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Abstract: This paper proposes and analyses a statistical method for uncertainty evaluation of extreme values (minimal
or maximal) for measurement results with significantly limited number of observations n =3...10 and considerable
deviation of observation probability density function (PDF) from normal distribution. The method is based on
properties of order statistics. It can be used for the uncertainty evaluation of mechanical properties of testing products in
a food industry (when minimal values of measurement results are observed) and for the investigation of a number of
harmful elements (when maximal values of measurement results are observed). Copyright © Research Institute for
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1. INTRODUCTION

Control of technological processes parameters in
manufacturing products and control of measurement
processes is an integral element of system designed
to detect or prevent output of defective products on
output and to protect the company from poor quality
materials. The final aim of control is to obtain
accurate results on the basis of conformity of the
products and processes with the requirements of
regulatory and technical documentation and
standards is established. Evaluation of the
uncertainty of measurement results is a necessary
component during the control [1].

In some cases a minimal or maximal value of
observations is the measurement result, and
uncertainty of this value should be found.
Recommendation as to its estimation is not given in
GUM [1].

This paper gives a general theoretical approach to
computing uncertainties of test measurements
results, in which the minimal or maximal value in
random sample of several observations is an
informative parameter. Investigation results are
given for the method when the probability density
function (PDF) of the population does not contradict
normal distribution, Laplace, uniform, arcsine,
Cauchy or Flatten-Gaussian (it's convolution of
normal and uniform [2, 3]).

The PDF of maximal value is symmetrical to the
PDF of minimal value. That's why parameters of
uncertainty of maximal value can be calculated in

the same way as for minimal value. But the opposite
sign of the maximal value deviation from the
expected value should be taken into account.

2. THEORY OF EXTREME VALUES
UNCERTAINTIES

Testing of the quality control of plastic tubes is
considered to be an example of putting these
theoretical backgrounds into practice. In this test two
parameters are measured - percent elongation and
tensile strength of the plastic tube in the process of
its rupture [4, 5, 6, 7, 8]. According to the test
requirements [9, 10, 11], the minimum values of the
percent elongation at break and tensile strength at
yield are calculated rounded to the second
significant digit.

Problem of computing uncertainty component of
the minimal value by statistical method (type A) in
percent elongation and tensile strength tests, as
noted above, minimum values of the test specimens
parameters have to be found. Therefore, it is
impossible to apply directly the GUM method of
measurements uncertainty evaluation with multiple
observations [1].

As an example computing of the uncertainty of
minimum values of controlled parameters from the
sample of five elements is performed [4, 5, 6, 7, 8].
The minimal observation x,,,, = x)= min(x;, x>, ...,
x,) is the first one from the set of ordered
observations: x.;) <xz <x;3) < ... <x. The result of
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a test measurement is not as usual the arithmetic
mean (}) but the minimal (or maximal) value of

observations. Then, the standard and expanded

Table 1. Expected numeric values my; and &,; of
minimal observation of x;.

.. £ ! b d my; )] n my; )]
uncer?m'ttles o dtezt éf;‘\l/lts Can(rl“)t [el]"‘znp‘;;e [0,84628 [0,74798 | o[ 3 | 2[0,79550 |0,84111
according to standar procedures [1]. Another | 2 Ely
procedure should be used. 1,02938 (0,70122 E 4 g 0,97964 10,84904

It is obvious that minimal value is a random  [1.16296 |0.66898 £ 3 }:-'1’12327 0.85739
value, however its probability density function  [1,26721 10,64492 |.2] 6 |:Z|-1,24186 |0,86428
(PDF) is not equal to PDF p(x) of population. -1,35218 0,62603 TEu 7| 8pl34313 10.86972

In the next sections minimal observation xy is 142360 |0,61065 | 5| 8 |'2r1.43162 |0,87403

