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Abstract: In “Exploring a High-Capacity Covert Channel for the Android Operating System” [1], a covert channel for 
communicating between different applications on the Android operating system was introduced and evaluated. This 
covert channel proved to be capable of a much higher throughput than any other comparable channels which had been 
explored previously. This article will expand on the work which was started in [1]. Specifically, further improvements 
on the initial covert channel concept will be detailed and their impact with regards to channel throughput will be 
evaluated. In addition, a new protocol for managing connections and communications between collaborating 
applications purely using this channel will be defined and explored. A number of different potential mechanisms and 
techniques for detecting the presence and use of this covert channel will also be described and discussed, including 
possible counter-measures which could be implemented. Copyright © Research Institute for Intelligent Computer 
Systems, 2016. All rights reserved. 
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1. INTRODUCTION 

“Exploring a High-Capacity Covert Channel for 
the Android Operating System” [1] introduced a new 
covert channel for inter-application communication 
on Android which had a higher bandwidth than other 
similar covert channels which had previously been 
explored [2]–[9]. This channel is capable of 
encoding messages being used for some form of 
malicious activity within apparently legitimate 
traffic1 between applications by using the Android 
Intent messaging framework, which is a 
foundational part of the Android application 
architecture [10]. Specifically, the channel takes 
advantage of a special key-value store which can be 
included within these Intent messages (called a 
Bundle [11], [12]) by imposing significance on the 
types of values stored combined with a pre-arranged 
key ordering as shown in Fig. 1. 

The primary use of covert channels such as this 
one (i.e. covert channels for communicating 
discreetly between different Android applications) is 
to perform an application collusion attack [2]. This 
type of attack allows multiple applications to 
effectively pool their different permissions which 

                                                
1 Or even actually legitimate traffic. 

have been approved by the user2, in order to create 
dangerous combinations of permissions without the 
user approving, or even being aware of, that 
combination. For example, combining the 
permissions for a photo viewing application and an 
internet-enabled game would allow a user’s pictures 
to be sent off of the device to an attacker.  
 

 

Fig. 1 – Covert message encoded in Intent Bundle 

                                                
2 Android requires users to approve the set of permissions 
required by an application before that application can be 
installed. 
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Although this channel achieved a much higher 
bandwidth (with regards to the speed of transmitting 
covert message bits) than other similar covert 
channels, the bandwidth can be further improved, 
which will be detailed in Section 1. The subsequent 
section will introduce a dynamic protocol for 
communication with colluding application which 
uses these improvements. Section 3 will then discuss 
different possible approaches for detecting this 
channel as well as some potential counter-measures 
which could further reduce the detectability of the 
channel, followed by a conclusion. 

 
2. INCREASING CHANNEL BANDWIDTH 

The original implementation [1] increased the 
“alphabet” (i.e. set of unique symbols) available 
through the use of nested Bundles which were used 
to represent expansion code values. However, only 
one expansion code was used out of the 21 
expansion codes which are possible when using a 
single nested Bundle containing a single entry. 
Additionally, only six of the 21 possible values in 
this expansion set were used, leaving a significant 
opportunity for improvement. 

In order to make full use of the available value 
space, the encoding scheme used for this channel 
had to be modified. Specifically, the original static 
mapping of specific textual characters to the 
different available Bundle-value data types was 

abandoned and replaced by a conversion of message 
data into a single bit-string. These message bits were 
then divided into a series of “message fragments” 
(collections of bits) which were individually 
encoded onto the channel carrier (an Android 
Intent). With a set of 21 expansion codes, 22 unique 
sets of symbol/ message fragments were available 
(the base set of values plus 21 expansion sets), 
yielding a new alphabet containing 462 unique 
values (i.e. bit fragments), a more than 17-fold 
increase over the original 27-character alphabet. 

The capacity of the channel was further increased 
by modifying the approach used for encoding 
expansion code values. In the original 
implementation, expansion codes were encoded into 
a nested Bundle using the same datatype-to-value 
mapping used for regular data values. That 
expansion code value was then applied to the next 
entry in order within the root Bundle. By encoding 
the value that the expansion code applies to within 
the same nested Bundle, an additional expansion 
code value can be achieved. This was accomplished 
by using an implicit expansion code of one for 
nested Bundles containing a single key-value pairing 
(see Fig. 2). This minor modification yields to total 
of 22 expansion codes and 23 value sets (each 
containing 21 values) for a total of 483 unique 
values. 

