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Abstract: The paper deals with the issue of the construction of a cellular automata model of the directional 
crystallization of binary solutions process. The basic approach and general methodology for the development of cellular 
automata models are examined. This allowed to obtain the spatial distribution of the studied characteristics. The paper 
gives an overview of available techniques on the problem, outlines the arguments in favor of a cellular automata 
method. The occurring processes of redistribution of impurities concentration and overcooling are emphasized. 
Previously known idea of a mechanism of the melt concentration overcooling is considered. The results of the 
calculation of impurity concentration distribution along the track of the sample during crystallization are presented. 
Dependence of the phase transition melting temperature on the value of the impurity concentration is determined on the 
basis of the calculated impurity distribution. Graphic examples of the varieties of uneven impurity distribution as a 
result of overcooling concentration of the melt are given. Copyright © Research Institute for Intelligent Computer 
Systems, 2015. All rights reserved. 
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1. INTRODUCTION 

It is well known that many physical properties of 
crystalline materials obtained by the method of 
directed crystallization are determined by the 
distribution of impurity in the melt and its ability to 
accumulate in the form of separate grains, cells etc. 
This occurs due to concentrated overcooling and 
leads to deterioration of the mechanical, electrical 
and physical properties of the material. It is one of 
the reasons for their fragility. A series of 
experiments is needed to investigate the optimal 
conditions for the growth of semiconductor 
materials with required properties. The time required 
is not always available, and the labor and material 
resources cost is rather high. Therefore, in recent 
years great attention is paid to the development of 
the technology of process simulation.  

Spatial segregation is a complex process to be 
described in terms of mathematical equations. The 
imitation or agent-based models where certain rules 
of conduction can be assigned to each agent are the 
most popular and flexible techniques at present. 

The main difference of cellular automata from 
ordinary differential equation (DE) lies in the local 
rules by which the dynamics of the system is 

described. When using DE we assume the existence 
of some rules of averaged values over the whole 
system changes. In the case of the existence of such 
spacecraft the macro rules are optional. When using 
the CA the existence of such macro rules is also 
optional. It is enough to know the laws of the 
system’s development on the microlevel in small 
spatial regions that make up the macrosystem. 

So the main features of a complex dynamic 
system can be described by simple rules of 
management, defined from the behavior of the 
system over time. 

CA are the most effectively used to describe the 
behavior of a system the collective behavior of 
which is determined by the local behavior of its 
constituent elements, when the system is highly 
heterogeneous, and averaging of variables 
throughout the system can hardly reflect its status 
adequately as a whole. Therefore, while modeling 
the melting process, accompanied by the first order 
phase transition, we chose the cellular automata 
technique.  

Cellular automata were invented by von 
Neumann [1]; this proved the existence of a self-
reproducing universal computer. 
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Then the idea became popular and many 
researchers are working on its development. So 
several quality classes of cellular automata (CA) 
behavior, based on various statistical measures are 
defined in [2]. It was investigated how the cellular 
automaton is changed by varying entries in its rule 
table. These abrupt changes have either the character 
of bifurcations in smooth dynamical systems or that 
of phase transitions in statistical mechanical 
systems. Cellular automata classification is difficult. 
Wolfram classification scheme was developed, 
consisting of four quality classes, for which all 
cellular automata can be divided according to the 
type of evolution [3]. He suggests reliable arguments 
that the achievements in the field of cellular 
automata are not isolated but very stable and are of 
great importance for all areas of science. Such 
definitions are mostly qualitative and can be 
interpreted in different ways. Other approaches to 
CA rules classification were detailed in the  
works by Chatee and Manneville [4], Gutowitz [5], 
McIntosh [6]. 

However, the classification alone is not enough. 
It is necessary to gain deeper understanding of the 
nature of the cellular automata interaction rules.  

Despite a long period of research of cellular 
automata, the general theory of cellular automata has 
not yet been formed. But at the same time, the 
cellular automata are very successfully used to 
model various dynamic systems characterized by 
close interaction between the constituent elements, 
and this direction proves to be very promising. In 
recent years, the alternative approaches to numerical 
methods for problems of heat conductivity and 
diffusion are widely used. Cellular automata 
algorithms are quite successfully used [7, 8] for this 
purpose. It should be noted that discrete models are 
used in most cases for calculation of diffusion 
processes [9], while the continuous models of 
cellular automata [10, 11] are used to approximate 
heat transfer processes. In [12] Juan Miguel Benito 
and Penélope Hernández prove that cellular 
automata technique is a suitable tool for modeling 
multi-interactive procedures. Specifically, they used 
arguments to confirm the simulation results obtained 
for the classical model of segregation Thomas 
Schelling [13]. 