. C e . i Z i
denoted by x;. Theoretical distribution p(x;) of 1,48501 10,59779 9 |-pl51023 ]0,87748
minimal value x; for the normally distributed  [1,53875 |0,58681 10 -1,58095 10,88030
observations (m=0, o=1)
my; ()] n my; Oy1
2 ~~
plx)= Jé—,,eXp(— x /2) 10.54628 [0.74798 |3 3 E-0,85217 0,73289
5 -1,02938 (0,70122 ? 4 :-1,03425 0,67599
Flx)=- I exp(_ xz/z) dx 116296 [0.66898 | 5] 5 | 51116534 [0.63606
S -1,26721 (0,64492 | &| 6 2-1,26640 0,60616
) -1,35218 {0,62603 CI? 7 |QF1,34791 |0,58273
can be described [12] by formmla: [142360 [0,61065 | 5| 8 | SF1.41579 [0.56375
-1,48501 [0,59779 E 9 |=[1,47369 |0,54798
— 1 _ 2 . B n—1 s s = = s s

plx)=n mexl’( * /2) LEACY] IR [1,53875 [0,58681 10 | [1,52400 [0,53461

This c.listr'ibution for n=5 and n=10 is moy; o | [ n [ mu 601
presented in Fig. 1. [0,86091 0,70363 |S 3 |SF0,86601 [0,67136

Il Il
=5 n=10 -1,03977 [0,62563 <] 4 3-1,03935 0,56671
0.75 0.75 — ~ [1,16457 [0,57005 || 5 | £[1,15502 |0,48942
0.6 [ (x1) 0.6 PO 125804 [0,52875 |&| 6 |%[1.23774 [0.43046

0.45 0.45 \ B i = g i

03 r/ \ 03—/ \\ 1,33155 [0.49696 |G| 7 | 5[1,29986 [0,38416
0.15 /) X, 015/ | [139145 047177 | 5[ 8 | £}1.34825 [0,34693

X = =
()4—"'3 T o 0_1"_3 — O] : -1,44159 (0,45132 E 9 |[&F1,38702 [0,31637
-1,48445 [0,43438 10 |=}1,41880 [0,29086

Fig. 1 — Distributions of minimal observation x; (n =5
and n = 10) my; Gy n My Gy1

-0,86603 (0,67082 || 3 | 4[0,85974 |0,64252

From (1) the expected value my; of x; can be 11,03923 [0,56569 'é 4 '§-1,02260 0,50819

calculated as follows: [1,15470 |0,48795 |'2| 5 %-1,12360 0,40882
B 1.23718 (042857 |4 6 |:2}1,19036 [0,33460
my, = I x,p(x, )dx, 2) F1:29904 [0.38188 g 7| 2f1.23670 [0.27820
—o -1,34715 [0,34427 ‘E 8 2-1,27012 0,23455
. o (138564 (031334 |=[ 9 |<[1,29499 [0,20019
agd U(f[{ standard deviation of the minimal 141713 [0.28748 10 731398 [0.17271
observation:
® my; ()] n
2 2 N
oo, = [ ploe Jbx, —m. (3) [LO02I8 11374 | | 3
o -1,94208 (2,20644 ‘3 4
[2,18491 [2,29652 |2 5
b The Yalues_m()] (}2) an((ii fO'()] (3) f(;rdnuni]):)er Of -2,36596 2,37918 % 6
observation n = 3...10 ap or normal distribution, 1250288 [2.45533 | =] 7
Laplace, uniform, arcsine, Cauchy or Flatten- > 60631 1252613 S
Gaussian, are presented in Table 1. [~ ’ z 8
-2,68339 {2,59226 9| 9
-2,73926 (2,65420 10
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If m#0 and o#I then expected value m; and
standard deviation o; of the minimal observation of
X; are

m =m-+my, 0, 0,=0,,'0. 4)

In practice the expected value m; of minimal
observation x; is unknown, but after (4) the estimate

%, for m; can be calculated as

X, =X+my, S, Q)

where arithmetical mean x and experimental
standard deviation s, of observations are

x==>x, 6)

S, :\/L_Zn:(x[—x . (7

Experimental standard uncertainty of minimal
value calculated from (6) and (7) is

u, (xl) =041, )]

Distribution p.,(z;) of the minimal observation x;

deviation from mean x , normalized to s, is

X, —Xx

Z) = ©)

N

X

This distribution does not depend on x and on s,.
It depends only on population distribution p(x) and
number of observations 7. It can be shown that the
range of random value z, is independent of
population PDF and equals to

—(n—l)/ﬁézlé—l/\/;.