 

 

Fig. 1 – New expansion code encoding strategy 

 
This increased symbol set allowed for the 

encoding of one 8- to 9-bit message fragment per 
key-value pairing (within the root Bundle). 
Specifically, the binary values 00000000 through 
11111111 and 100000000 through 111100010 were 
able to be encoded as message fragments3. Table 1 

                                                
3 0 through 482 in decimal 

shows an example of this. 
While this approach provides a potential increase 

in channel bandwidth, the “jaggedness” of the 
message fragments (i.e. the fact that message 
fragments do not have a uniform bit length) 
increases the complexity involved in reconstructing 
the contents of the covert message. The primary 
problem with this is that, as currently described, if 



Timothy Heard, Daryl Johnson / International Journal of Computing, 15(3) 2016, 191-199 

 

 193

the final fragment for a given covert message 
contains fewer than 8 bits it cannot be effectively 
represented. The most obvious solution is to pad the 
final fragment with zeroes, which can be seen in 
Table 1. However, doing so introduces a new 
problem: the receiver is unable to differentiate 
between zero bits used for padding and significant 
zero bits in the last fragment. 

 

Table 1. Message Fragmentation Example. 

Message 
Message 

Bytes 
Message 

Fragments 
Expansion 

Code 
Base 
Value 

´ 
11000010 110000101 18 11 
10110100 01101000 4 20 

h 01101000 110100001 19 18 
i 01101001 101001110 15 19 

´ 
11000010 00010101 1 0 
10110100 101000000 15 5 

 
In order to solve this problem, when encoding a 

covert message onto an Intent Bundle, the first value 
encoded should be the number of significant bits 
contained in the last fragment of the message. Using 
this approach, the receiver would be able to 
reconstruct the exact bit sequence which was sent 

while maximizing the use of the available value 
space. 

The original channel can be further improved by 

adding an additional dimension: multiple Intent 
actions. As mentioned in [2], the action field within 
an Intent can be used to implement a similar covert 
channel, with different pre-defined action strings 
mapping to specific values (0 and 1 for example). 
By combining these two covert channel concepts, a 
number of further enhancements are made possible. 

First, this allows for an even larger alphabet since 
each action string could be mapped to a distinct set 
of 483 values4. Therefore, the total number of unique 
values possible for a single Bundle entry would be 
given by the following equation: 
 

v = a * (e + 1) * b, (1) 

 
where ‘a’ is the number of different actions available 
for sending data, ‘e’ is the number of expansion 
codes, ‘b’ is the number of values in the base value 
set, and ‘v’ is the total number of unique values 
which can be represented. An example of this 
encoding scheme is shown in Table 2. 

An important consideration with such an 
approach is that the action strings used should not be 
ones which will cause a user-visible event to occur 
(such as ACTION_IMAGE_CAPTURE [13]). It is 
also worth noting that this does introduce additional 

                                                
4 Assuming the use of the 22 expansion codes and a base 
set of 21 values as described above. 

a = 4, e = 22, b = 21, v = 4 * (22 +1) * 21 = 1932 unique values 

Message Bytes Fragments Segments 

´ 
11000010 "A" => 11000010101 Action = "data-0" "C" => 0001101000 
10110100 "B" => 10100010101 Min Value = 0 "D" => 0110010100 

T 01010100 "C" => 0001101000 Max Value = 482 "F" => 0010111010 
h 01101000 "D" => 0110010100  "I" => 0110010000 
e 01100101 "E" => 10000001110  "J" => 0011000100 
 00100000 "F" => 0010111010  "N" => 0100000011 

q 01110001 "G" => 10110100101  "O" => 0011001101 
u 01110101 "H" => 10001101101   
i 01101001 "I" => 0110010000 Action = "data-1" No Values in Range 
c 01100011 "J" => 0011000100 Min Value = 483  
k 01101011 "K" => 11100100110 Max Value = 965  
 00100000 "L" => 1111011101   

b 01100010 "M" => 11011011100 Action = "data-2" "B" => 10100010101 
r 01110010 "N" => 0100000011 Min Value = 966 "R" => 10100000000 
o 01101111 "O" => 0011001101 Max Value = 1448 "E" => 10000001110 
w 01110111 "P" => 11101111000  "G" => 10110100101 
n 01101110 "Q" => 11000010101  "H" => 10001101101 
 00100000 "R" => 10100000000  "L" => 1111011101 
f 01100110    
o 01101111  Action = "data-3" "P" => 11101111000 
x 01111000  Min Value = 1449 "A" => 11000010101 

