
Anna Sugak, Oleksandr Martynyuk, Oleksandr Drozd / International Journal of Computing, 14(4) 2015, 234-246

 234

A HYBRID AGENT MODEL OF BEHAVIORAL TESTING

Anna Sugak 1), Oleksandr Martynyuk 2), Oleksandr Drozd 3)

1) Department of Computerized Control Systems, Odessa National Polytechnic University,
Shevchenko Avenue, 1, Odessa, 65044, Ukraine, e-mail: sygak.anna@mail.ru

2) Department of Computer Intellectual Systems and Networks, Odessa National Polytechnic University,
Shevchenko Avenue, 1, Odessa, 65044, Ukraine, e-mail: anmartynyuk@ukr.net, drozd@ukr.net

Abstract: Operation testing and diagnostic tests, applied for distributed information systems, inherit and employ the
properties of distribution, autonomy, goal formation and cooperation, natural for the multi-agent systems. This paper
presents the behavioral diagnostics agent model, based on the evolutionary organization of component tests in the
automata network environment. The model can be used to construct a multi-agent diagnostics system. A hybrid agent
model provides a combination of reactive operation testing and deliberative diagnostic tests, based on the deterministic
and evolutionary methods of synthesis of behavioral tests. An agent model consists of the component models of
allocation environment, functioning goals and strategies, operations of observation, enforcement strategy and
adaptation, initial component models, goals and strategies for ensuring the autonomy. Agent intelligence is based on a
locally-exhaustive deterministic and pseudorandom targeted evolutionary synthesis of behavioral tests, providing and
accumulating the results. Cooperation of the agents involves their deterministic and evolutionary interactions under the
conditions of test feasibility and portability. Copyright © Research Institute for Intelligent Computer Systems, 2015. All
rights reserved.

Keywords: distributed information system, behavioral test, the evolutionary system, agent, multi-agent diagnostics
system.

1. INTRODUCTION

Rapidly developing modern distributed
information systems (DIS) are characterized by
[1, 2]:
 the emergence of service-oriented architectures,

cluster and GRID-systems, cloud and multi-agent
technology, used under the conditions of partial
definiteness and non-determination;

 the development of mathematical software for the
purpose of creation of decomposed, functional,
fuzzy, intelligent and competitive models;

 the integration of technologies, architectures and
models with the use of common tools and
technological means of design and application.
The effectiveness of the DIS depends on the

amount of information, quality and reliable
performance, efficiency and reliability of the results.
The most important way to increase the reliability of
the DIS is the technical diagnosing, which is the
cornerstone of construction and introductions of the
automated technical diagnosis systems (ATDS)
[3, 4]. ATDSs generally include complementary
means of operation and test control of DIS
efficiency.

At the same time, the DIS improvement promotes
the development of the ATDS and the tools for their

constructing. As a result, the complexity of ATDS
development becomes comparable with the
complexity of the DIS. Furthermore, in some cases,
it surpasses the last one within the systems of critical
application.

These DIS features are inherited by the ATDS
models. Their importance is increased according to:
 scalability, distribution, multi-level and multi-

platform nature, involving consideration of a
great majority of special local features and
characteristics;

 complexity, dynamism and incomplete definition,
required for the elaboration of behavioral high-
level specifications and formal models of the
entire DIS, its subsystems and the component
compositions, and non-trivial interfaces of these
components, their compositions and subsystems;

 autonomy, cooperation, goal formation,
additional mobility, allowing to use the efficient
technology of neuron networks and multi-agent
systems (MAS) [5-7].
In addition, strong coherence of the DIS and

ATDS life cycles, from the design stage is feasible.
In particular, system, structural and functional
specifications, distribution and multilevel nature of
ATDS and DIS allow to use the developed
behavioral test software of ATDS to verify the DIS

computing@computingonline.net
www.computingonline.net

Print ISSN 1727-6209
On-line ISSN 2312-5381

International Journal of Computing

Anna Sugak, Oleksandr Martynyuk, Oleksandr Drozd / International Journal of Computing, 14(4) 2015, 234-246

 235

projects and ultimately, to use it for the DIS
implementation testing [8, 9].

Thus, a conclusion can be drawn about the
relevance and nontriviality of the solution of the
problems of ASTD creation for the complex DIS.

2. ANALYSIS OF EXISTING SOLUTIONS

Test synthesis, usually characterized by
NP-complexity, requirements for the check of high
completeness at allowable computing costs
[10, 11, 12], is of great importance for the
verification and testing. Development of the models
and methods for the automata theory and
experiments, determining the general methodology
of the behavioral test analysis, removes the upper
bounds of applicability of the test automata models
[13, 14]. Complexity reduction, first of all, the
reduction of the time of behavioral tests synthesis
in a class of errors of mapping with the
substantially saved values of the check completeness,
is reached by:
 the distributed network [15, 16, 17] and through-

hierarchical [18] methods, reducing polynomially
the dimension of the test synthesis and its
duration due to the decomposition;

 the evolutionary-genetic methods [19-21], which
have the upper bounds of complexity of the
determined methods and give polynomially
smaller experimental values of complexity of the
tests synthesis for the majority of cases [22].
Nevertheless, the synthesis of behavioral tests of

the acceptable check completeness is possible for
DIS with an average degree of complexity; it refers
to the test of NP-complex class despite this
reduction. This promotes, in particular, the
feasibility of further development of the systems of
evolutionary-genetic network methods with the
combined effect of complexity reduction.

Being a part of real time and critical application
systems, a considerable part of modern DIS
increases the requirements for completeness,
accuracy and relevance of the operation check of
efficiency and necessary test resources. This
promotes to apply ASTD, including means of
operation and test control [8, 11], even at the
structural and functional system level. At this level
the ATDS operation is formally and intuitively
based on a system of behavioral testing
methods [23].

The possibility of passive mode operation control
and active mode test control is a characteristic
feature of behavioral tests [13]. Passive mode deals
with the current accumulation of presentable passive
recognizing experiments, as a background process of
the DIS components normal operation functioning.
The interruption of the operation functioning occurs
during the active mode of test control, thus, the

control test verification experiments are conducted.
Both cases are accompanied, if necessary, by the
previous internal or external test synthesis.

However, insufficiently investigated
formalization of walkthrough comprehensive
operation and test behavioral control and ambiguous
definition of the verifiable errors class doesn’t allow
ATDS to control effectively over the received values
of the system check completeness, accuracy and
relevance and functional verification of DIS. It
promotes further development of the systems of the
network determined and evolutionary-genetic
methods, the solution of the problems of their
allocation in the DIS environment, initialization and
cooperative performance.