Distribution p.;(z;) consists of n-1 sections, with
bounds z,; (i =1, 2,.. n- 1) that are determined by
the formula:

2y = ).

i=12,...,n-1

(10)

(11

In test procedure the minimal observation x; is
compared with the critical value x..;., then after
determination of x;, the left-hand side of expanded
uncertainty U, ;ou(x;) should be calculated as
follows:

(12)

xl - Up,low (xl ) 2 xcritic .
For the very small number of observations (for

example n = 5) the most important is the first part
(left side) with bounds

Zpa :_(n_l)/\/;’
Zpn =—\/(n—1)(n—2)/2n '

Ifn =5 from (13) then

(13)

2, = —4//5 ~ =1,7889;
2,0 =—[6/5 ~—1,0954,

because at the end of the first part the cumulative
function is

—J(n-1)(n-2)/2n
[ p.i(z)dz, > 0,10,
)

F(z)= (14)

For normally distributed n = 5 observations, the
theoretical distribution p.;(z;) at the left-hand side
can be described as

V5[5
P21(21)=E 1_EZIZ’

(15)
LIPS \E
NCEE N
From (15) cumulative function in this part is
le(zl): Jpzl(zl)dzl =
- 16)
5[1 (5]22 [\EJ] (
=—|—-z4|5—|—z | +—arcsin| —z |+1].
2| 2n 4 T 4
For z, =—,/6/5 the cumulative function is

F,,(—/6/5) =0,6806. Total distribution p.;(z;)

of z; is shown in Fig. 2.
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Fig. 2 — Distribution of normalized deviation z; (n = 5)
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The lower k. (p) coverage factor for the
confidence level p can be calculated from equation:

k/aw(”,li)

'[pzl(zl)dzl = le(zl): 1-p.

-2

(17)

The values k,,.(5,p) for p = 0,90; 0,95; 0,975;
0,99 and 0,995 and for n =5 are presented in
Table 2.

Table 2. Numeric values of coverage factors.

P 0,90 095 | 0975 | 0,99 | 0,995
ki,(5,p) 1-1,6016 |-1,6714 |-1,7156 [-1,7489 |-1,7637

From (9) and Table 2 the lower limit U, j.(X;)
of expanded uncertainties of minimal value is

xl,p =x+klow(n’p).sx'

(18)
3. SIMULATIONS BY MONTE CARLO
METHOD

Analytical research of efficiency of the method
proposed for evaluating measurement result and its
standard uncertainty was investigated by Monte
Carlo (MC) method. During the research the
following basic normalized distributions (m=0, o=1)
of the population have been accepted: normal,
Laplace, uniform, arcsine and Cauchy; number of
observations n = 3, 4, 5, 6, 7, 8 9, 10; number of
realizations is M=10°.

Perform generate the j = 1, 2, ..., M = 10° to
n=3,4,5,6,7,8,9, 10 independent random results
with different distributions.

For the every observation n =3, 4, 5, 6, 7, 8, 9,
10 the minimal result is determined by the formula:

xl, ;= rnin(xn,j)

n

(19)

The arithmetical mean value x, ; from (6) and

experimental standard deviation s, ; from (7) for
each group of n observations is calculated.

Based on the obtained values x, ; and s, ;

deviation z/; of the minimal result x/, ; from the
mean is calculated from (9).

Statistical processing of the obtained results is
performed:

- deviation z/; mean value of the minimal result
from the mean is calculated as

zl=

M=

L zl.; (20)
M- i

1

- estimate of the minimal result standard
deviation is calculated as

1 & —\
S,=.|——=) \zl.=z1) ; 21
: \/ M_IJZI( 1) @
- maximal max(zl) and minimal min(zl)

experimental values of deviation z/; of the minimal
result from the mean.