[14] should also be mentioned here in regards to 
the subject of phase formation modeling using 
cellular automata. It shows the results of simulation 
of grain boundary motion when driven by the 
minimization of volume-stored energy as well as 
when it is curvature-driven. It also gives an example 
of a hybrid model that combines cellular automata 
with the description of diffusion computing and 
dissolving of precipitation under abnormal grain 
growth. Furthermore, [15] should be taken into 

consideration where calculations of austenite-ferrite 
phase transformation in steels are performed using 
cellular automata model. Researchers describe the 
rules of transition for the initial and subsequent 
growth taking into account internal variables for 
each CA cell. A qualitative model of the phase 
transition within the developed cellular automata 
was presented and sensitivity analysis of the 
developed complex microscale austenite to ferrite 
phase transformation model was performed. The 
possibility of describing complex phenomena and 
processes using cellular automata enables to 
simulate not only the phase transition during the 
crystallization process, but also to sophisticate such 
a model by the presence of emerging concentration 
overcooling, which is not modelled in previous 
works. 

In this research we use the method of continuous 
cellular automata. As it was previously shown in 
[16], it is possible to display not only the qualitative, 
but also the quantitative aspect of the modelled 
process by calculating the time of a CA interaction. 
This makes it possible to determine the 
characteristics of the process at certain points of 
time. Due to its simplicity and versatility, this 
method is a good alternative to the previously 
known classical methods for solving problems of 
heat conductivity, diffusion of impurities, modeling 
of phase transitions. The description and results of 
application of continuous cellular automata method 
for modeling the directional crystallization of binary 
solutions in dynamics are presented in this paper. 
Here the segregation and dependence of the phase 
transition temperature on the material composition is 
taken into account, because under certain conditions 
it can lead to the phenomenon of concentration 
overcooling and, accordingly, to uneven geometry of 
the crystallization front.  

 
2. PRELIMINARIES 

It is known that solubility of impurity 
components in the liquid phase and equilibrium solid 
phase of the basic substance are different. This is 
due to different values of the chemical potentials of 
impurities in the solid and liquid phases. 

The difference between the ratio of components 
in liquid and its equilibrium solid phase is 
characterized by the distribution coefficient [17]: 

 

LS CCK /0  ,                        (1) 

 
where CS, CL – concentration of impurities in the 
solid (Solidus) and liquid (Liquidus) phases 
respectively. 

The equilibrium distribution coefficient 
(sometimes referred to as the coefficient of 
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segregation or liquidation coefficient) is determined 
by the type of phase diagram of the corresponding 
system. When analysing a fragment of the diagram 
of a two-component system with full mutual 
solubility at low concentrations of the second 
component (Fig. 1), it can be noted that the impurity 
(B) which lowers the melting point of the basic 
substance (A) will dissolve in the melt better than in 
the solid phase, i.e. CS < CL and K0 < 1. The 
crystallized phase will be cleaner than the melt. 

If the impurity increases the melting point of the 
basic substance, it dissolves better in the solid phase 
than in the melt, i.e. CS > CL and K0 > 1. 

 

 

Fig. 1 – Fragments of the diagram of the "basic 
substance (A) – impurity (B)" state in the area of 

complete mutual solubility at low concentrations of 
impurities: a) impurity lowers the melting point; 

b) impurity increases the melting point of the solution. 

 
The distribution coefficient can be calculated as 

the ratio of horizontal line segments from the axis of 
temperature to their crossing with the liquidus and 
solidus lines.  

It should be noted that the equilibrium 
distribution coefficient is a thermodynamic term that 
characterizes the process of equilibrium phase 
transitions. The latter involve transitions from liquid 
to solid state and back at infinitely low speed or in 
infinitely small volume. 