´ 
11000010  Max Value = 1931 "Q" => 11000010101 
10110100   "K" => 11100100110 

    "M" => 11011011100 

Table 2. Message Segmentation with Multiple Data Actions 
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complexities since values which span the different 
action-based value sets must be encoded in separate 
Intents, which could result in higher message 
fragmentation and require a larger number of Intents 
to send a given message. However, in certain 
circumstances sending smaller Intents may be more 
desirable if it is a better fit for the expected behavior 
of the involved applications. 

The second, and potentially greater benefit of this 
encoding strategy is the natural support for distinct 
data and control channels, which can be 
accomplished by designating one action string for 
sending control messages and one or more other 
actions for sending data-carrying Intents. An 
important consideration with this approach is that 
there needs to be a way to ensure the proper ordering 
of the different message segments (i.e. Intents) and 
also to indicate when all of the segments for the 
current message have been received. This can be 
accomplished by reserving two additional Bundle 
key positions to serve as metadata fields: one for the 
number of segments contained in the current 
message and another for the segment number of the 
current Intent. 

By implementing the enhancements to the 
original encoding scheme described in this section, 
significant improvements were seen. Specifically, by 
modifying the scheme to make full use of the 
available alphabet (i.e. value set), increasing the 
number of expansion codes available, and using 
multiple data-channel actions, throughputs of up to 
2,048,000 bits per second were observed -a more 
than 5800% increase over the highest throughput 
seen with the original implemation (which was 
34,996 bits per second [1])5. 

This data was collected by sending a number of 
different-sized messages using a variety of 
configurations of the covert channel and observing 
the amount of time required to transmit the message. 
Each of these tests was repeated multiple times and 
then the average of these transmission times was 
used to calculate the throughput. Table 3 gives the 
complete results of this testing6. 
 

3. CONNECTION MANAGEMENT 
PROTOCOL 

In addition to being able to transmit and receive 
covert messages over this channel, applications 
which desire to use it for performing a collusion 
attack will need a strategy for discovering and 

                                                
5 All of these numbers apply to the time required for 
transmission of covert data and do not include the time 
required to encode and decode the data. 
6 Results generated by running the tests on a Toshiba 
AT7-C running version 4.4.2 of the Android OS. 

establishing connections with each other. 
Leveraging the improvements detailed above, a 
dynamic application discovery and connection 
negotiation protocol can be defined. 

Similar to the covert channel itself, this protocol 
would require colluding applications to have certain 
elements established at build time (i.e. before being 
installed on a device). Specifically, they would need 
to have a pre-shared control/broadcast action string 
and an agreed upon covert message format 
(including what types of messages will be allowed). 
With these elements defined, applications would be 
able to be notified when a new another collaborating 
application is installed, exchange data, and become 
aware of colluding applications being removed from 
the device entirely using this covert channel. 

The first phase of this protocol, connection 
establishment, centers around the application 
installation process. Upon being installed on a 
device, an application would send a broadcast Intent 
using the pre-arranged control action “address”.  

Note that this broadcast should not be an ordered 
broadcast since delivery is not guaranteed in that 
case [14], [15]. The Intent would contain a set of 
metadata about the sending application’s capabilities 
encoded using the covert channel, with this metadata 
specifying what sensitive user information the 
application has access to (based on its declared 
permissions), what off-device exfiltration 
mechanisms it can provide access to, and the set of 
control and data actions it has receivers registered 
for.  

This initial broadcast Intent would be received by 
any previously installed application which is setup to 
collaborate with the new application. The existing 
application or applications would then extract and 
store the received metadata in a persistent 
connection state table and respond with their own 
metadata, potentially using a different Intent action 
(if one was specified in the initial broadcast 
message). 

