
Timothy Heard, Daryl Johnson / International Journal of Computing, 15(3) 2016, 191-199

 191

AN EXTENDED DISCUSSION ON A HIGH-CAPACITY COVERT CHANNEL
FOR THE ANDROID OPERATING SYSTEM

Timothy Heard, Daryl Johnson

Computing Security department, Rochester Institute of Technology, Rochester, NY, USA

tjh2430@rit.edu, daryl.johnson@rit.edu

Abstract: In “Exploring a High-Capacity Covert Channel for the Android Operating System” [1], a covert channel for
communicating between different applications on the Android operating system was introduced and evaluated. This
covert channel proved to be capable of a much higher throughput than any other comparable channels which had been
explored previously. This article will expand on the work which was started in [1]. Specifically, further improvements
on the initial covert channel concept will be detailed and their impact with regards to channel throughput will be
evaluated. In addition, a new protocol for managing connections and communications between collaborating
applications purely using this channel will be defined and explored. A number of different potential mechanisms and
techniques for detecting the presence and use of this covert channel will also be described and discussed, including
possible counter-measures which could be implemented. Copyright © Research Institute for Intelligent Computer
Systems, 2016. All rights reserved.

Keywords: Android, covert channel, mobile security.

1. INTRODUCTION

“Exploring a High-Capacity Covert Channel for
the Android Operating System” [1] introduced a new
covert channel for inter-application communication
on Android which had a higher bandwidth than other
similar covert channels which had previously been
explored [2]–[9]. This channel is capable of
encoding messages being used for some form of
malicious activity within apparently legitimate
traffic1 between applications by using the Android
Intent messaging framework, which is a
foundational part of the Android application
architecture [10]. Specifically, the channel takes
advantage of a special key-value store which can be
included within these Intent messages (called a
Bundle [11], [12]) by imposing significance on the
types of values stored combined with a pre-arranged
key ordering as shown in Fig. 1.

The primary use of covert channels such as this
one (i.e. covert channels for communicating
discreetly between different Android applications) is
to perform an application collusion attack [2]. This
type of attack allows multiple applications to
effectively pool their different permissions which

1 Or even actually legitimate traffic.

have been approved by the user2, in order to create
dangerous combinations of permissions without the
user approving, or even being aware of, that
combination. For example, combining the
permissions for a photo viewing application and an
internet-enabled game would allow a user’s pictures
to be sent off of the device to an attacker.

Fig. 1 – Covert message encoded in Intent Bundle

2 Android requires users to approve the set of permissions
required by an application before that application can be
installed.

computing@computingonline.net
www.computingonline.net

Print ISSN 1727-6209
On-line ISSN 2312-5381

International Journal of Computing

Timothy Heard, Daryl Johnson / International Journal of Computing, 15(3) 2016, 191-199

 192

Although this channel achieved a much higher
bandwidth (with regards to the speed of transmitting
covert message bits) than other similar covert
channels, the bandwidth can be further improved,
which will be detailed in Section 1. The subsequent
section will introduce a dynamic protocol for
communication with colluding application which
uses these improvements. Section 3 will then discuss
different possible approaches for detecting this
channel as well as some potential counter-measures
which could further reduce the detectability of the
channel, followed by a conclusion.

2. INCREASING CHANNEL BANDWIDTH

The original implementation [1] increased the
“alphabet” (i.e. set of unique symbols) available
through the use of nested Bundles which were used
to represent expansion code values. However, only
one expansion code was used out of the 21
expansion codes which are possible when using a
single nested Bundle containing a single entry.
Additionally, only six of the 21 possible values in
this expansion set were used, leaving a significant
opportunity for improvement.

In order to make full use of the available value
space, the encoding scheme used for this channel
had to be modified. Specifically, the original static
mapping of specific textual characters to the
different available Bundle-value data types was

abandoned and replaced by a conversion of message
data into a single bit-string. These message bits were
then divided into a series of “message fragments”
(collections of bits) which were individually
encoded onto the channel carrier (an Android
Intent). With a set of 21 expansion codes, 22 unique
sets of symbol/ message fragments were available
(the base set of values plus 21 expansion sets),
yielding a new alphabet containing 462 unique
values (i.e. bit fragments), a more than 17-fold
increase over the original 27-character alphabet.