Since in practice there is a finite speed of the 
process of phase transition, the concept of effective 
distribution coefficient Kеf is introduced. It differs 
from the equilibrium one. The difference between 
the effective and the equilibrium distribution 
coefficients arises from the fact that at finite speed 
of crystallization (system is not in an equilibrium 
state) the moving front pushes the impurity (if  
K0 < 1) faster than it can diffuse deep into the melt. 
Therefore, an impurity-enriched layer, called a 
diffusion layer, emerges in front of the 
crystallization front. This layer is characterized by a 
certain thickness δ. The increase of impurity 
concentration in the melt in crystallization front 
leads to its growth in the solid phase. However it is 
considered that the ratio of impurity concentration in 
the solid phase to concentration in the liquid phase at 

the very border of crystallization falls under the 
equation (1).  

The connection between the effective and the 
equilibrium distribution coefficients is defined by 
the formula referred to as Burton-Prim-Slichter 
formula [18]: 

 

  






 




LD

V
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exp1 00

0
еf

,          (2) 

 

where V – speed of crystallization front movement; 
DL – coefficient of diffusion of impurities in the 
liquid phase; δ – thickness of the diffusion layer. 
Thickness of the diffusion layer depends on both the 
speed of front movement and the diffusion 
coefficient of impurities. There may also be a 
convective or forced mixing of the melt, the 
intensity of which significantly affects δ. 

 

3. DESCRIPTION OF A CELLULAR 
AUTOMATA MODEL 

The essence of the modeling processes of heat 
conduction via cellular automata is as follows. We 
divide the sample into sets of identical cells, 
interconnected in the same way. All cells form the 
so-called cellular automata lattices. The lattices may 
be of different dimensions (one-, two- or three-
dimensional array), depending on the dimensions of 
the modelled system. 

In the case of simulation of complex phenomena 
involving phase transitions or other transformations, 
the contents of cells cellular automata field can be of 
a single linear array for some characteristics. 

Let’s try to describe the structure of a cellular 
automata field for our model. The dimension of the 
field corresponds to the dimension of a simulated 
system and contains three layers (Fig. 2): 1) cells 
temperature Т; 2) concentration of impurity С; 3) 
internal heat Н which is taken into account at the 
modeling phase transitions and determines the ratio 
of impurity concentration in the liquid and solid 
phases. 

 

 

Fig. 2 – Structure of cellular automata field for a 
two-dimensional model. 
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The modeling process is an iterative cycle of 
cellular automata interactions. Here we use 
asynchronous scheme of cellular automata 
interactions. This scheme involves the cyclical 
performance consisting of three typical steps: 

1. In the cell-automaton field a cell i = 1 with 
integer coordinates x1, y1 was randomly selected. 
Thus all cells are equiprobable for their choice. 

2. A neighboring cell i = 2 with integer 
coordinates x2, y2 is selected in a random 
equiprobable way. As neighborhood schemes is 
entered a Neumann neighborhood in this case, i.e. 
the cells have only four neighbors (Fig. 3): 

 

 

Fig. 3 – Neumann neighborhood and cell coordinates 
to a two-dimensional model. 

 
3. The cellular automata interaction between the 

two cells takes place. 
The content of the field cells can be of real 

continuous values. 
The essence of cellular automata interactions is in 

modification of continuous values of the 
corresponding layers of cells according to the 
following system of equations: 
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Here i = 1, 2 – index corresponding to the 

selected and adjacent cells respectively; av – average 
value index; a stroke was used to mark values at the 
next moment in time. T – temperature, A – 
coefficient of temperature conductivity, h – 

coefficient of heat conductivity, q – specific heat,  
r – specific density, C – concentration of 

impurities, D – diffusion coefficient of impurities, H 
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– internal heat. The parameters for the solid and 
liquid phases are marked with lower indices S and L 
respectively. Also: Нm – latent heat of melting, Тm(0) 

– melting point at zero concentration of impurities, 

0K  – equilibrium coefficient of segregation of 

impurities, )(tg  – tangent of the angle of incline 

of the concentration dependence of the melting 
temperature (curve Solidus). 

The boundary conditions are selected as follows: 
on the one side sample is heated, on the other – 
cooled, the top and the bottom of the sample are 
thermoisolated. 

In our case of modeling segregation phenomena 
the basic idea lies in linking impurity concentration 
of solid and liquid phases to corresponding ratio of 
internal heat and to latent heat of melting. It is 
schematically illustrated by Fig. 4. 