All research results obtained according to the
calculation formulas (20), (21) and others for
normal, Laplace, uniform, arcsine and Cauchy
distributions are given in Table 3.

Table 3. Results of investigation of the minimal value
deviation z/; from the mean.

n 2 sa | max(zl) | min(zl)
Normal distribution
3 0,9543 0,1751 1,1547 0,5774
4 1,1183 0,2302 1,5000 0,5030
5 1,2376 0,2636 1,7888 0,4638
6 1,3305 0,2846 2,0384 0,4494
7 1,4083 0,3016 2,2599 0,4773
8 1,4756 0,3135 2,4529 0,4891
9 1,5313 0,3227 2,6294 0,5222
10 1,5838 0,3319 2,7563 0,5923
Uniform distribution
3 0,9509 0,1813 1,1547 0,5774
4 1,1045 0,2345 1,5000 0,5042
5 1,2080 0,2619 1,7888 0,4653
6 1,2824 0,2753 2,0379 0,4568
7 1,3395 0,2827 2,2554 0,4783
8 1,3854 0,2844 2,4470 0,4857
9 1,4202 0,2837 2,6077 0,6038
10 1,4504 0,2820 2,6910 0,6175
Laplace distribution
3 0,9530 0,1776 1,1547 0,5774
4 1,1207 0,2454 1,5000 0,5018
5 1,2488 0,2942 1,7888 0,4585
6 1,3530 0,3306 2,0391 0,4297
7 1,4439 0,3620 2,2649 0,4620
8 1,5259 0,3872 2,4688 0,4469
9 1,5960 0,4079 2,6500 0,4417
10 1,6639 0,4290 2,8333 0,4999
Arcsine distribution
3 0,9433 0,1949 1,1547 0,5774
4 1,0811 0,2585 1,5000 0,5004
5 1,1714 0,2912 1,7888 0,4490
6 1,2302 0,3067 2,0407 0,4103
7 1,2742 0,3159 2,2663 0,4126
8 1,3041 0,3165 2,4683 0,4436
9 1,3244 0,3127 2,6444 0,4339
10 1,3415 0,3077 2,7814 0,4950
Cauchy distribution
3 0,9431 0,1951 1,1547 0,5774
4 1,1066 0,3031 1,5000 0,5000
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5 1,2379 0,3959 1,7889 0,4472 contra- [skewness n

6 1,3489 0,4777 2,0412 0,4083 Kurtosis S
7 1,4502 0,5543 2,2678 0,3780 0,7527 | -0,4879 X 3
8 1,5472 0,6223 2,4749 0,3536 0,7368 | -0,3127 g 4
9 1,6329 0,6843 2,6667 0,3334 0,7327 | -0,2308 €[ 5
10 1,7217 0,7469 2,8460 | 0,3163 0.7329 | 0.1734 -E 6
It was also investigated how often the proposed 07373 | -0,1299 i 7
algorithm for the criterion of the residual sums of 07368 | -0,1189 |=] 8
squares of test sample residual deviations from the 0,7376 | -0,0931 S: 9
model experiment correctly chooses the model 0,7417 | -0,0891 10

distribution. One of the quantitative indicators of
distribution densities mutual "proximity" is their
contra-kurtosis ¢ which is calculated as follows

[13]:

¢ =1/e, (22)
where ¢ is skewness of distribution kurtosis and is
calculated as

&= ,U4/ ot (23)

Depending on the value of contra-kurtosis some
typical distributions can be located as follows: 1-
Laplace (L=0,408, 2-normal {N=0,577, 3-uniform
{R=0,745 and 4-arcsine (Asin=0,816, 5-Cauchy
{K=0.