The capacity of the channel was further increased
by modifying the approach used for encoding
expansion code values. In the original
implementation, expansion codes were encoded into
a nested Bundle using the same datatype-to-value
mapping used for regular data values. That
expansion code value was then applied to the next
entry in order within the root Bundle. By encoding
the value that the expansion code applies to within
the same nested Bundle, an additional expansion
code value can be achieved. This was accomplished
by using an implicit expansion code of one for
nested Bundles containing a single key-value pairing
(see Fig. 2). This minor modification yields to total
of 22 expansion codes and 23 value sets (each
containing 21 values) for a total of 483 unique
values.

Fig. 1 – New expansion code encoding strategy

This increased symbol set allowed for the

encoding of one 8- to 9-bit message fragment per
key-value pairing (within the root Bundle).
Specifically, the binary values 00000000 through
11111111 and 100000000 through 111100010 were
able to be encoded as message fragments3. Table 1

3 0 through 482 in decimal

shows an example of this.
While this approach provides a potential increase

in channel bandwidth, the “jaggedness” of the
message fragments (i.e. the fact that message
fragments do not have a uniform bit length)
increases the complexity involved in reconstructing
the contents of the covert message. The primary
problem with this is that, as currently described, if

Timothy Heard, Daryl Johnson / International Journal of Computing, 15(3) 2016, 191-199

 193

the final fragment for a given covert message
contains fewer than 8 bits it cannot be effectively
represented. The most obvious solution is to pad the
final fragment with zeroes, which can be seen in
Table 1. However, doing so introduces a new
problem: the receiver is unable to differentiate
between zero bits used for padding and significant
zero bits in the last fragment.

Table 1. Message Fragmentation Example.

Message
Message

Bytes
Message

Fragments
Expansion

Code
Base
Value

´
11000010 110000101 18 11
10110100 01101000 4 20

h 01101000 110100001 19 18
i 01101001 101001110 15 19

´
11000010 00010101 1 0
10110100 101000000 15 5

In order to solve this problem, when encoding a

covert message onto an Intent Bundle, the first value
encoded should be the number of significant bits
contained in the last fragment of the message. Using
this approach, the receiver would be able to
reconstruct the exact bit sequence which was sent

while maximizing the use of the available value
space.

The original channel can be further improved by

adding an additional dimension: multiple Intent
actions. As mentioned in [2], the action field within
an Intent can be used to implement a similar covert
channel, with different pre-defined action strings
mapping to specific values (0 and 1 for example).
By combining these two covert channel concepts, a
number of further enhancements are made possible.

First, this allows for an even larger alphabet since
each action string could be mapped to a distinct set
of 483 values4. Therefore, the total number of unique
values possible for a single Bundle entry would be
given by the following equation:

v = a * (e + 1) * b, (1)

where ‘a’ is the number of different actions available
for sending data, ‘e’ is the number of expansion
codes, ‘b’ is the number of values in the base value
set, and ‘v’ is the total number of unique values
which can be represented. An example of this
encoding scheme is shown in Table 2.

An important consideration with such an
approach is that the action strings used should not be
ones which will cause a user-visible event to occur
(such as ACTION_IMAGE_CAPTURE [13]). It is
also worth noting that this does introduce additional

4 Assuming the use of the 22 expansion codes and a base
set of 21 values as described above.

a = 4, e = 22, b = 21, v = 4 * (22 +1) * 21 = 1932 unique values

Message Bytes Fragments Segments

´
11000010 "A" => 11000010101 Action = "data-0" "C" => 0001101000
10110100 "B" => 10100010101 Min Value = 0 "D" => 0110010100

T 01010100 "C" => 0001101000 Max Value = 482 "F" => 0010111010
h 01101000 "D" => 0110010100 "I" => 0110010000
e 01100101 "E" => 10000001110 "J" => 0011000100
 00100000 "F" => 0010111010 "N" => 0100000011

q 01110001 "G" => 10110100101 "O" => 0011001101
u 01110101 "H" => 10001101101
i 01101001 "I" => 0110010000 Action = "data-1" No Values in Range
c 01100011 "J" => 0011000100 Min Value = 483
k 01101011 "K" => 11100100110 Max Value = 965
 00100000 "L" => 1111011101

b 01100010 "M" => 11011011100 Action = "data-2" "B" => 10100010101
r 01110010 "N" => 0100000011 Min Value = 966 "R" => 10100000000
o 01101111 "O" => 0011001101 Max Value = 1448 "E" => 10000001110
w 01110111 "P" => 11101111000 "G" => 10110100101
n 01101110 "Q" => 11000010101 "H" => 10001101101
 00100000 "R" => 10100000000 "L" => 1111011101
f 01100110
o 01101111 Action = "data-3" "P" => 11101111000
x 01111000 Min Value = 1449 "A" => 11000010101