 

 

Fig. 4 – Schematic representation of the process of 
determining impurity concentration in a cell in the 

state of melting or crystallization during interaction 
with the neighbouring cell. 

 
As it is suggested in [16, 19] the simulation time 

of one cellular automata interaction depends on the 
dimensions of the field as well as the maximum 
coefficient of thermal conductivity. However in our 
case, another mechanism of diffusion of impurities 
is added so a certain parameter Mmax and it should be 
introduced into formulas for determining the time of 
one interaction: 
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This parameter is also included into the system of 

equations (3).  
It is clear that to ensure the adequacy of the 

modeling process of cellular automata the field 
dimension should be as large as possible. On the 
other hand, it will inevitably lead to a rather long 
modeling process. The problem of finding a 
compromise between the solution accuracy and the 
time needed to obtain it arises here, similarly to 
many other decision schemes. According to [16], a 

range of automatic single-cell interaction depends on 
the dimension of the field. 

For a one-dimensional model, which has a field 
of Nx cells the time of interaction is: 
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For a two-dimensional model (Nx×Ny cells): 
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For a three-dimensional model (Nx×Ny×Nz cells): 
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here xd , dy and dz – the dimensions of the sample 

along the coordinates x, y and z respectively. 
Thus, the larger dimension of the CA field, the 

greater the number of cellular automata interactions 
should hold the model during a certain period of 
time. On the other hand, according to [20], this also 
increases the accuracy of calculations. 

 

4. SOFTWARE IMPLEMENTATION OF 
CA MODEL 

Possibilities of TMT Pascal have been used to 
write a program that implements the interaction of 
cellular automata. 

The initial values of temperature, impurity 
concentration and internal heat for each point (cell 
of cellular-automata field) of the sample have been 
set using three-dimensional array. 

Automata asynchronous communication carried 
considering above described boundary conditions of 
the process. To calculate the new states entered the 
cycle. A cell from Neumann neighbourhood 
equiprobable selected for a random cell at each 
iteration and its new state was calculated. That is, 
the calculation of temperature, impurity 
concentration and internal heat at the next moment 
was carried out according to the equation system (3). 
Afterwards again next two adjacent cells are 
randomly selected and parameters are calculated. 
Such cyclical repetition of these steps provides for 
determining the values of all three fields of the 
sample at any given time. The flowchart of the 
computation algorithm is shown in Fig. 5. It is not 
applicable text output information. They use 

CL 
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matching color gradation with the value of the 
displayed parameter to facilitate the program listings 
understanding.  

 

 

Fig. 5 – Flowchart of the developed algorithm of CA 
modeling 

 

Thus visualized process can be seen on the screen 
in dynamics. Computer with following parameters 
was used for computational experiments: CPU – 
AMD K-7, RAM – 1.5 GB; HDD – 40 GB; OS 
Windows XP., a number of cellular automata 
interactions was fixed during the experiments. The 
averaged values of the number of interactions at 
different time moments t and with different number 
of cellular-automata field cells N are listed in 
Table 1.  

 

Table 1. Results of computational experiments 

  N 
t 

0,001 0,002 0,003   0,004 0,005  

100 2000 4000 6000   8000 10000 
200 16000 32000 48000   64000 80000 
300 54000 108000 162000   216000 270000 
400 128000 256000 384000   512000 640000 
500 250000  500000 750000   1000000   250000 
 

The computation time is highly dependent on the 
fact how often (every interaction or, for example, 1 
in a million CA-interactions) the result is displayed 
on the screen. For example, 250000000 interactions 
with output of each result on the screen requires 10 
seconds, if not display – 10 times faster (about 1 
second).Therefore, the ideal environment for the CA 
models implementation are highly parallel systems.  

 

5. CALCULATION RESULTS AND 
ANALYSIS 

It is clear that a model that does not reproduce 
the full process it describes should not be used. 

Therefore, to confirm the possibility of cellular 
automata modeling of heat conduction process a 
series of numerical experiments was conducted.  

The temperature distribution dynamics in the 
sample with a "step" initial condition is described by 
the following law for the one-dimensional case: 
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Let’s shift the initial point of abrupt temperature 

distribution in the middle of the unit interval and 
integrate expression (8) to obtain temperature 
distribution: 
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In the computational experiments the family of 

distributions for temperatures in diapason  1,0x  at 

different times was constructed [21]. 
Fig. 6 shows the results of calculations by 

formulas (8) and (9) in comparison with the above 
described continuous asynchronous cellular 
automata method. 
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Fig. 6 – Temperature distribution in the sample at 
time t = 0,01 s (N = 500). 