Upon receiving a response, the new application 
would update its own state table, at which point a 
connection would have been established. This would 
provide the basis for a “source-sink” relationship as 
described in [2], wherein one application serves as a 
source of information and the other (the sink) 
provides a means for transporting that information 
off of the device. 



Timothy Heard, Daryl Johnson / International Journal of Computing, 15(3) 2016, 191-199 

 

 195

If no responses are received, the application 
would assume that there are not any other colluding 
applications installed on the device (i.e. this 
application is the first one to be installed) and wait 
to receive an announcement broadcast over the 
covert channel from another application. Note that if 
this application has the ability/permissions to act as 
a source application, it could still perform malicious 
activities while waiting for another application to be 
installed, such as collecting, processing, and/or 
aggregating user data in preparation for exfiltration. 

Once a covert connection has been established, 
the second phase of the protocol, data exchange, 
would begin. Two important message types which 

                                                
7 The base value-set size for all test runs was 21. 

could be used during this phase of the protocol are 
requests for specific information and requests to 
exfiltrate data. Requests for information would most 
reasonably be sent from “sink” applications (i.e. 
those capable of transmitting data off the device) to 
a source application (one with access to information 
of interest to the attacker) and should specify what 
type of data the request is interested in8. The request 
could also include additional parameters such as 
details on how the data should be delivered (what 
format, how fast, which action or action strings to 
use, etc.) as well as any filters which should be 

                                                
8 The types of data which the source application has 
access to would have been provided in that application’s 
initial broadcast message. 

Message Size 
(Bytes) 

Number of Expansion 
Codes7 

Number of Actions 
Number of Unique 

Values 
Average Throughput 

(Bits per Second) 

256 

0 
 

1 21 
2525 

179,200 
25 525 

 
231,564 

100 2100 217,600 

1 
1 42 166,400 
25 1050 256,000 
100 4200 256,000 

2 
1 63 174,933 
25 1575 256,000 
100 6300 256,000 

22 
1 483 81,067 
25 12075 256,000 
100 48300 256,000 

1024 

0 
1 21 204,800 
25 525 1,024,000 
100 2100 1,024,000 

1 
1 42 209,920 
25 1050 1,024,000 
100 4200 1,024,000 

2 
1 63 221,867 
25 1575 1,024,000 
100 6300 1,024,000 

22 
1 483 129,829 
25 12075 1,024,000 
100 48300 972,800 

2048 

0 
1 21 274,286 
25 525 2,048,000 
100 2100 2,048,000 

1 
1 42 227,556 
25 1050 2,048,000 
100 4200 2,048,000 

2 
1 63 163,840 
25 1575 2,048,000 
100 6300 2,048,000 

22 

1 483 97,995 
25 12075 2,048,000 

100 48300 2,048,000 

Table 3. Evaluation of Channel Improvements 
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applied. 
Conversely, requests to exfiltrate information 

would generally be sent from a source application to 
a sink application, although this type of message 
could be used by another sink application in order to 
gain access to an exfiltration strategy which it does 
not itself have the necessary permissions for (e.g. 
using the internet instead of SMS or vice-versa). 
Such requests could similarly include additional 
quantifiers. For example, the requester could specify 
which exfiltration strategy to use (if more than one is 
available9), including what medium to use, the rate 
of transfer, whether to use a discreet transfer 
approach such as steganography or a network covert 
channel, and/or an encryption key to use before 
transmitting the data. 

The third phase focuses on closing established 
connections which are no longer valid because the 
other destination application has been uninstalled. 
There are two basic ways to approach this problem. 
The first is to have every involved application setup 
their Intent filters to accept the 
ACTION_PACKAGE_REMOVED action, which 
will allow them to be notified upon removal of any 
other application [16]. Note that this requires the 
application name which will be used by the 
operating system in this broadcast to be included in 
the initial announcement message used for 
establishing covert connections. 