Currently, there are increasingly effective ATDSs
of distributed systems, using models and methods of
multi-agent technology [24-26]. Nevertheless, there
are issues of multi-agent analysis that have to be
developed, such as network behavior analysis,
cooperation and intelligence of their agents,
especially in the case of:
 incomplete determination of testable properties

(errors), reducing the check completeness
 network control, limited by separate rules, and

monitoring of the diagnosis, that narrows the
space of behavioral tests search;

 fixed combination of deterministic and
evolutionary methods, complicating the dynamic
adjustment to situationally created cooperation;

 a lack of operation and test control, eliminating the
background behavioral testing in operation mode
and requiring for check completeness in the
operation test pauses.
Thus, we can draw a conclusion about the

usability of research of the system and functional
control increasing in the error class of the DIS
mapping and the development of the agent model of
the DIS comprehensive operation and test behavioral
control, based on the deterministic and evolutionary-
genetic network methods, implemented in the
ATDS.

3. GOAL AND TASKS

The DIS behavioral model as the network of
automata (NA) is researched as the MAS
environment model and is characterized by structure,
alphabets and compliances of components, data and
knowledge structures, which can be altered in the
DIS life cycle.

The MAS operation and test control in DIS is
represented by agents Ag cooperation, placed in the
DIS environment. The MAS atomic element agiAg
presents the first-level MAS model.

The purpose of constructing of a certain agent agi
model is formalization of presentation of the
behavioral agent-based operation and test control.

Anna Sugak, Oleksandr Martynyuk, Oleksandr Drozd / International Journal of Computing, 14(4) 2015, 234-246

 236

This control is performed on the base of the
automata model aiA for the components of DIS
within the contexts:
 autonomous;
 the goal forming or intellectual;
 cooperative.

The context of mobility is not being considered
in this paper.

The majority of the tests of the DIS behavioral
control performed by the agent agi of the model of
automata ai, includes:
 construction of identifiers of Tii resistance states;
 construction of test Tpi and binders Lpi

primitives;
 passive component recognition of text fragments

Tfi up to the behavioral tests of DIS component
for its operation control;

 the active formation of component test fragments
Tfi up to the behavioral tests of the DIS
component for its test control;

 forming of the component experiments – test
experiments of deterministic texpDiTExpD,
evolution texpEiTExpE, combined
texpDEiTExpDE behavioral testing for the agent
agi;

 construction of component minimized, input
implemented aRi and output transported aTri
semi-automata, nodal implemented aRX

T
-1

(ai) and
nodal transported aTrY

T(ai) semi-automata, based
on the relevant input T-1(ai) and output T(ai)
nodal subnets of the DIS components topology;

 multi-agent decomposition task of behavioral
testing of the DIS components, in particular, the
synthesis of the component behavioral tests on a
set of the agent testing TaskT, implementing
TaskR, transporting TaskTr and dispatching TaskS;

 definition of the system of sets RelSet, -component
-object RelObjCom, structural RelStruct, functional
RelFunc, temporal RelTime relations, in particular,
precedence relationships RelPref for the agent-
based tasks TaskT, TaskR, TaskTr and TaskS;

 construction of structure GTask({TaskT, TaskR,
TaskTr, TaskS}, Task) of the agent tasks TaskT,
TaskR, TaskTr and TaskS, based on a system of
sets RelSet, component -object RelObjCom, structural
RelStruct, functional RelFunc, temporal RelTime
relations;

 resources definition {RTaskT, RTaskR, RTaskTr, RTaskS},
required for the structure GTask({TaskT, TaskR,
TaskTr, TaskS}, Task) of the agent tasks TaskT,
TaskR, TaskTr and TaskS and available for the
agents;

 forming of the component test experiments of
deterministic texpDiTExpD, evolutionary
texpEiTExpE, combined texpDEiTExpDE
behavioral testing for the agents agiAg МАС;

 task scheduling TaskT, TaskR, TaskTr and TaskS,
scheduling dispatching of the agent resources
{RTaskT, RTaskR, RTaskTr, RTaskS} on the basis of the
technical solutions – input buffers of the tasks,
dynamic priorities of the tasks, mechanisms of
critical sections of resources, quantization of
access, transaction for behavioral testing
tasks, output buffers of solutions in accordance
with the component test experiments
TExp=TExpDTExpETExpDE.

4. AGENT MODEL CONSTRUCTION

Hybrid type agent agi, comprising two
complementary components – reactive deterministic
agRi and deliberative evolutionary agDi, in general
case is a system-five:

agi=(agRi, agDi, Xi, Yi, i), (1)

where agRi, agDi correspondingly reactive and
deliberative components – interacting subsystems,
parallel (in environment) and/or sequential (in time),
functioning within the corresponding component of
DIS, sharing the inputs Xi (conditions-events) and
outputs Yi (actions) of the agent agi; i – general
function of the components interaction.

The priority of choosing of the reactive agRi or
deliberative agDi component and its subsequent
activization are defined by the solution of a random
test TaskT task, according to the type, complexity
and condition of the corresponding component
automata ai, representing a random component of
DIS, the MAS condition and goal formation of the
corresponding agent ai.

The generality of the test data and knowledge
models for the reactive agRi or deliberative agDi
components of the hybrid agent agi reduces the
difference between them to the peculiarities of their
methods of behavioral testing:
 additional – in a deterministic or evolutionary

construction and recognition of identifiers Tii,
tests Tpi and links Lpi primitives, in a
deterministic or evolutionary construction of the
inverse input implemented T-1(ai) and direct
output transported T(ai) nodal subnets,
implemented aRX

T
-1

(ai) and transported aTrY
T(ai)

nodal sub-automata;
 basic – in a deterministic or evolutionary

construction and recognition of the test fragments
Tfi and in a deterministic or evolutionary
construction of the test experiments TExpi.
Extended agent model agi (with reactive agRi

and/or deliberative agDi components) having
information about its own input T-1(ai) and output
T(ai) nodal subnets NA, and about the implemented
aRX

T
-1

(ai) and transportable aTrY
T(ai) nodal subnets of

sub-automata, is represented by:

Anna Sugak, Oleksandr Martynyuk, Oleksandr Drozd / International Journal of Computing, 14(4) 2015, 234-246