´
11000010 Max Value = 1931 "Q" => 11000010101
10110100 "K" => 11100100110

 "M" => 11011011100

Table 2. Message Segmentation with Multiple Data Actions

Timothy Heard, Daryl Johnson / International Journal of Computing, 15(3) 2016, 191-199

 194

complexities since values which span the different
action-based value sets must be encoded in separate
Intents, which could result in higher message
fragmentation and require a larger number of Intents
to send a given message. However, in certain
circumstances sending smaller Intents may be more
desirable if it is a better fit for the expected behavior
of the involved applications.

The second, and potentially greater benefit of this
encoding strategy is the natural support for distinct
data and control channels, which can be
accomplished by designating one action string for
sending control messages and one or more other
actions for sending data-carrying Intents. An
important consideration with this approach is that
there needs to be a way to ensure the proper ordering
of the different message segments (i.e. Intents) and
also to indicate when all of the segments for the
current message have been received. This can be
accomplished by reserving two additional Bundle
key positions to serve as metadata fields: one for the
number of segments contained in the current
message and another for the segment number of the
current Intent.

By implementing the enhancements to the
original encoding scheme described in this section,
significant improvements were seen. Specifically, by
modifying the scheme to make full use of the
available alphabet (i.e. value set), increasing the
number of expansion codes available, and using
multiple data-channel actions, throughputs of up to
2,048,000 bits per second were observed -a more
than 5800% increase over the highest throughput
seen with the original implemation (which was
34,996 bits per second [1])5.

This data was collected by sending a number of
different-sized messages using a variety of
configurations of the covert channel and observing
the amount of time required to transmit the message.
Each of these tests was repeated multiple times and
then the average of these transmission times was
used to calculate the throughput. Table 3 gives the
complete results of this testing6.

3. CONNECTION MANAGEMENT
PROTOCOL

In addition to being able to transmit and receive
covert messages over this channel, applications
which desire to use it for performing a collusion
attack will need a strategy for discovering and

5 All of these numbers apply to the time required for
transmission of covert data and do not include the time
required to encode and decode the data.
6 Results generated by running the tests on a Toshiba
AT7-C running version 4.4.2 of the Android OS.

establishing connections with each other.
Leveraging the improvements detailed above, a
dynamic application discovery and connection
negotiation protocol can be defined.

Similar to the covert channel itself, this protocol
would require colluding applications to have certain
elements established at build time (i.e. before being
installed on a device). Specifically, they would need
to have a pre-shared control/broadcast action string
and an agreed upon covert message format
(including what types of messages will be allowed).
With these elements defined, applications would be
able to be notified when a new another collaborating
application is installed, exchange data, and become
aware of colluding applications being removed from
the device entirely using this covert channel.

The first phase of this protocol, connection
establishment, centers around the application
installation process. Upon being installed on a
device, an application would send a broadcast Intent
using the pre-arranged control action “address”.

Note that this broadcast should not be an ordered
broadcast since delivery is not guaranteed in that
case [14], [15]. The Intent would contain a set of
metadata about the sending application’s capabilities
encoded using the covert channel, with this metadata
specifying what sensitive user information the
application has access to (based on its declared
permissions), what off-device exfiltration
mechanisms it can provide access to, and the set of
control and data actions it has receivers registered
for.

This initial broadcast Intent would be received by
any previously installed application which is setup to
collaborate with the new application. The existing
application or applications would then extract and
store the received metadata in a persistent
connection state table and respond with their own
metadata, potentially using a different Intent action
(if one was specified in the initial broadcast
message).

Upon receiving a response, the new application
would update its own state table, at which point a
connection would have been established. This would
provide the basis for a “source-sink” relationship as
described in [2], wherein one application serves as a
source of information and the other (the sink)
provides a means for transporting that information
off of the device.