The second option would be to require every 
covert message to be acknowledged by the receiving 
application (using the covert channel). In that case, 
given the high reliability of this channel (the authors 
have not seen any cases of an Intent failing to be 
delivered), if an acknowledgement is not received 
within a set amount of time, the destination can be 
assumed to be invalid (due to removal from the 
device) and that entry can be removed from the state 
table. The disadvantage is that this approach is 
noisier (effectively doubles the number of covert 
messages which must be sent) and it introduces a 
greater delay in closing invalid connections. 
However, it could help avoid certain methods of 
detection, which will be discussed more in the next 
section.  

 
4. DETECTION 

At the time of this writing, the Android operating 
system does not inherently provide any mechanism 
for detecting or protecting against application 
collusion attacks of any kind, to say nothing of being 
able to detect the use of covert channels to conduct 
such attacks. As a result, the only barrier to 

                                                
9 This information would have been provided in the initial 
broadcast from the targeted sink. 

successfully conducting this type of attack is for the 
attacker to find a way to get a user to install multiple 
applications they have created. Such a person would 
likely publish their various malicious applications 
using multiple developer accounts to give the 
appearance that they are completely unrelated. 
Leveraging a dynamic discovery protocol such as 
the one described in the previous section, this could 
be a very effective approach for successfully 
executing application collusion attacks. 

In addition, this approach makes it difficult to 
detect the malicious intent of these colluding 
applications without introducing significant 
enhancements on the current Android security 
model. The first step would be to implement 
measures capable of detecting inappropriate and 
potentially dangerous flows of information between 
different applications. After this, it would be 
necessary to further improve these measures to be 
covert-channel aware in order to detect application 
collusion attacks which use that vector. 

Focusing specifically on collusion attacks which 
leverage the covert channel described in this article, 
there are a number of different approaches which 
could be taken to detect the use of this specific 
covert channel. Two general categories of detection 
techniques, static and dynamic analysis, will be 
discussed below. 

With regards to static analysis10, the most 
obvious route is to inspect the declared Intent filters 
of the installed applications and, using this 
information, construct a relationship graph between 
all of these applications as seen in [17]. This could 
serve as a reasonable starting point for more detailed 
analysis by providing a set of applications which 
may be involved in a collusion attack. This 
relationship graph could be further enhanced by also 
considering what types of Intents each application 
will send based on an analysis of the application 
source code11. However, given that Intents are 
explicitly designed to be sent between different 
applications, this is not sufficient to definitively 
determine the existence or non-existence of this 
channel. 

Another possible static analysis technique would 
be to analyze the application code for instances of 
logic for encoding information within Bundle value 
data-types. While this is a far more definitive 
strategy, there would be a risk of both false positives 
and false negatives, especially given the possibility 
of deliberate obfuscation of this logic. A different 

                                                
10 Analyzing the application artifacts without executing 
the program. 
11 This would either have to be provided by the developer, 
which is unlikely, or decompiled from the Android 
Application Package (APK) file for the application. 
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aspect of the application logic which could 
contribute to such analysis would be the use of 
explicit Intents, which target a specific application 
by name and will be received by that application 
regardless of its Intent filters. Such Intents could be 
used to circumvent analysis which only looks at 
each application’s declared filters [10].  

In the realm of dynamic analysis, a number of 
other approaches are available which can be further 
categorized based on what level of privileges they 
require (user or system). The options at the user 
level are obviously more limited than at system 
level, with the tradeoff being that such techniques 
are much more straightforward to implement as they 
do not require rooting the device or modifying any 
part of the Android operating system. 

The user-level approach which is most likely to 
provide a benefit with regards to detecting this 
covert channel would be Intent “sniffing” (collecting 
and analyzing Intent traffic on the device). This 
would provide the opportunity to examine the 
contents of Intents that have been sent for any 
indication that this channel is being used. These 
indicators could include unusually large Intent 
Bundles, Bundles containing an unusually high 
number of key-value pairs, Bundle keys which 
appear to be randomly generated, an abnormal 
degree of Bundle nesting, and/or an unusual number 
of Intents being sent to and/or from a particular 
application. Statistical analysis techniques might 
also be able to applied to the contents of these 
Intents to look for unexpected or uncommon 
patterns, focusing on the data-types within each 
Intent Bundle.  