 237

agi=(Mi, Qi, Sti, {i, i, i}, {m0i, q0i, st0i}), (2)

where Mi – a set of the agent-based models of the
placement component of DIS; Qi – a set of the
agents goals, for certain qiQi defined as
qi:MiMiDi,:

qi(mi, mi’)=(ki(i(mi’)-i(mi)), ki(i(mi’)-
-i(mi)), ki(i(mi’)-(i(mi))),

where, i, i, i, i, i – detection functions of
the check completeness, length, multiplicity,
feasibility and portability of a test, mi and mi’ –
correspondingly the initial and the following
estimated agent-based models of the placement
component; Sti – a set of strategies of agent
functioning, for a certain sti defined as sti: MiMi,
mi’=sti(mi); {i, i, i} – the signature of the agent
operations, correspondingly:
a) observation i:MiViMi, mi=i(Mi, Vi),

determining of the operation agent model and
forming, if it is necessary, of the identifiers Tii
and the test primitives Tpi, where Vi=(eni, agi,
Conni) – agent environment agi, for which:
1) eni=(ai, Pli) – agent-world environment for the

agent agi;
2) Conni – relationship between the agent agi and

the environment eni;
3) Pli={plini, plouti, plinouti, plloopbacki} – a set of the

basic agent placement for agi in environment
eni;

b) implementation of the strategy i:StiViVi,
V’=i(sti, Vi) – creation of modified environment
Vi’ and agent agi’ in its structure, definition of
link primitives Lpi, construction of the test
fragments Tfi and definition of the completeness
i, length i, multiplicity i, feasibility i
and portability i of a set of the received test
fragments for the operation agent model mi;
c) adaptation i=(mi, si), where
mi:MiMiMi, Mi’=mi(Mi, mi, mi’) and
si:StiMiSti, Sti’=mi(Sti, mi, mi’) – fixation of
updating of the sets of strategies Sti and agent-
based models of the component placement Мi,
composed of:
1) initial identifiers Tii and test primitives Tpi;
2) test fragments Tfi;
3) input implemented aRX

i and output transported
aTrY

i component semi-automata;
4) input implementing T-1(ai) and output

transporting T(ai) nodal subnets;
5) input implemented aRX

T
-1

(ai) and output
transported aTrY

T(ai) nodal semi-automata;
 {m0i, q0i, st0i} – the initial model, goal and

strategy of the agent.
A certain placement agent model miMi of the

above mentioned set of models Mi is defined as:

mi=(ai, Tii, Tpi, Tfi, aRX
i, aTrY

i, T
-1(ai), T(ai),

aRX
T

-1
(ai), aTrY

T(ai)), (3)

where for a certain DIS component of the
automata аi:
 аi – tested automata of the environment

component, designated for the agent, which can
be a sub-automata of the entire component
automata model;

 Tii – initial identifiers of the support states and
Tpi – test primitives;

 Tfi – test fragments;
 aRX

i – the component input implemented sub-
automata and aTrY

i – the component output
transported sub-automata;

 T-1(ai) – the node input implementing subnet of a
network NA and T(ai) – the node output
transporting subnet of a network NA;

 aRX
T

-1
(ai) – the node input implemented semi-

automata and aTrY
T(ai) – the node output

transported semi-automata.
The specificity of the functioning of the reactive

component agRi of an agent agi – the performance of
its operations {i, i, i}, is based on the
deterministic test methods with the search to depth
or/and width. These methods are applied to achieve
a local-exhaustive optimization. They are based on
the automata experiments [5, 9, 10] and
characterized by NP-complexity of testing, in
particular, by the synthesis of behavioral tests.

This fact implies the restriction of the analysis (a
subset of the components of DIS) by the medium
complexity (up to 1000 states) to obtain the solution
of the test tasks, as a rule, of the required high
completeness i, acceptable length i and
multiplicity i, with time i and memory i,
limited by upper bounds of dedicated computing
resources RagRi=(MaxagRi, MaxagRi) of reactive
component agRi.

The specificity of the functioning of the
deliberative component agDi of the agent agi – the
performance of its operations {i, i, i} is based on
the pseudo-random, goal-oriented test search of the
evolutionary-genetic approach [27]. Therefore, for
automata test experiments, these methods retain the
upper exponential analytical evaluations of
deterministic methods, but their experimental
complexity is significantly less than computed
NP-complexity.

This leads to a solution of tasks of the acceptable
composition with resources of time and memory,
less than of the middle range, which is limited by
lower and upper boundaries of resources
RagDi=(MaxagDi, MaxagDi) of deliberative
component, in the space of analysis (a subset of the
components of DIS) of objects which is above the
average degree of complexity (more than 1000
automata states).

Anna Sugak, Oleksandr Martynyuk, Oleksandr Drozd / International Journal of Computing, 14(4) 2015, 234-246

 238

Intelligence of the agent agi (for its deliberative
component agDi) is based on the evolutionary
systems of behavioral tests synthesis [27]:

Tei=(Tfi, Tpi, Lpti, Sgti, Tffi), (4)

where Tfi, Tpi, Lpti – a set of test fragments, the
initial set of test primitives Tpi=Tf0iTfi, linking
primitives Lpti, Tffi – the final set of test fragments;
SgtagDi={tagDi, tagDi, tagDi, tagDi, tagDi} – signature
of the operations and functions of the test evolution,
consisting of the test mutation, crossover, immunity,
fitness and selection functions.

Besides the test objects of population T+i, the
model proposes syntactically and functionally
similar to them additional infectious and vaccine
objects [27]. Infectious objects +i=ipifi,
as test objects, may include identifiers i,
primitives pi, fragments fi and the population, as
a whole +i, and form a system of fragments with
signature of operations and functions in the
evolution ei. Infectious objects +i are generated
within the infectivity evolution, external for the test
evolution.

Formation and formal representation of infectious
objects +i is similar to the presentation and
formation of the relevant test objects T+i. However,
it is characterized by its own, though similar,
definitions, operations and functions for the
infectious objects.

Infectious objects follow +i Wi”^, Wi”^ – the
behavior of the infectious automata ai^, for which
discrepancy (or non inclusion) is possible in relation
to the tested automata ai, that is, it is possible
Wi”^Wi” (or Wi”^\Wi”).

Infectious objects +i have a form, similar to
their analogs – test objects from T+i:

i
S^=(Ti, Wi”^, Si^, i, i

S^), (5)
pi

W^=(Ti, Wi”^, Si^, i, i
S^, tpi

S^, Wi”^SE), (6)
fi

W^=(Ti, Wi”^, Si^, i, i
S^, ptfi

S^, Lptfi
S^, Wi”^SE), (7)

where models components are presented with the
definition of the test objects, the model of the
infectious evolution synthesis for ai^ is defined as
infectious evolution of the common type with the
test evolution:

ei=(fi, pi, Lpi, ii, Sgi), (8)

where fi, pi, Lpi, ii – are presented above the
sets of correspondingly infectious fragments, initial
set (in evolution) of infectious primitives
pi=f0ifi and linking primitives, a set of
infectious identifiers iiWi” (or ii\Wi”);
Sgi={i, i, i, i} – signature of infective
evolution, such as a test signature.

For infectious ei and test Tei evolutions the
interaction of certain objects – identifiers,
primitives, fragments – are based on monobasic
(inside ei or Tei) operations of crossover {ti, i}
or dibasic (eiTei) operations of mutation {ti, i}.
Operations are preceded by definition of the fitness
{ti, i} and selection {ti, i} functions with
deterministic and pseudorandom priority settings ti,
ti, i, i.

