by the pattern-
recognition properties of neural networks.”  

The authors continues: “The idea of semantic 
space, defined as the set of all possible meanings 
that words can express, may be formalized with the 
notion of cognitive mapping. Cognitive maps index 
representations by their context, such as spatial 
location, and are employed by mammals for path-
finding and navigation,” citing (Samsonovich et al. 
[45]. as an example of such path-finding navigation 
of rodent using spatial location by hippocampus.  

Izhikevich also defined consciousness as 
attention to memory [46].  

Now we try our navigation problem using 
memory function in the brain.  

 
4.1. NAVIGATION BY HIPPOCAMPUS 

Following Muller et al. [47], we speculate here a 
navigation using a cognitive map created in a 
recurrent connections of CA3 pyramidal cells as 
place cells with functions of long-term potentiation 
modeled by spiking neurons.  

This model is based on the finding by O’Keefe 
and Dostrovsky [48] that firings of hippocampal 
neurons in freely moving rats is location specific, 
that is, they fire rapidly only when the rat is in a 
specific location. Hence, such neurons are now 
called place cells, and these neurons are pyramidal 
cells of the CA3 and CA1 regions of the 
hippocampus.  

Here assumption is, mapping information, or 
equivalently, distance relation of the points in the 
environment, is represented as the strength of long-
term potentiation modifiable Hebbian synapses. In 
other words, the mapping information is stored in 
the strength of the connection, specifically here, in 
the strengths of CA3 to CA3 synapses of their 
recurrent connection. So, a short interval between 
pre-and post-synaptic spikes is expected to cause an 
increased synaptic strength.  

Since each cell is a place cell, any path in the 
graph corresponds to a path in 2-D space.  

Then the question is, “The optimal paths in 
neural space are optimal too in geometrical 2-D 
space of surroundings?”  

What Muller et al. [47] proposed is, strength of a 
synapse is determined according to a decreasing 
function of the distance between two points the two 
neurons represent. As such, the longer the distance 
the weaker the strength. That is, synaptic strength 
should decrease with distance between two points.  

Now let me summarize Muller’s experiment. 
First, a recurrent network should be constructed to 
represent a cognitive map as follows. (i) Create n 
place cells;  

(ii) Connect each cell to p other cells such that at 
least one route exists from any cell to any other cell;  

(iii) Each cell is randomly assigned a location in 
2-D space represented by pixels; (iv) All the 
synapses are given a strength according to the 
distance between the corresponding two locations in 
2-D space using a decreasing function of distance.  

Then a path in the 2-D space is found as follows:  
(i) Specify the start and goal points in the 2-D 

space;  
(ii) Starting at the neuron corresponding to the 

start point in the 2-D space, select a series of 
synaptic connections which eventually lead to the 
neuron corresponding to the goal point in the 2-D 
space such that the sum of strengths of these 
synapses is maximized; (iii) Then the route in the 
recurrent network is translated into a path in the 2-D 
space by listing the points corresponding to the 
neurons in the route obtained in the recurrent 
network. 

 
4.2. IS NAVIGATION BY HIPPOCAMPUS 
INTELLIGENT? 

Back in 1997, in their graduate-level seminar 
home page at the University of Illinois at Urbana-
Champaign,9 Joe Sullivan exemplified animals’ 
intelligent navigation in their familiar surroundings. 
Let’s name a few: Merriam’s kangaroo rat can 
learn the distribution of food patches around its nest 
in three evenings of foraging; Marmoset monkeys 
reliably relocate food sites and do not revisit a place 
where food was already eaten on that foraging trip; 
and Black-capped chickadees hide insects and seeds 
in numerous, widely spread caches in trees over its 

                                                 
9 The page 'Topics in Neuroethology' is still available at 
http://nelson.beckman.illinois.edu/ 
courses/neuroethol/models/spatial\_learning/ 
spatial\_learning.html 
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home range.  
It might not sound like an intelligent behavior, 

but as already quoted Brooks [12], an elephant could 
be intelligent even if it cannot play chess. 

 
5. BELIEF, DESIRE AND INTENSION 
The belief-desire-intention (BDI) model is a well 

studied computational model to construct multi 
agent system, originally developed by Bratman [49]. 
Or we might even add ‘emotion’ to the three 
properties, as Pereira et al. [50] proposed a model of 
emotional BDI agents. Though since this topic is 
beyond the scope of this article and we will not go 
into further detail, belief, desire, and/or intention 
could be other condition for machine intelligence to 
approach closer to human-like intelligence.  

 
6. CONCLUDING REMARKS 

Thus, the only question which can 
reasonably be discussed at present is not 
whether robots can fall in love, or whether 
if they did we would say they were 
conscious but rather to what extent a 
digital computer can be programmed to 
exhibit the sort of simple intelligent 
behavior.” – from “Alchemy and Artificial 
Intelligence” by Hubert L. Dreyfus.  

A real human-like intelligent behavior of an 
artificial neural network does not seem to be 
strongly required in industry world. What about, 
however, a robot pet? We find lots of commercial-
based products of those robot pets these days. For 
instance, a toy robot dog AIBO produced by SONY.  

It splendidly learns the environment of the 
owner. It acts differently in a different situation 
according to how it learned these situations. 
However, it acts exactly in the same way if it comes 
across the same situation it has already learned. 
Although AIBO can play a role of a wonderful pet, 
this identical-action-in-identical-situation would 
lose the owner’s interest, sooner or later.  

On the other hand, McClelland [2], as we already 
cited in the Introduction, concluded his paper by 
writing, “It may well be, then, that over the next 
decade, the butterfly will finally emerge from the 
chrysalis, and truly parallel computing will take 
flight.” So let’s be optimistic.  

Now, to conclude this article, let me propose also 
a very simple looking but a little more sophisticated 
benchmark of path-finding problem, as a challenge. 

 

 
Fig. 2 – An example of a loop created by an agent who 
had started at the base located at (0,0) with a limited 
amount of fuels of 300 units which is supposed to be 

consumed one unit to move from one grid to the next. 
This example is not by an intelligent machine 

technique but a random walk with a heuristic. Can 
you guess what sort of heuristic is it?  

We might call it ‘Mars Land-rover Problem.’ 
The problem is as follows:  

A robot starts at home at (0,0) with a limited 
amount of fuels to move the field. The mission is to 
explore along a maximum loop that never crosses, 
and should return home before the robot exhausts all 
the fuels it filled at the start. See Figure 2. Can we 
design a robot such that it navigates flexibly enough 
to take a different route from run to run, using a 
memory which stored during previous runs, with 
some conscious intention, hopefully with belief and 
some sort of desire? 
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