It is important to note that all of these indicators 
would first require a baseline to be established for 
the system in order to create definitions for 
“unusual” and “abnormal” in the context of the 
applications which are installed on the device12. Also 
worth noting is the fact that this channel could be 
tuned in order to avoid these indicators at the cost of 
decreased bandwidth. For example, the keys could 
be generated using a dictionary of words which fit 
the overt purpose of both the sending and receiving 
application. Another shortcoming of this approach is 
that there is no way to guarantee that all of the Intent 
traffic on the device will be seen since the sniffing 
application would only receive Intents which match 
its Intent filter, limiting it to Intent types that its 
creators are aware of. Beyond this, Intents which are 
not sent as a broadcast will only be received by one 
application, and if more than one application has a 

                                                
12 It would also be possible to create a baseline from a 
survey of the Intent traffic patterns of a sufficient number 
of different applications. [17], [18] may also be useful 
starting points. 

matching Intent filter, the user will be prompted to 
select an application to use. This requires the user to 
be aware of what this prompt means as well as the 
reason for selecting the sniffer application. The more 
likely scenario is that the added noise will be viewed 
as an annoyance by users who will eventually 
ignore, or even remove, the sniffer. 

In contrast, a monitoring application operating at 
the system (root) level would be able to ensure that 
it receives a copy of every Intent sent on the system 
without requiring any on-going involvement from 
the user13. This would enable a complete picture of 
the system Intent traffic to be constructed, including 
an accurate baseline which could (and should) be 
adapted as applications are installed and removed. 
At this point, a greater confidence could be placed 
on any anomalies detected. 

Performing monitoring from within the operating 
system also opens more avenues for reacting to any 
possible uses of this channel which are detected. 
One of the simplest and least obtrusive options 
would be to notify the user of the event and allow 
them to take any action they choose. Going beyond 
this, the monitoring application could also 
incorporate the functionality of an intrusion 
prevention system (IPS) in addition to that of an 
intrusion detection system (IDS) by isolating or even 
removing suspect applications automatically. 

Leveraging this concept, such a system could 
also perform active analysis in addition to passive 
monitoring. Specifically, once the system baseline 
has been established, the monitoring program could 
isolate the installed applications one at a time (i.e. 
prevent any Intent traffic to or from the application) 
and then examine how the baseline changes. First, 
the Intent traffic which the isolated application 
attempts to send could be analyzed to look for 
changes in that applications Intent traffic pattern in 
reaction to not receiving Intent messages from any 
other applications. Second, since the application 
would not have been uninstalled at this point, any 
colluding applications would have to assume that it 
is still installed until they send a message to it, 
which would be noted by the monitoring application. 
Of course, there is no guarantee about the timing of 
such a message. Also, such messages could easily be 
sent as a broadcast designed to match the Intent filter 
of applications not involved in the channel in 
addition to the actual intended receiver, which 
would further increase the difficulty of definitively 
proving the use of this channel through this 
technique alone. 

Ultimately, it may be difficult for any single 
analysis technique to reliably identify the presence 

                                                
13 Note that this would require modification of the 
operating system code for handling Intents. 
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and use of this covert channel. However, it should be 
possible to combine multiple analysis techniques, 
with each contributing input into an algorithm for 
flagging potential use of the channel based on this 
information. This, in effect, creates a concept of a 
“trust score” for each application, with each input 
(i.e. analysis technique) affecting the total score 
based on its weight (how effective and reliable that 
technique is when used on its own). The decision 
algorithm responsible for combining the various 
inputs could then be little more than a weighted 
calculation of the trust score for each application 
followed by a check against a pre-defined trust score 
threshold.  

 
5. CONCLUSION 

As has been previously stated [1], [2] and has 
been emphasized here, application collusion attacks 
provide a simple yet effective means to circumvent 
the existing Android security system. Covert 
channels can provide a powerful means of executing 
such attacks, even in the presence of additional 
security controls which attempt to look for them. 
The channel detailed in this article is particularly 
potent given its high bandwidth relative to other 
similar covert channels and its ability to easily 
support a flexible and adaptable inter-application 
control structure14.  

That being said, a number of potential options for 
addressing this particular danger do exist. Further 
evaluation is needed in order to determine which of 
these techniques will be the most effective and then, 
most importantly, the results of these efforts must be 
applied to the Android security system in order to 
better protect the users of that system. 
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