The vaccine objects – identifiers iWi”^,
primitives piWi”^, fragments fiWi”^ and
population +iWi”^ – are located in the space
Wi”^, which is enlarged correspondingly to ai, as
well as infectious objects, generating them
(knowledge and recognition of infections). The
vaccine objects, expanding the conventional test
objects, accumulate a successful immune
experience. We can talk about the inclusion of
iTi

~, piTpi
~, fiTfi

~, еiTеi
~ and in

general +iT+i
 ~, where +i=iipifi, into

the context of the current status of the population
T+i

~ of the evolution development Tеi, because the
+i is a part of test T+i, formed by infections.

Therefore, the complex model of the test Сеi
synthesis for аi is defined as the co-evolution –
internal complex evolution in the space of test Tei
and infectious ei evolutions:

Сеi = (Tei, ei, +i, {i, i}, Фi, Tffi), (9)

with the selection of vaccine population +i in Tei, a
signature of the internal mutations operations
itii and presumably a crossover
itii, immune search function Фi={+i~,
T+~i(+~i), Prei}, and the final set of test
fragments (test population) Tffi.

Agent cooperation of evolutions for the test Tei or
viral-test Сеi is possible as external interactions with
evolutions of the other agents, placed on the other
components of DIS.

In this case, the feature of "bonding" of the
fragments in the operations of the new external
mutation i' and crossover i’ can be shown
through the identity or compatibility (intersection) of
the adjacent projections «pr» of basic behaviors of
adjacent components in the composition NA – MAS
pairs of agents, such as:
 test output pr2(Tf1i) for a1i automata of previous

1i-component and the test input pr1(Tf2i) for a2i
automata of 2i-current component –
pr2(Tf1i)=pr1(Tf2i);

 implemented output pr2(Rfj) for the automata aj
of the previous j-component and test input
pr1(Tfi) for automata ai of current i-component -
pr2(Rfj)=pr1(Tfi);

 test output pr2(Tfi) for automata ai of current
i-component and transported input pr1(Trfk) for

Anna Sugak, Oleksandr Martynyuk, Oleksandr Drozd / International Journal of Computing, 14(4) 2015, 234-246

 239

automata ak of the next k-component –
pr2(Tfi)=pr1(Trfk).
In addition, new external functions of fitness i’

and selection i’ include not only the examination
of the criteria of completeness i, length i and
multiplicity i of the test patches and multiplicity
i of population, but also the criteria of feasibility
i, and portability i. In the simplest case, these
criteria are of the semaphore format, restricting or
blocking the application of implemented and/or
transported fragments.

In this case, the co-evolutionary interaction is
identical with the co-evolutionary viral-test
interaction with the allocation of vaccine population
+i, i’t1i’t2i’ in Tei , signatures of external
operations of mutation and presumably a crossover
i’t1i’t2i’, immune search function ФTi={T+~i,
T+~1i(T+~2i), 


Prei}}, fitness i’t1i’t2i’, and

selection i’t1i’t2i’ functions and the
fragments Tffi of final population T+fi of test
evolution Tei [28]:

СеT12i=(Te1i, Te2i, T+i, {i’, i’}, ФTi, Tffi), (10)

At first, input implementing Rej and transporting

Trek evolutions are formed in co-evolutions СеRjTi
and СеTiTrk for Tei. This creates input implementing
T-1(ai) and output transporting T(ai) as two-level
nodal subnets, and input implemented aRX

T
-1

(ai) and
output transported aTrY

T(ai) as nodal semi-automata.
After this construction or simultaneously with it,

co-evolutions СеRjTi and СеTiTrk are formed,
correspondingly as implemented and transported
restrictions of the evolution Теi. Then at the same
time implemented and transported restrictions of
СеTi of evolution Теi appear as the intersection of co-
evolutions СеRjTi and СеTiTrk with their possible
optimization - common objects determination and
their dual use (serial or parallel) as:
 identifiers Tii;
 primitives Tpi and Lpi;
 fragments Tfi;
 two-level subnets t-1(ai), t(ai) in subnets T-1(ai),

T(ai);
 two-level sub-automata arX

T
-1

(ai), atrY
T(ai) in semi-

automata aRX
T

-1
(ai), aTrY

T(ai), according to the sub-
networks t-1(ai), t(ai).
Appropriate signatures of search functions ФTi,

ФRjTi, ФTiTrk are identical with the signatures of the
immune search generic function ФTi of internal co-
evolution СеTi for external cooperative co-evolutions
СеT12i, СеRjTi, СеTiTrk and test evolutions Te1i, Te2i.

They provide recognition of input operands of
component mutation ti‘ and a crossover ti‘. It is
possible when there is an appropriate experience
which can be stored. Therefore, the prepared (stored)

results (Tii, Tpi, Lpi, Tfi, T-1(ai), T(ai), aRX
T

-1
(ai),

aTrY
T(ai)) can be applied.

Thus, the cooperativeness of the component
agent agi, its ability to participate in forming and
providing of the internal Cei and external СеT12i,
СеRjTi, СеTiTrk cooperation is based on the
construction of component minimized input
implemented aRX

T
-1

(ai) and output transported
aTrY

T(ai) nodal semi-automata. They are the key
elements of the implemented and transported
behavior passing forward and backward in the NA
composition through the DIS components.

Therefore, the testing model MAS (of the second
level) is a cooperation of Cei, СеT12i, СеRjTi, СеTiTrk of
the hybrid agents Ag=iI agi. In accordance with
the problem, which has to be solved, this model
deterministically and/or evolutionarily forms and
activates the required test structure into a set of
reactive AgR and deliberative AgD components of the
agents Ag. These agents are placed in automata of
NA – in the DIS components.

The purpose of the external test cooperation of
co-evolutions СеT12i, СеRjTi, СеTiTrk is tetra-evolution
СеRjTiTrk, as a joint cooperation of agents Cei, СеT12i,
СеRjTi, СеTiTrk. Tetra-evolution СеRjTiTrk is the formal
representation of the structural and topological,
implemented and transported, goal-oriented and
intelligent performance of the tasks during the
operation and test control of the DIS components.

5. IMPLEMENTATION AND SIMULATION

The basic component-object (programming
technology) programs in MS Visual.Net
environment were offered for the experimental
implementation of the agent model agi, with the
reactive agRi and deliberative agDi components (parts
of the agent), which model behavioral testing of the
DIS component, performed by the MAS agent. The
deterministic and evolutionary-genetic generators and
the agent supervisor are selected as the first stage
program.

Simulation of deterministic generator is based on
a set of component implementations of deterministic
models and methods of passive and active synthesis
of behavioral tests Texi, which form a technological
structure (system, conditional procedure) of
deterministic construction of the test fragments Tfi
(see Fig. 1). The composition and communication of
this structure are defined by the solved deterministic
tasks and the relations between them.