Timothy Heard, Daryl Johnson / International Journal of Computing, 15(3) 2016, 191-199

 195

If no responses are received, the application
would assume that there are not any other colluding
applications installed on the device (i.e. this
application is the first one to be installed) and wait
to receive an announcement broadcast over the
covert channel from another application. Note that if
this application has the ability/permissions to act as
a source application, it could still perform malicious
activities while waiting for another application to be
installed, such as collecting, processing, and/or
aggregating user data in preparation for exfiltration.

Once a covert connection has been established,
the second phase of the protocol, data exchange,
would begin. Two important message types which

7 The base value-set size for all test runs was 21.

could be used during this phase of the protocol are
requests for specific information and requests to
exfiltrate data. Requests for information would most
reasonably be sent from “sink” applications (i.e.
those capable of transmitting data off the device) to
a source application (one with access to information
of interest to the attacker) and should specify what
type of data the request is interested in8. The request
could also include additional parameters such as
details on how the data should be delivered (what
format, how fast, which action or action strings to
use, etc.) as well as any filters which should be

8 The types of data which the source application has
access to would have been provided in that application’s
initial broadcast message.

Message Size
(Bytes)

Number of Expansion
Codes7

Number of Actions
Number of Unique

Values
Average Throughput

(Bits per Second)

256

0

1 21
2525

179,200
25 525

231,564

100 2100 217,600

1
1 42 166,400
25 1050 256,000
100 4200 256,000

2
1 63 174,933
25 1575 256,000
100 6300 256,000

22
1 483 81,067
25 12075 256,000
100 48300 256,000

1024

0
1 21 204,800
25 525 1,024,000
100 2100 1,024,000

1
1 42 209,920
25 1050 1,024,000
100 4200 1,024,000

2
1 63 221,867
25 1575 1,024,000
100 6300 1,024,000

22
1 483 129,829
25 12075 1,024,000
100 48300 972,800

2048

0
1 21 274,286
25 525 2,048,000
100 2100 2,048,000

1
1 42 227,556
25 1050 2,048,000
100 4200 2,048,000

2
1 63 163,840
25 1575 2,048,000
100 6300 2,048,000

22

1 483 97,995
25 12075 2,048,000

100 48300 2,048,000

Table 3. Evaluation of Channel Improvements

Timothy Heard, Daryl Johnson / International Journal of Computing, 15(3) 2016, 191-199

 196

applied.
Conversely, requests to exfiltrate information

would generally be sent from a source application to
a sink application, although this type of message
could be used by another sink application in order to
gain access to an exfiltration strategy which it does
not itself have the necessary permissions for (e.g.
using the internet instead of SMS or vice-versa).
Such requests could similarly include additional
quantifiers. For example, the requester could specify
which exfiltration strategy to use (if more than one is
available9), including what medium to use, the rate
of transfer, whether to use a discreet transfer
approach such as steganography or a network covert
channel, and/or an encryption key to use before
transmitting the data.

The third phase focuses on closing established
connections which are no longer valid because the
other destination application has been uninstalled.
There are two basic ways to approach this problem.
The first is to have every involved application setup
their Intent filters to accept the
ACTION_PACKAGE_REMOVED action, which
will allow them to be notified upon removal of any
other application [16]. Note that this requires the
application name which will be used by the
operating system in this broadcast to be included in
the initial announcement message used for
establishing covert connections.

The second option would be to require every
covert message to be acknowledged by the receiving
application (using the covert channel). In that case,
given the high reliability of this channel (the authors
have not seen any cases of an Intent failing to be
delivered), if an acknowledgement is not received
within a set amount of time, the destination can be
assumed to be invalid (due to removal from the
device) and that entry can be removed from the state
table. The disadvantage is that this approach is
noisier (effectively doubles the number of covert
messages which must be sent) and it introduces a
greater delay in closing invalid connections.
However, it could help avoid certain methods of
detection, which will be discussed more in the next
section.

4. DETECTION

At the time of this writing, the Android operating
system does not inherently provide any mechanism
for detecting or protecting against application
collusion attacks of any kind, to say nothing of being
able to detect the use of covert channels to conduct
such attacks. As a result, the only barrier to

9 This information would have been provided in the initial
broadcast from the targeted sink.

successfully conducting this type of attack is for the
attacker to find a way to get a user to install multiple
applications they have created. Such a person would
likely publish their various malicious applications
using multiple developer accounts to give the
appearance that they are completely unrelated.
Leveraging a dynamic discovery protocol such as
the one described in the previous section, this could
be a very effective approach for successfully
executing application collusion attacks.