Table 4. The numeric values of MC experimental
contra-kurtosis and skewness for distributions p,.(z1).

contra- |skewness| | n .| contra- (skewness
kurtosis | @ Kurtosis
0,702 0,571 |§ 3 § 0,7205 | -0,5366
0,686 0,216 |g| 4 _E 0,6914 | -0,1188
0,664 -0,021 E 5 E 0,6524 | 0,1311
0,645 0,115 [E| 6 é 0,6179 | 0,3028
0,630 | 0210 & 7 |3] 05899 | 04114
0,616 0,267 g 8 S 0,5672 | 0,4964
0,604 0,336 E 9 E 0,5484 | 0,5614
0,597 | 0,358 10 [ 05414 | 0,5790
contra- [skewness| | n .| contra- |skewness
Kurtosis ~| | kurtosis
N
0,7100 | -0,5559 | & 3 |7 0,7518 | -0,4889
0,6999 | -0,2567 | 5| 4 |g| 0,7069 | -0,0458
0,6857 | -0,1052 _‘g 5 E 0,6556 | 0,2176
0,6742 | 0,0072 |E| 6 |E|l 0,6079 | 0,4023
122} wn
0,6645 | 0,0898 [=| 7 |=| 0,5736 | 0,5362
-5
0,6540 | 0,1323 E 8 g 0,5481 | 0,6155
0,6443 | 0,1948 E‘ 9 % 0,5257 | 0,6858
0,6396 | 0,2179 10 0,5154 | 0,7162

The deviations z/; of Fig. 3 shows the histograms
of the minimal result from the mean value at n = 3,
4, 5, 6, 7, 8 9, 10 for normal, Laplace, uniform,
arcsine and Cauchy distributions.

Table 5 gives as an example the values of upper
zl,, and lower zl,, confidence limits for the
deviation z/; of the minimal result from the mean
value on the level of trust p=1-a under probability of
p=0,90 (0=0,1 (10%),; p=0,925 (a=0,075 (7,5%));
p=0,95 (0=0,05 (0,5%)),; p=0,975 (a=0,025 (2,5%))
for n=3, 4,5 6, 7, 8 9 10 for the normally
distributed observations.

Table S. Results of research of the upper z1,, and
lower z1,,,, confidence limits for the deviation zI; of the
minimal result for the normal distribution.

Normal distribution

D 0,90 0,925 0,95 0,975
z2l,p(3,p) | 1,1532 | 1,1538 | 1,1543 | 1,1546
2lp(4,p) | 1,4626 | 1,4718 | 1,4809 | 1,4907
2l,p(5,p) | 1,6718 | 1,6932 | 1,7166 | 1,7437
zl,p(6,p) | 1,8211 | 1,8511 | 1,8848 | 1,9319
2lp(7,p) | 1,9386 | 1,9753 | 2,0196 | 2,0814
2l,p(8,p) | 2,0333 | 2,0757 | 2,1290 | 2,2015
2,(%p) | 21120 | 2,1582 | 2,2170 | 2,3019
2l,p,(10,p)| 2,1780 | 2,2298 | 2,2932 | 2,3866
2lpw(3,p) | 0,6284 | 0,6157 | 0,6024 | 0,5902
2lpw(4,p) | 0,7288 | 0,7023 | 0,6680 | 0,6218
21w(5p) | 0,8094 | 0,7822 | 0,7462 | 0,6926
z11pw(6,p) | 0,8827 | 0,8526 | 0,8146 | 0,7561
2lpw(7,p) | 0,9409 | 0,9104 | 0,8707 | 0,8129
2Lipw(8,p) | 0,9955 | 0,9632 | 0,9240 | 0,8628
z1pw(9p) | 1,0438 | 1,0125 | 0,9735 | 0,9111
21,(10,p)| 1,0840 | 1,0524 | 1,0114 | 0,9467
Fig. 4 shows the upperz/,, and lower z/,,

confidence limits for the deviation z/; of the minimal
result from the mean value under probability of
p=0,90, p=0,925, p=0,95, p=0,975 of n =3, 4, 5, 6,
7, 8 9, 10 for normal-1, uniform-2, Laplace-3,
arcsine-4 and Cauchy-5 distributions.