The set of basic procedures defines the operation
of the deterministic generators during the
performance of the test tasks.

The general procedure of the preprocessor test
synthesis of behavioral tests Texi for automata model
аi of DIS component includes:

Anna Sugak, Oleksandr Martynyuk, Oleksandr Drozd / International Journal of Computing, 14(4) 2015, 234-246

 240

1) preliminary structural and topological (graph)
analysis with the detection in the graph of the
component automata аi of inputs, outputs, chains
(straight-line paths), trees, hammocks, cycles, the
formation of condensation with folded chains and
cycles;

2) preliminary definition of identifiers Tii supporting
states (NP-complexity), linking Lpi and test Tpi
primitives based on them; preview definition of
the input aX

i and output aY
i component semi-

automata;
3) preliminary definition of the transported

(recognizable) component sub-automata aTrY
i

(NP-complexity).
The general procedure of the preprocessor test

synthesis of behavioral tests for the model of the
DIS automata network includes:
1) preliminary structural and topological (graph)

analysis, identifying the inputs, outputs, chains

(straight-line paths), trees, hammocks, cycles, the
formation of condensation with folded chains and
cycles in a graph of the automata network NA;

2) forward and reverse recursive construction of the
implementing T-1(ai) and transporting T(ai) nodal
subnets;

3) forward recursive construction of the
implementable nodal semi-automata aR

X
T-

1(ai)
based on implementing nodal subnets T-1(ai);

4) reverse recursive construction of the transported
nodal semi-automata aTrY

T(ai) based on
transporting nodal subnets T(ai);

5) narrowing of the identifiers Tii of the supporting
states, linking Lpi and test Tpi primitives –
receiving of the implemented and transported
identifiers TiRjTiTrk, linking LpRjTiTrk and test
TpRjTiTrk primitives based on the implemented
aRX

T
-1

(ai) and transported aTrY
T(ai) of the nodal

semi-automata.

Fig. 1 – Block diagram of a deterministic generator.

Recursive steps of the procedures are performed
due to the precedence of the automata models of the
DIS structure components, based on the search into
the depth/width with the local optimization,
accumulating (providing) nodal results.

Preprocessor procedures provide nodal results
only once. These results can be reused in order to
accelerate the synthesis of behavioral tests.

The basic procedure of deterministic one-fold
active synthesis of behavioral tests Texi and
repetitive subsequent testing, performed in test mode
for the automata model of the tested DIS component,
includes:

1) construction of the test fragments TfRjTiTrk and
synthesis of the complete behavioral test Texi
modified by the search into the depth/width with
local optimization, for example, pseudo-Euler
crawl, on the base of narrowed identifiers TiRjTiTrk,
link LpRjTiTrk and test TpRjTiTrk primitives;

2) recursive building of the inverse compliances
TfRjTiTrk and complete behavioral test TexRjTiTrk
into the relevant structures of input actions –
input test semi-automata T-1(ai)(TfiY) and
T-1(ai)(Texi) for implementing nodal subnet of
automata model ai of tested component;

Anna Sugak, Oleksandr Martynyuk, Oleksandr Drozd / International Journal of Computing, 14(4) 2015, 234-246

 241

3) recursive building of the direct mapping of test
fragments TfRjTiTrk and complete behavioral test
TexRjTiTrk into the relevant structures of output
reactions – output test semi-automata T(ai)(TfiY)
and T(ai)(Texi) for transporting nodal subnet T(ai)
of automata model ai of the tested component.
The basic procedure of deterministic repeated

passive synthesis of behavioral tests Texi and testing,
executed in the operation mode for the automata
model ai of the tested DIS component includes:
1) real time input-buffering in a set of analyzed

input/output words W”^ based on the current
operation functioning of a component;

2) deterministic treelike search-recognition of
identifiers TiRjTiTrk

~ of supporting states, linking
LpRjTiTrk

~ and test TpRjTiTrk
~ primitives,

implemented and transported in the automata
network on a set of input/output words W”^
based on identifiers TiRjTiTrk, primitives LpRjTiTrk
and TpRjTiTrk, which were previously built by the
pre-preprocessor procedure;

3) formation of pseudo-test fragments TfRjTiTrk
~

(candidates) and structure – automata аi
~ – of the

input/output behavior, based on the identification
of the supporting states and the existing
determinism of automata functions аi;

4) deterministic treelike search-recognition of
linking LpRjTiTrk and test TpRjTiTrk primitives, test
fragments TfRjTiTrk based on the formed structure –
automata аi

~ – of input/output behavior W”^;
5) registration of recognized test fragments TfRjTiTrk

and evaluation of private and general
completeness i, length i, multiplicity i and
i, feasibility i and portability i of testing.
The preprocessor procedure of deterministic

implementation of the behavioral tests Texi and
testing, performed in the operation and test modes
for automata model аi of the tested DIS component
in case of forward recursive construction of
implemented nodal semi-automata aRX

T
-1

(ai),
includes:
1) deterministic alternative, based on the search into

the depth/width of the current following
unexplored automata model аi

~ with the lowest
number in the input nodal reverse subnet T-1(ai)
for automata model аi of the tested component;

2) input/buffering of output nodal implemented
semi-automata аRY

T
-1

(ai
~

) of the current reverse
nodal subnet T-1(ai

~) for the current automata
model аi

~;
3) alphabetic mapping of the output nodal

implemented semi-automata аRY
T

-1
(ai

~
) of the

current nodal reverse subnet T-1(ai
~) into the input

nodal implemented semi-automata аRX
i
~ of the

current automata model аi
~, representing a set of

input words, available in the current input nodal
reverse subnet T-1(ai

~);

4) composition аRX
i
~аi

~ of the current input nodal
implemented semi-automata аRX

i
~ and current

automata model аi
~, which generates the modified

implemented current automata model аi
~

Rj;
5) output narrowing Y(аi

~
Rj) of the modified

implemented current automata model аi
~

Rj,
resulting into the output nodal implemented
semi-automata аi

~Y
Rj

 at the output of current
automata model аi

~;
6) minimization min(аi

~Y
Rj) of current output nodal

implemented semi-automata аi
~Y

Rj;
7) if not all of the automata models in the input

nodal reverse subnet are considered, then go to
step 1).;

8) alphabetic mapping of the output nodal
implemented semi-automata аRY

T
-1

(ai)=аi
~Y

Rj of
the reverse nodal subnet T-1(ai) of the automata
model аi of the tested component into its input
nodal implemented semi-automata аi

X
Rj,

representing a set of input words, available in the
input nodal reverse subnet T-1(ai).
The preprocessor procedure of deterministic

transportation of behavioral tests Texi and the
testing, executed in the operation and test modes for
automata model аi of the tested DIS component in
case of the reverse recursive construction of
transported nodal semi-automata aTrY