In addition, this approach makes it difficult to
detect the malicious intent of these colluding
applications without introducing significant
enhancements on the current Android security
model. The first step would be to implement
measures capable of detecting inappropriate and
potentially dangerous flows of information between
different applications. After this, it would be
necessary to further improve these measures to be
covert-channel aware in order to detect application
collusion attacks which use that vector.

Focusing specifically on collusion attacks which
leverage the covert channel described in this article,
there are a number of different approaches which
could be taken to detect the use of this specific
covert channel. Two general categories of detection
techniques, static and dynamic analysis, will be
discussed below.

With regards to static analysis10, the most
obvious route is to inspect the declared Intent filters
of the installed applications and, using this
information, construct a relationship graph between
all of these applications as seen in [17]. This could
serve as a reasonable starting point for more detailed
analysis by providing a set of applications which
may be involved in a collusion attack. This
relationship graph could be further enhanced by also
considering what types of Intents each application
will send based on an analysis of the application
source code11. However, given that Intents are
explicitly designed to be sent between different
applications, this is not sufficient to definitively
determine the existence or non-existence of this
channel.

Another possible static analysis technique would
be to analyze the application code for instances of
logic for encoding information within Bundle value
data-types. While this is a far more definitive
strategy, there would be a risk of both false positives
and false negatives, especially given the possibility
of deliberate obfuscation of this logic. A different

10 Analyzing the application artifacts without executing
the program.
11 This would either have to be provided by the developer,
which is unlikely, or decompiled from the Android
Application Package (APK) file for the application.

Timothy Heard, Daryl Johnson / International Journal of Computing, 15(3) 2016, 191-199

 197

aspect of the application logic which could
contribute to such analysis would be the use of
explicit Intents, which target a specific application
by name and will be received by that application
regardless of its Intent filters. Such Intents could be
used to circumvent analysis which only looks at
each application’s declared filters [10].

In the realm of dynamic analysis, a number of
other approaches are available which can be further
categorized based on what level of privileges they
require (user or system). The options at the user
level are obviously more limited than at system
level, with the tradeoff being that such techniques
are much more straightforward to implement as they
do not require rooting the device or modifying any
part of the Android operating system.

The user-level approach which is most likely to
provide a benefit with regards to detecting this
covert channel would be Intent “sniffing” (collecting
and analyzing Intent traffic on the device). This
would provide the opportunity to examine the
contents of Intents that have been sent for any
indication that this channel is being used. These
indicators could include unusually large Intent
Bundles, Bundles containing an unusually high
number of key-value pairs, Bundle keys which
appear to be randomly generated, an abnormal
degree of Bundle nesting, and/or an unusual number
of Intents being sent to and/or from a particular
application. Statistical analysis techniques might
also be able to applied to the contents of these
Intents to look for unexpected or uncommon
patterns, focusing on the data-types within each
Intent Bundle.

It is important to note that all of these indicators
would first require a baseline to be established for
the system in order to create definitions for
“unusual” and “abnormal” in the context of the
applications which are installed on the device12. Also
worth noting is the fact that this channel could be
tuned in order to avoid these indicators at the cost of
decreased bandwidth. For example, the keys could
be generated using a dictionary of words which fit
the overt purpose of both the sending and receiving
application. Another shortcoming of this approach is
that there is no way to guarantee that all of the Intent
traffic on the device will be seen since the sniffing
application would only receive Intents which match
its Intent filter, limiting it to Intent types that its
creators are aware of. Beyond this, Intents which are
not sent as a broadcast will only be received by one
application, and if more than one application has a

12 It would also be possible to create a baseline from a
survey of the Intent traffic patterns of a sufficient number
of different applications. [17], [18] may also be useful
starting points.

matching Intent filter, the user will be prompted to
select an application to use. This requires the user to
be aware of what this prompt means as well as the
reason for selecting the sniffer application. The more
likely scenario is that the added noise will be viewed
as an annoyance by users who will eventually
ignore, or even remove, the sniffer.