131



Mykhaylo Dorozhovets, Ivanna Bubela / International Journal of Computing, 15(2) 2016, 127-135

n normal uniform Laplace arcsine Cauchy
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Fig. 3 — Histograms of the deviation z/;
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Fig. 4 — The upper z1,, and lower z1,,,, confidence
limits for the deviation z7; of the minimal result

Table 6 shows as an example one-sidedz/,
confidence limits for the deviation z/; of the minimal
result from the mean value if p=0,90, p=0,925,
p=0,95, p=0,975 forn=3, 4,5, 6, 7,8 9, 10 and
for the normal distribution.

Table 6. Results of research of the one-sided z1,
confidence limits for the deviation z1; of the minimal
result for the normal distribution.

Normal distribution

D 0,90 0,925 0,95 0,975
z1,(3,p) 1,1485 [ 1,1513 | 1,1532 | 1,1543
z1,(4,p) 1,4253 | 1,4439 | 1,4626 | 1,4809
z1,(5,p) 1,6021 | 1,6338 | 1,6718 | 1,7166
z1,(6,p) 1,7271 | 1,7690 | 1,8211 [ 1,8848
z1,(7,p) 1,8281 | 1,8780 | 1,9386 | 2,0196
z1,(8,p) 1,9078 | 1,9628 | 2,0333 | 2,1290
z1,(9,p) 1,9772 | 2,0372 | 2,1120 | 2,2170
z1,(10,p) | 2,0388 | 2,1012 | 2,1780 | 2,2932

Fig. 5 shows the one-sided z/, confidence limits
for the deviation z/; of the minimal result from the
mean value if p=0,90, p=0,925, p=095, p=0,975
for n=3 4,5 6, 7 8 9 10 and for normal-1,
uniform-2, Laplace-3, arcsine-4 and Cauchy-5
distributions.

3 3
28Fp=090 s| 28 p=0925 5]
26 26 .
24 3| 24 ]
22 —H 22 =i
13 12| 3 12
1.6 Z s 4 16 4]
1.4 1.4
12| ¢ 12| ¢
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345678910 3456780910
1 2 3 4 5

Fig. 5 — The one-sided z1, confidence limits for the
deviation z; of the minimal result for the
distributions: 1-normal; 2-uniform; 3-Laplace; 4-
arcsine; 5-Cauchy

Fig. 6 shows in percentage form difference
between deviations of the upper z/,, and lower z/,,,,
confidence limits for the deviation z/; of the minimal
result from the mean value and the normal
distribution under probability of p=0,90, p=0,925,
p=0,95, p=0,975 of n = 3,4,5,6, 7, 8,9, 10 for
uniform-2, Laplace-3, arcsine-4 distributions.
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Fig. 6 — The difference between deviations of the
upper zI,, and lower z1,,, confidence limits for the
deviation z/; of the minimal result from the mean
value and the normal distribution (uniform-2,
Laplace-3, arcsine-4)
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4. CONCLUSION

As the PDF of maximal value is symmetrical to
the PDF of minimal value, parameters of uncertainty
of maximal value can be calculated in the same way
as uncertainty of minimal value [14]. Only the
opposite sign of the deviation of maximal value
from the expected value should be taken into
account.

Theoretically, for an arbitrary distribution of
observations p..(zI) the deviation z/ which is
relative to the standard deviation of minimum
observation from the mean value is in the range of

—(n—l)/\/; <z < —l/\/;.

From Fig. 6 we can see, that for all studied PDF
and if number of observations is limited, for
example n <4, 5, the value of expansion coefficient
deviates from the normal coefficient only about
+10% and for n = 10 is very close to £15%.

Therefore, in case a priori PDF of observations is
unknown and number of them is small (n < 4, 5)
then a normal distribution value of expansion
coefficient, can be used to calculate expanded
uncertainty. For example, if n =5 then for all
distributions expansion coefficient can be calculated
using the formulas (16) and (17).
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