T(ai), includes:
1) deterministic alternative, based on the search into

the depth/width of the current following
unexplored automata model аi

~ with the largest
number in the output direct nodal subnet T(ai) for
the automata model аi of the tested component;

2) input/buffering of the input nodal transported
semi-automata аTrX

T(ai
~

) of the current nodal
direct subnet T(ai

~) for the current automata
model ai

~;
3) alphabetic mapping of input nodal transported

semi-automata аTrX
T(ai

~
) of the current nodal

direct subnet T(ai
~) into the output nodal

transported semi-automata аTrY
i
~ of current

automata model ai
~, that represents a set of output

words, transported in current output nodal direct
subnet T(ai

~);
4) composition аi

~аTrY
i
~ of the current automata

model аi
~ and output nodal transported semi-

automata аTrY
i
~, which generates a modified

transported automata model аi
~

Trk;
5) input narrowing X(аi

~
Trk) of modified transported

current automata model аi
~

Trk resulting into the
input nodal transported semi-automata аi

~X
Trk at

the input of current automata model аi
~;

6) minimization min(аi
~X

Trk) of current input nodal
transported semi-automata аi

~X
Trk;

7) if not of the all automata models in the output
nodal direct subnet are considered, then go to
step 1);

Anna Sugak, Oleksandr Martynyuk, Oleksandr Drozd / International Journal of Computing, 14(4) 2015, 234-246

 242

8) alphabetic mapping of the input nodal semi-
automata аTrX

T(ai)=аi
~X

Trk of the direct nodal
subnet T(ai) of the automata model аi of the
tested component in its output nodal semi-
automata аi

Y
Trk, representing a set of output

words, transported in the output nodal direct
subnet T(ai).
Modeling of the evolution generator is based on

the expanded set of component implementations of
evolutionary-genetic models and methods of passive
and active synthesis of behavioral tests Texi, forming
the technological evolution structure of the test
fragments Tfi (see Fig. 2). The composition and
communications of structure are defined by the solved
evolutionary tasks and relationships between them.

A set of additional procedures for the test tasks
execution by the evolutionary generator has a
number of features.

The general procedure of preprocessor test
synthesis of behavioral tests Texi for automata model
аi of DIS component is complemented by:
1) the evolutionary definition of identifiers Tii of

supporting states, linking Lpi and test Tpi
primitives on their basis;

2) the evolutionary definition of transportable
(recognizable) sub-automata aTrY

i.
The general procedure of preprocessor test

synthesis of behavioral tests for the DIS automata
network model is supplemented by:
1) evolutionary direct and reverse construction of

correspondingly implementing T-1(ai) and
transporting T(ai) nodal subnets;

2) direct evolutionary construction of
implementable nodal semi-automata aRX

T
-1

(ai) on
the basis of the implementing nodal subnets
T-1(ai);

3) reverse evolutionary construction of transported
nodal semi-automata aTrY

T(ai) on the basis of the
transporting nodal subnets T(ai).
Evolutionary steps of procedures are executed

due to the precedence of the automata models of the
DIS structure components, based on the pseudo-
random targeted search, with the accumulation
(provision) of nodal results.

When the evolutionary generator is used, nodal
results are initially provided by the execution of the
preprocessor procedures in order to reuse them for
the purpose of acceleration of the synthesis of
behavioral tests and development.

The basic procedure of evolutionary one-fold
active synthesis of behavioral tests Texi and
repetitive subsequent testing, executed in the test
mode of the automata model of the tested DIS
component, is supplemented by:
1) evolutionary construction of the test fragments

TfRjTiTrk and synthesis of behavioral test Texi due

to the pseudo-random targeted search, based on
the restricted identifiers TiRjTiTrk, linking LpRjTiTrk
and test TpRjTiTrk primitives;

2) evolutionary construction of the inverse mapping
of test fragments TfRjTiTrk and behavioral test
TexRjTiTrk in the relevant structures of input
actions – input test semi-automata T-1(ai)(TfiY)
and T-1(ai)(Texi) in the operating nodal subnet
T-1(ai) of the automata model ai of the tested
component;

3) evolutionary building of the direct mapping of
the test fragments TfRjTiTrk and behavioral test
TexRjTiTrk into the relevant structures of output
reactions – output test semi-automata T(ai)(TfiY)
and T(ai)(Texi) in the transporting nodal subnet
T(ai) of the automata model ai of the tested
component.
The basic procedure of the evolutionary repetitive

passive synthesis of behavioral tests Texi and testing,
executed in the operation mode of the automata
model ai of the tested DIS component is
supplemented by:
1) evolutionary search-recognition of identifiers

TiRjTiTrk
~ of supporting states, linking LpRjTiTrk

~ and
test TpRjTiTrk

~ primitives, implemented and
transported in the automata network, on a set of
input/output words W”^, based on identifiers
TiRjTiTrk, primitives LpRjTiTrk and TpRjTiTrk,
previously built according to the preprocessor
procedure;

2) evolutionary search-recognition of linking
LpRjTiTrk and test TpRjTiTrk primitives, test
fragments TfRjTiTrk, based on the formed structure
– automata аi

~ – of input/output behavior W”^.
The preprocessor procedure of evolutionary

implementation of behavioral tests Texi and testing,
executed in the operation and test modes for
automata model аi of the tested DIS component in
case of direct evolutionary construction of
implemented nodal semi-automata aRX

T
-1

(ai), is
complemented by pseudo-random targeted search of
the current following unexplored automata model аi

~
with the best evolutionary criteria in the input nodal
reverse subnet T-1(ai) of automata model аi of the
tested component.

The preprocessor procedure of evolutionary
transportation of behavioral tests Texi and testing,
executed in the operation and test modes for
automata model аi of the tested DIS component in
case of the reverse evolutionary construction of
transported nodal semi-automata aTrY

T(ai), is
supplemented by a pseudo-random targeted search
of the current following unexplored automata model
аi

~ with the best evolutionary criteria in the output
nodal direct subnet T(ai) of automata model аi of the
tested component.

Anna Sugak, Oleksandr Martynyuk, Oleksandr Drozd / International Journal of Computing, 14(4) 2015, 234-246

 243

Fig. 2 – Block diagram of an evolutionary generator.

A priori and a posteriori value assessment of the
criteria of completeness i, length i, multiplicity
i, i, feasibility i and portability i, defining
the synthesis of behavioral tests Texi, as the
conditional control and/or recognition experiment, is
applied for the source data and for the received
intermediate and final results of deterministic and
evolutionary generators.

The agent supervisor ensures the consistent
placement and diagnostic functioning of the agent in
the environment of the selected DIS component,
consistent with its operation functioning.

The basic supervisor procedure of the functioning
of an agent agi is characterized by the following
actions:
1) Direct (on behalf of the agent agi) or indirect

(on behalf of MAS) identification of the target
DIS component for agent agi.