Smooth line –  the decision by the formulas (8) and (9), 
broken –  cell-automaton solutions. 

At the right part of the  figure – tenfold increased 
temperature distribution fragment. 

 
The high degree of coincidence confirms the 

adequacy of the use of cellular automata approach to 
approximate solutions of non-stationary heat 
equation. 

Let’s try to apply CA model on thermal 
conductivity process simulation with the first-order 
phase transition [16] on the example of bismuth 
telluride (Bi2Te3) melting zone. Practically, the 
problem of modeling the growing process of 
semiconductor materials zone is important, in 
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particular of Bi2Te3 that is used in various 
thermoelectric devices (Fig. 7). 

Bi2Te3 thermal parameters are presented in 
Table 2, and the process parameters include the 
heater temperature – 840 °C, refrigerator 
temperature – 30 °C, the speed of growth (speed of 
heaters movement) – 200 mm/h, the height of the 
fragment vials – 15 cm, internal thickness of 
ampoules – 3 cm, height heater – 5 cm. The 
movement of the heater is upward (from the bottom 
to the top). At the bottom of the ampoule a single 
crystal is formed, and molten zone flows as a 
polycrystal at the top. The sizes of CA fields  
Nx × Ny = 120 × 600 cells. 

 

Table 2. Bi2Te3 thermal parameters. 
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Coefficient of thermal 
conductivity, W/(m×°C) 

2 3 5 

Density, kg/m 3 7700 7600 7400 

Specific heat, J/(kg×°C) 300 300 330 

Melting point, °C 585 585 585 

The heat of mel-
ting/crystallization, J/kg 

300000 300000 300000 

 

       

Fig. 7 – Example of Bi2Te3 zone growing process 
simulation. 

 

It is possible to observe various forms of 
crystallization front – convex toward the melt, 
concave or flat by changing the parameters of Bi2Te3 

zone growing. The parameters of growing in CA 
simulation, in which there is a flat crystallization 
front is the same as the experimental ones. 

Taking into account the impurity subsystem (3) it 
is possible to model the segregation phenomenon. 

A series of computational experiments was 
conducted to confirm the adequacy of the proposed 
model. An example is presented in Fig. 8. 

The given results of calculations of distribution 
of the relative impurity concentration along the 
sample fragment during crystallization are quite 
consistent with experimental data.  
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Fig. 8 – Distribution of the relative concentration of 
impurities along the sample fragment during 

crystallization (the intermediate results of 
crystallization front movement are shown at three 

points). 

 
The lower curve (Fig. 8) presents the equilibrium 

crystallization under conditions of infinitely low 
growth velocity. For the top value the growth 
velocity V = 0,1 mm/h, for the lower one V = 30 
mm/h. The diffusion coefficient of impurities in the 
liquid phase DL = 10-8 m2/s. The segregation 
coefficient K0 = 0,1. The higher curve – equilibrium 
crystallization with segregation coefficient K0 = 0,8. 

The equation that describes the distribution of 
impurities at directional crystallization has the 
following form [17]: 
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                          (10) 

 
It is obvious from the first graph of distribution 

of relative concentration of impurities (Fig. 8) that 
under a very slow increase of the velocity, the 
distribution calculated according to (3) practically 
coincides with the analytical solution of the 
equation (10): 
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where K – coefficient of segregation of impurities, 
C0 – initial concentration of impurities, L – length of 
the sample. 

While increasing the velocity (the lower graph of 
Fig. 8), a deviation from dependence (11) is 
observed. This deviation can be explained taking 
into account the effective distribution coefficient, 
not the equilibrium one. By analyzing formula (2) 
which unites efficient and equilibrium distribution 
coefficients, we can conclude that the diffusion layer 
thickness δ is not constant and varies in the range of 
1 mm. This is quite consistent with the 
corresponding value for impurities with the diffusion 
coefficient in the liquid phase DL = 10-8  m2/s [18]. 

The adequacy of the cellular automata model (3) 
was also tested on modeling of the phenomenon of 
concentration overcooling while growing doped 
crystals. Here is a brief description of this 
phenomenon. 