In contrast, a monitoring application operating at
the system (root) level would be able to ensure that
it receives a copy of every Intent sent on the system
without requiring any on-going involvement from
the user13. This would enable a complete picture of
the system Intent traffic to be constructed, including
an accurate baseline which could (and should) be
adapted as applications are installed and removed.
At this point, a greater confidence could be placed
on any anomalies detected.

Performing monitoring from within the operating
system also opens more avenues for reacting to any
possible uses of this channel which are detected.
One of the simplest and least obtrusive options
would be to notify the user of the event and allow
them to take any action they choose. Going beyond
this, the monitoring application could also
incorporate the functionality of an intrusion
prevention system (IPS) in addition to that of an
intrusion detection system (IDS) by isolating or even
removing suspect applications automatically.

Leveraging this concept, such a system could
also perform active analysis in addition to passive
monitoring. Specifically, once the system baseline
has been established, the monitoring program could
isolate the installed applications one at a time (i.e.
prevent any Intent traffic to or from the application)
and then examine how the baseline changes. First,
the Intent traffic which the isolated application
attempts to send could be analyzed to look for
changes in that applications Intent traffic pattern in
reaction to not receiving Intent messages from any
other applications. Second, since the application
would not have been uninstalled at this point, any
colluding applications would have to assume that it
is still installed until they send a message to it,
which would be noted by the monitoring application.
Of course, there is no guarantee about the timing of
such a message. Also, such messages could easily be
sent as a broadcast designed to match the Intent filter
of applications not involved in the channel in
addition to the actual intended receiver, which
would further increase the difficulty of definitively
proving the use of this channel through this
technique alone.

Ultimately, it may be difficult for any single
analysis technique to reliably identify the presence

13 Note that this would require modification of the
operating system code for handling Intents.

Timothy Heard, Daryl Johnson / International Journal of Computing, 15(3) 2016, 191-199

 198

and use of this covert channel. However, it should be
possible to combine multiple analysis techniques,
with each contributing input into an algorithm for
flagging potential use of the channel based on this
information. This, in effect, creates a concept of a
“trust score” for each application, with each input
(i.e. analysis technique) affecting the total score
based on its weight (how effective and reliable that
technique is when used on its own). The decision
algorithm responsible for combining the various
inputs could then be little more than a weighted
calculation of the trust score for each application
followed by a check against a pre-defined trust score
threshold.

5. CONCLUSION

As has been previously stated [1], [2] and has
been emphasized here, application collusion attacks
provide a simple yet effective means to circumvent
the existing Android security system. Covert
channels can provide a powerful means of executing
such attacks, even in the presence of additional
security controls which attempt to look for them.
The channel detailed in this article is particularly
potent given its high bandwidth relative to other
similar covert channels and its ability to easily
support a flexible and adaptable inter-application
control structure14.

That being said, a number of potential options for
addressing this particular danger do exist. Further
evaluation is needed in order to determine which of
these techniques will be the most effective and then,
most importantly, the results of these efforts must be
applied to the Android security system in order to
better protect the users of that system.

6. REFERENCES

[1] T. Heard, D. Johnson, and B. Stackpole,
“Exploring a high-capacity covert channel on
the Android operating system,” in Proceedings
of the IEEE 8th International Conference on
Intelligent Data Acquisition and Advanced
Computing Systems: Technology and
Applications (IDAACS’2015), Warsaw, Poland,
(September 24-26, 2015), vol. 1, pp. 393-398.

[2] Hubert Ritzdorf, Analyzing Covert Channels on
Mobile Devices, Master Thesis, available
online on http://e-collection.library.ethz.ch/
eserv/eth:5608/eth-5608-01.pdf, accessed June
2016.

14 Admittedly, this could be accomplished using virtually
any other similar covert channel, but the availability of
distinct communication links for different types of
messages based on different action strings reduces the
amount of overhead required.

[3] S. Chandra, Z. Lin, A. Kundu, and L. Khan,
“Towards a systematic study of the covert
channel attacks in smartphones,” in
Proceedings of the International Conference on
Security and Privacy in Communication
Networks, Beijing, China (September 24-26,
2014), pp. 427-435.

[4] W. Gasior and L. Yang, “Network covert
channels on the Android platform,” in
Proceedings of the Seventh Annual Workshop
on Cyber Security and Information Intelligence
Research, Oak Ridge, Tennessee, USA
(October 12-14, 2011), p. 61.