2) Remote, direct (on behalf of the agent agi) or
indirect (on behalf of the MAS) authentication
of an agent agi in the DIS component.

3) Remote, direct or indirect preliminary
coordination of required computing resources
of the agent agi, in particular, of reactive agRi
and deliberative agDi components.

4) The internal (agent agi) or external (MAS)
control of the agent agi transportation to the
selected DIS component through the network
DIS environment, in particular, the network of
automata NA.

5) If a set of test tasks Taski of the agent agi is not
empty, then the formation of the next test task
taskiTaski with the initialization of the
iterative cycle of the agent ag can take place,
otherwise there is the transition to n. 13.

6) Initialization of iteration of the agent agi, as the
formation of the agent model of placement
mi=(ai, Tii, Tpi, Tfi, aRX

i, aTrY
i, T-1(ai), T(ai),

aRX
T

-1
(ai), aTrY

T(ai)) (on the initial step – initial
model of placement m0i) and its test criteria of
completeness i, length i, multiplicity i
andi, feasibility i and portability i.

7) If the test task taski of iterative cycle is solved
and the final values for the test criteria of
completeness i, length i, multiplicity i
andi, feasibility i and portability i are
received, then there is the transition to n. 5.

8) Formation of the environment eni of the agent-
world in the DIS component, as a part of its
tested automata ai and a set of basic places Pli,
the agent’s agi own model, and also the
connection Conni between the agent agi and the
environment eni, defining a set of the boundary
computing resources Resi of a component for
the corresponding basic places Pli.

9) The current authorization of the agent agi in the
DIS component.

10) Specification of the final qi
F and formation of

the current qi goals of the agent agi, according
to the analysis of the status of a model mi

Anna Sugak, Oleksandr Martynyuk, Oleksandr Drozd / International Journal of Computing, 14(4) 2015, 234-246

 244

concerning the part Tii, Tpi, Tfi, aRX
i, aTrY

i,
T-1(ai), T(ai), aRX

T
-1

(ai), aTrY
T(ai), and also due to

the current and final test criteria of
completeness i, length i, multiplicity i
andi, feasibility i and portability i. i

11) Formation and execution of the strategy sti of
the current goal qi achievement as a choice of a
system of the interconnected deterministic
and/or evolutionary steps (in the simplest case –
one step) for creation of the following model
mi’=(ai, Tii’, Tpi’, Tfi’, aRX

i’, aTrY
i’, T-1(ai)’,

T(ai)’, aRX
T

-1
(ai)’, aTrY

T(ai)’) according to the
current goal qi.

12) The transition to n. 7.
13) Completion of the current session of the agent

agi with the expectation of the event of non-
empty set of the test tasks Taski.

Individual program components, their properties,
methods, and interfaces can be applied
separately. Being included into the parallel
diagnostic components, they can be used at the
request of this agent and other related MAS agents.
Cooperation of the components is specifically
determined by the agents, initiating the testing,
taking into account the criteria of the results
assessment – completeness of the error checking,
length, multiplicity, the tests feasibility and
portability, computing costs, depending on the
allocation environment.

At the system, program and information level of
modeling, the last task is performed due to the use of
distributed input buffers (cache) of the agents tasks,
dynamic (the current state) priorities of the tasks,

mechanisms of the critical sections of resources,
quantization of access to them, transactions in the
tasks of behavioral testing and output buffers (cache)
of the agents solutions.

At the transportation level, adjacent to the
application test level below, interaction of the
cooperation agents in the DIS environment can be
provided by its own component means of
communication, the virtualized for MAS agents as
the external transportation interface components.

Functions of the libraries of the MS Visual.Net
program modeling environment and special agent
libraries, in particular, are used for implementation
of the basic programs of generators and supervisor.

Program modeling results allowed to verify the
models and evaluate the area of their applicability, in
particular, the possibility of transportation of the
NP-complexity of the synthesis of behavioral tests
into the accessible area (see. Fig. 3).

The time of synthesis was reduced, but the length
and the tests completeness remained the same, with
the use of multi-agent decomposition and
evolutionary methods. The time of the test synthesis
has been reduced to 92% (from 95 minutes (100%)
to 8 minutes (8%)) for the experimental DIS
mechanisms at the complexity level IPv.4, IPv.6 and
IPSec, applying correspondingly the deterministic
and evolutionary methods.

Multi-agent synthesis of behavioral tests and
testing based on verification of the functional
mapping of automata models of the DIS components
increases the multiversion of the problem solution
and allows to take into account the DIS features.

Fig. 3 – The dependence of the complexity and length of the tests on the coefficient of expansion and the

complexity of the input components.

Anna Sugak, Oleksandr Martynyuk, Oleksandr Drozd / International Journal of Computing, 14(4) 2015, 234-246

 245

6. CONCLUSION
The proposed agent model of the behavioral

testing allows to execute the distributed synthesis of
behavioral tests on the basis of deterministic and
evolutionary models and methods, and also to
implement them during the operation and test DIS
control taking into account the test conditions of the
DIS components.

Combined methods due to the decomposition of
testing processes in the distributed MAS allow to
reduce the time of synthesis of tests to 90%, increase
the adequacy of representation of the structure and
interactions of real DIS in case of allowable
computing costs of the cluster level of laboratory
network, used in the background.

The exponential complexity, restricting the use of
behavioral tests, and dimensionality are
polynomially reduced due to the component (DIS)
and agent (MAS) decomposition.

The implementation of the MAS conceptual
model, executed at the structural and functional and
program-algorithmic level in the MS Visual.Net
environment, showed the possibility and feasibility
of further research and practical work in this
direction.

7. REFERENCES
[1] A.S. Tanenbaum, M.V. Steen, Distributed

Systems: Principles and Paradigms, third ed.,
Prentice Hall Press, 2013, 705 p.

[2] G. Coulouris, J. Dollimore, T. Kindberg,
G. Blair, Distributed Systems: Concepts and
Design, 5th ed., Boston: Addison-Wesley,
2011, 1067 p.

[3] I. Turchenko, V. Kochan, A. Sachenko, Neural-
based recognition of multi-parameter sensor
signal described by mathematical model,
International Journal of Computing, (3) 2
(2004), pp. 140-147.

[4] V.I. Hahanov et al., Design and Verification of
Digital Systems on Chips. Virology & System
Virology, Studies Benefits, Kharkov Nat. Univ.
Radioelektronics, Kharkov, Ukraine, A New
Word, 2010, 527 p. (in Russian).

[5] H. Tahbildar and B. Kalita, Automated software
test data generation: direction of research,
International Journal of Computer Science &
Engineering Survey (IJCSES), (2) 1 (2011),
pp. 99-120.

[6] V. Hrusha, O. Ossolinsky, A. Sachenko,
R. Kochan, Distributed on-line temperature
measurement and control system, International
Journal of Computing, (6) 2 (2007), pp. 62-67.