According to the phase diagram (Fig. 1), each 
point of the melt will have its corresponding liquidus 
temperature. Let K0 <1, then the content of 
impurities in the melt adjacent to the division 
boundary increases and the equilibrium liquidus 
temperature in this area should decrease. 

A temperature gradient is observed in the melt. It 
is created to provide the crystal growth process. If 
the temperature of the melt at some distance from 
the division surface is below the liquidus 
temperature, the melt will be overcooled. 
Overcooling will take place despite the fact that the 
temperature of the melt is higher than that of the 
phase division surface. 

This creates a situation where the melt is heated 
more than the crystal is, but still is overcooled. A 
crystal can now serve as a starter that causes further 
crystallization of the overcooled melt trying to 
eliminate overcooling. There is also a probability of 
appearance of such a starter of crystallization in the 
depth of the melt near the border of the phase 
division. The greater the degree of overcooling, the 

greater the probability of appearance of such a 
starter. 

The existence of such an overcooling was 
initially observed by Rutter and Chalmers in 
1953 [21]. They called this overcooling a 
“concentration overcooling” emphasizing that it 
occurs as a result of change of impurity 
concentration in the melt. 

During crystallization of the melt with no 
impurities or the melt with impurities at vigorous 
stirring, only a thermal overcooling takes place. 
Concentration overcooling occurs due to insufficient 
stirring when the boundary layer of the melt is 
enriched (or depleted at K0 > 1) by impurities. The 
concentration overcooling leads to the formation of 
cellular structure that violates the uniformity of a 
monocrystal, and is therefore undesirable. 

Quantitative description of the directed 
crystallization of the binary melt using a fairly 
simple model [21] leads to an important result for 
the practice of crystal growth from the melt – a 
criterion of concentration overcooling. The essence 
of this criterion can be expressed through the critical 
speed of crystallization [21]: 

 

    00

crit
1 CtgK

GD
V L


 ,                  (12) 

 
where G – the temperature gradient in the front of 
crystallization directed towards the melt; C0 – initial 
relative concentration of impurities. 

Undesirable overcooling of the melt such as 
concentration overcooling can be avoided if a certain 
limit of crystallisation velocity (Vcrit) is not 
exceeded. This limit can be raised by either 
increasing the temperature gradient at the phase 
boundary (G) or lowering the content of impurities 
in the starting material (C0). The cellular crystal 
growth can be avoided if this rule is followed. 

Fig. 9 presents the results of calculations of the 
relative concentration of impurities (top graph) and 
temperature distribution (bottom graph) along a 
sample. 

The main process parameters: G = 2 °С/сm; DL = 
10-7 m2/с; Vcrit = 30 mm/h; V = 100 mm/h. 

Fig. 8 shows that exceeding of a certain critical 
value of the speed growth leads to unstable behavior 
of the crystallization front, and thus – to an uneven 
distribution of impurities in the solid phase. 

The parameters of tin-antimony (Sn-Sb) [22] 
were chosen as thermodynamic parameters of the 
material, where tin is the basic material and 
antimony is an admixture with relative concentration 
C0 = 0.01, i.e. 1%. The main thermal parameters for  
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tin in solid and liquid phases are [23]: coefficient of 
thermal conductivity h S = 65,8 W/m°C; h L = 30,5 

W/m°C; specific heat qS = 226 J/kg°C; qL = 268 
J/kg°C; specific density r S = 7300 kg/m3; r L = 

6980 kg/m3; latent heat of melting Нm = 60.7 kJ/kg; 
melting point at zero concentration of impurities 
Tm(0) = 232°C; equilibrium segregation coefficient 

of the impurity (Sb) 0K  = 10; tangent of the angle 

of incline of the concentration dependence of the 
melting temperature (curve Solidus) )(tg  = 25. 
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Fig. 9 – Distribution of the relative concentration 
of impurities (top graph) and temperature in a sample, 

as well as temperature of melting and crystallization 
(lower graph). 

 
The results of modeling distribution of impurity 

concentration in two- or three-dimensional cases are 
rather interesting. The variety of cellular structures 
can be seen in Fig. 10. 

The main model parameters that led to 
corresponding characteristic distribution of impurity 
concentration (Fig. 10) are listed in Table 3. 

 
а) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 10 – Examples of varieties of unevenness of 
distribution of impurity concentration due to the 

concentration overcooling (cellular crystal growth). 