[5] R. Schlegel, K. Zhang, X. Zhou, M. Intwala,
A. Kapadia, and X. Wang, “Soundcomber: A
stealthy and context-aware sound Trojan for
smartphones,” in Proceedings of the 18th
Annual Network & Distributed System Security
Symposium, San Diego, California, USA
(February 6-9, 2011), vol. 11, pp. 17-33.

[6] A. Al-Haiqi, M. Ismail, R. Nordin, A. Al-Haiqi,
M. Ismail, and R. Nordin, “A new sensors-
based covert channel on Android,” Scientific
World Journal, Vol. 2014 (2014), available
online on http://www.hindawi.com/journals/
tswj/2014/969628/, accessed June 2016.

[7] C. Marforio, H. Ritzdorf, A. Francillon, and
S. Capkun, “Analysis of the communication
between colluding applications on modern
smartphones,” in Proceedings of the 28th
Annual Computer Security Applications
Conference, Orlando, Florida, USA (December
3-7, 2012), pp. 51-60.

[8] J.-F. Lalande and S. Wendzel, “Hiding privacy
leaks in android applications using low-
attention raising covert channels,” in
Proceedings of the Eighth International
Conference on Availability, Reliability, and
Security (ARES), Regensburg, Germany
(September 2-6, 2013), pp. 701-710.

[9] W. Gasior and L. Yang, “Exploring covert
channel in Android platform,” in Proceedings
of the International Conference on Cyber
Security (CyberSecurity), Washington, D.C.,
USA, (December 14-16, 2012), pp. 173-177.

[10] Intents and Intent Filters, Android Developers,
Android Online Documentation, available
online on https://developer.android.com/guide/
components/intents-filters.html, accessed June
2016.

[11] Intent, Android Developers, Android Online
Documentation, available online on
https://developer.android.com/reference/androi
d/content/Intent.html, accessed June 2016.

[12] Bundle, Android Developers, Android Online
Documentation, available online on

Timothy Heard, Daryl Johnson / International Journal of Computing, 15(3) 2016, 191-199

 199

https://developer.android.com/reference/androi
d/os/Bundle.html, accessed June 2016.

[13] MediaStore: ACTION_IMAGE_CAPTURE,
Android Developers, Android Online
Documentation, available online on
https://developer.android.com/reference/androi
d/provider/MediaStore.html#ACTION_IMAG
E_CAPTURE, accessed June 2016.

[14] BroadcastReceiver, Android Developers,
Android Online Documentation, available
online on https://developer.android.com/
reference/android/content/BroadcastReceiver.ht
ml, accessed June 2016.

[15] Context: sendBroadcast, Android Developers,
Android Online Documentation, available
online on https://developer.android.com/
reference/android/content/Context.html#sendBr
oadcast(android.content.Intent), accessed June
2016.

[16] Intent: ACTION_PACKAGE_REMOVED,
Android Developers, Android Online
Documentation, available online on
https://developer.android.com/reference/androi
d/content/Intent.html#ACTION_PACKAGE_R
EMOVED, accessed June 2016.

[17] K. O. Elish, D. Yao, and B. G. Ryder, “On the
need of precise inter-app ICC classification for
detecting Android malware collusions,” in
Proceedings of the IEEE Mobile Security
Technologies (MoST), in conjunction with the
IEEE Symposium on Security and Privacy, San
Jose, CA, USA (May 18-20, 2015).

[18] Common Intents, Android Developers, Android
Online Documentation, available online on

https://developer.android.com/guide/componen
ts/intents-common.html, accessed June 2016.

Timothy Heard, Software
Engineer (SDE), Amazon Web
Services. Bachelor of Sciences,
Software Engineering Rochester
Institute of Technology, 2014.
Professional Interests: Com-
puter Security; Software Deve-
lopment; Cloud Computing.

Professor Daryl Johnson is an
Associate Professor in the
Computing Security department
at Rochester Institute of Tech-
nology. He received his MS in
Computer Science from RIT in
1987. He has developed over
thirteen and co-developed over
twenty three new courses in net-
working, security and systems

administration as well as redesigning and
contributing to many others. He has been a
principal in the creation of three departments and
seven degrees. Most of his attention over the last
two decades has been in the areas of Computer and
Network Security with a focus on Covert
Communication, Botnet C&C and vulnerabilities in
SCADA/ICS/IOT. He has authored over a fifty
papers in the security area.