[7] S.J. Russell, P. Norvig, Artificial Intelligence: a
Modern Approach, Prentice-Hall, Inc. A Simon
& Schuster Company Englewood Cliffs, New
Jersey, 2010, 1095 p.

[8] Y. Shoham, K. Leyton-Brown, Multiagent
Systems. Algorithmic, Game-Theoretic, and
Logical Foundations, 2010, 532 p.

[9] G. Rojek, R. Cięciwa, K. Cetnarowicz,
Algorithm of behavior evaluation in multi-agent
system, in Proceedings of the International
Conference on Computational Science
ICCS’2005: 5-th Int. Conference: Atlanta, GA,
USA, (May 22-25, 2005) Pt. 3-ed., in: Vaidy S.
Sunderam [et al.], Lecture Notes in Computer
Science LNCS, vol. 3516. Berlin; Heidelberg:
Springer-Verlag, 2005, pp. 711-718.

[10] R.M. Hierons, K. Bogdanov, J.P. Bowen,
R. Cleaveland, J. Derrick, J. Dick,
M. Gheorghe, M. Harman, K. Kapoor,
P. Krause, G. Luttgen, A.J.H. Simons,
S. Vilkomir, M.R. Woodward, H. Zeda, Using
formal specifications to support testing, ACM
Comput. Surv., (41) (2009), pp. 9:1-9:76.

[11] M.J. Rutherford, Adequate System-Level
Testing of Distributed Systems, A thesis
submitted to the Faculty of the Graduate School
of the University of Colorado, 2006, 158 p.

[12] K. Sinha, Structural Complexity and its
Implications for Design of Cyber‐Physical
Systems, Massachusetts Institute of
Technology, Engineering Systems Division,
January 3, 2014, 342 p.

[13] N.K. Jha and S. Gupta, Testing of Digital
Systems, Cambridge University Press, 2003,
1018 p.

[14] W.K. Lam, Hardware Design Verification:
Simulation and Formal Method-based
Approaches, Prentice Hall, 2005, 624 p.

[15] V.B. Kudryavtsev, I.S. Grunskii,
V.A. Kozlovskii, Analysis and synthesis of
abstract automata, Journal of Mathematical
Sciences, (169) 4 (2010), pp. 481-532.

[16] I. Grunsky, O. Kurganskyy, I. Potapov,
Languages representable by Vertex-labeled
graphs, in Proceedings of the 30-th
International Symposium on Mathematical
Foundations of Computer Science, (2005),
vol. 3618, pp. 435-446.

[17] A.A. Shchurov, R. Mařík, A formal approach to
distributed system tests design, International
Journal of Computer and Information
Technology, (3) 4 (2014), pp. 696-705.

[18] R.M. Hierons, H. Ural, The effect of the
distributed test architecture on the power of
testing, The Computer Journal, (51) 4 (2008),
pp. 498-510.

[19] O. Baldellon, J.-C. Fabre, M. Roy, Minotor:
monitoring timing and behavioral properties for
dependable distributed systems, in Proceedings
of the 19-th IEEE Pacific Rim International
Symposium on Dependable Computing

Anna Sugak, Oleksandr Martynyuk, Oleksandr Drozd / International Journal of Computing, 14(4) 2015, 234-246

 246

PRDC’2013, Vancouver, Canada, (December
2013), 10 p.

[20] G. Jervan, R. Ubar, Z. Peng, P. Eles, Test
Generation: A Hierarchical Approach, Chapter
in System-level Test and Validation of
Hardware/Software Systems, Springer Series in
Advanced Microelectronics, (17) (2005),
pp. 67-81.

[21] A.M. Khamis, M.R. Girgis, A.S. Ghiduk,
Automatic software test data generation for
spanning sets coverage using genetic
algorithms, Computing and Informatics, (26)
(2007), pp. 383-401.

[22] J. Hudec, E. Gramatová, An efficient functional
test generation method for processors using
genetic algorithms, Journal of Electrical
Engineering, (66) 4 (2015), pp. 185-193.

[23] P. Bernardi, E. Sanchez, M. Schillaci,
G. Squillero, M. Sonza Reorda, An
evolutionary methodology to enhance processor
software-based diagnosis, in Proceedings of the
IEEE Congress on Evolutionary Computation,
Vancouver BC, (July 16-21, 2006), pp. 859-
864.

[24] M. Harman, P. McMinn, a theoretical &
empirical analysis of evolutionary testing and
hill climbing for structural test data generation,
in Proceedings of the International Symposium
on Software Testing and Analysis, London, (9-
12 July 2007), pp. 73-83.

[25] S.K. Singh, S. Sabharwal and J.P. Gupta, A
novel approach for deriving test scenarios and
test cases from events, Journal of Information
Processing Systems, (8) 2 (2012), pp. 213-240.

[26] Z. Houhamdi, B. Athamena, Structured
integration test suite generation process for
multi-agent system, Journal of Computer
Science, (7) 5 (2011), pp. 690-697.

[27] C. Nguyen, A. Perini, P. Tonella, Goal-oriented
testing for MASs, Int. J. Agent-Oriented
Software Eng., (4) (2010), pp. 79-109.

[28] S. Yu, J. Ai, Software test data generation
based on multi-agent, International Journal of
Software Engineering and its Applications,
(4) 1 (2010), pp. 67-74.

[29] A.S. Sugak, A.N. Martynyuk, Evolutionary
network model of testing for distributed

information systems, Elecrotehnical and
Computer Systems, Odessa, Ukraine, 16(92)
(2014), pp. 71-77. (in Russian).

[30] A.S. Sugak, A.N. Martynyuk, Multi-agent
systems of behavioral diagnosis for distributed
information system, Elecrotehnical and
Computer Systems, Odessa, Ukraine, 19(95)
(2015), pp. 187-194. (in Russian).

Anna Sugak, graduated
Odessa National Polytechnic
University, Information systems
Department. Now she works as
assistant of the Department of
Computerized Control Systems
at Odessa National Polytechnic
University.

Research interests: monitoring and diagnostics of
computing devices, synthesis test for discrete
devices.

Ph.D., Oleksandr Martynyuk,
graduated Odessa Polytechnic
Institute, Electronic Computing
Devices Department. Now he
works as associate professor of
Department of Computer’s Intel-
lectual Systems and Networks

at Odessa National Polytechnic University.
Research interests: protocol analysis and

verification of computer networks, test synthesis for
computer systems.

Professor Oleksandr Drozd,
graduated Odessa Polytechnic
Institute, Electronic Computing
Devices Department. Now he
works as Professor of Depart-
ment of Computer’s Intellectual
Systems and Networks at Odes-
sa National Polytechnic Univer-
sity.

Research interests: functional (working)
diagnosis of computing devices, accuracy of
approximate calculations, dependability of critical
system and application.