 

Table 3. The main model parameters. 

Sample: a) b) c) d) e) f) 

G, °С/cm 8 2 2 0,3 25 6 

DL, m2/s 10-7 10-7 10-8 10-8 10-8 10-8 

Vcrit, mm/h 125 30 2,5 0,5 40 10 

V, mm/h 100 100 100 100 30 30 

Сmin   89 
10-4 

 74 
10-4 

  19 
10-4 

  28 
10-4 

  86 
10-4 

  72 
10-4 

Cmax 111 
10-4 

143 
10-4 

325 
10-4 

259 
10-4 

114 
10-4 

117 
10-4 

 
It is clear from the analysis of Table 3 and Figure 

9 that the occurrence of concentration overcooling in 
the process of crystal growth is consistent with the 
estimated equation (12). The more the actual speed 
V exceeds the critical limit Vcrit, the more 
pronounced the phenomenon of cellular growth is. 
Fig. 11.a, b shows the examples of the varieties of 
shapes of crystallization front under concentration 
overcooling. Solid phase is shown on the left side of 
the figure and the liquid phase is shown on the right. 
Dark areas correspond to the minimum value of the 
impurity concentration, light areas – to the 
maximum one. It can be seen that both the 
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appearance of starters of crystallization in depth of 
the melt near the border of the phase division (Fig. 
10.a) and cellular growth of the solid phase 
exceptionally from the surface of the monolithic 
crystal (Fig. 11.b) are possible. Fig. 11.c shows flat 
crystallization front and the lack of uneven 
distribution of impurities in the solid phase. This 
may occur at low speeds and high crystallization 
front temperature gradient in the front of 
crystallization. Otherwise there a phenomenon of 
concentration supercooling will occur. The search 
for optimal conditions, i.e. maximum speed and 
lowest temperature gradient when the concentration 
supercooling will not occur (Fig. 11.c) is the main 
economic challenge. 

 

 
a) Сmin = 0,0009; Cmax = 0,068. 

 
b) Сmin = 0,0014; Cmax = 0,012. 

 
c) Сmin = 0,0098; Cmax = 0,0101. 

Fig. 11 – Examples of varieties of forms of the 
crystallization front under concentration overcooling 

(cellular crystal growth). 

 
Fig. 11 (a) is consistent with the results shown in 

Fig. 10.c, while Fig. 11 (b) – with those in Fig. 10.f. 
 

6. CONCLUSIONS 

Thus, mathematical modeling of dynamic 
processes is the most frequent and developed 
direction of application of cellular automata. It is 
often occurs the situation when considering problem 
can not be solved analytically, and the calculation of 
it as the difference scheme gives rise to various 
kinds of instabilities while mathematical modeling 
of physical phenomena. A number of problems arise 
when solving problems in areas with a complex 
shape. 

Replacement of the physical reality, often 
wearing a discrete character, by the continuous 
model occurs in the process of describing the 
physical phenomenon with the help of set of 
differential equations. Space and time in the 
continuous model made again the discrete while 
transition back to difference schemes and all values 

are considered with the limited accuracy after 
implementing them on the computer. 

Hence we can conclude that it is advisable to 
immediately build digital models of physical 
phenomena, which are cellular automata. 

This research work sets out the detailed 
methodology of modeling the phenomenon of 
impurities segregation in crystalline materials by 
means of continuous cellular automata. 

As a result of a series of computational 
experiments, the feasibility of the proposed model 
was confirmed. 

The article presents the results of calculations of 
the relative concentration of impurities and 
temperature distribution along the sample. 

A well-known criterion for the occurrence of 
concentration overcooling was used for the 
comparative analysis of the adequacy of the obtained 
results. It is the critical speed of crystallization (12) 
that depends on the temperature gradient at the 
boundary of phase division and on the initial relative 
concentration of the impurity. Changes of these 
parameters lead to the changes in critical speed and 
thus enable to avoid such an undesirable effect as 
cellular growth of the crystal.  

The suggested model, apart from attaching the 
moment of transition to the concentration 
overcooling, enables to determine the nature of 
cellular growth. 

However, the known cellular automata are not 
fast enough for the simulation of problems of 
inhomogeneous dynamic systems in large scale and 
on detailed lattices. Therefore, improvement of the 
proposed numerical method is very promising. 
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