
Dmytro Fedasyuk, Tetyana Marusenkova, Ratybor Chopey / International Journal of Computing, 17(2) 2018, 94-101

 94

A METHOD OF PREDICTING THE MAINTENANCE PERIOD OF
EMBEDDED SYSTEMS FOR PREVENTING BREACH OF THEIR TIME

REQUIREMENTS

Dmytro Fedasyuk, Tetyana Marusenkova, Ratybor Chopey

Lviv Polytechnic National University, 12 Bandery str., 79013, Lviv, Ukraine, http://www.lp.edu.ua
fedasyuk@gmail.com, tetyana.marus@gmail.com, chopey.ratybor@gmail.com

Paper history:
Received 14 February 2018
Received in revised form 24 April 2018
Accepted 04 May 2018
Available online 30 June 2018

Keywords:
real-time embedded system;
predicting maintenance period;
firmware execution time;
hardware aging.

Abstract: The work deals with a significant problem of ensuring that the
execution time of a firmware running inside a microcontroller-based real-time
embedded system never goes out of its expected range, no matter for how long
the embedded system has been used. Once having been tested before the first
usage, a newly created embedded system is gradually getting slower in its
response, due to the fact that its hardware components get worn-out with aging.
A possible solution is a replacement of the hardware components that most
contribute to such a change in the response time of the embedded system. If such
a replacement takes place too far in advance, long before hardware components
actually start showing any decline in their response time, the above-mentioned
solution is cost-ineffective and impractical, as it leads to a waste of equipment
and efforts. We introduce a method for predicting the appropriate maintenance
period of a real-time embedded system on the basis of the characteristics of its
hardware components.

Copyright © Research Institute for Intelligent Computer Systems, 2018.
All rights reserved.

1. INTRODUCTION

The firmware execution time is one of the most
important metrics of software running in real-time
embedded systems, as the applicability of the latter
depends not only on the logical correctness of such a
software, but also on the timeliness of its results [1].
If a real-time embedded system fails to accomplish
its time-critical functions on time, it might lead to
catastrophic consequences, thus a breach of time
requirements can be considered as the failure of a
system.

Thus, in order to ensure the required level of
reliability and safety of real-time embedded systems,
additional kinds of software analysis should be
applied to them. One of such kinds is an analysis of
the firmware execution time controlled by standards
DO178B [2] and ARINC 653 [3]. However, these
standards do not regulate any conditions for testing
and do not prescribe any methods that would make
allowances for the fact that hardware components of
an embedded system are gradually getting worn-out
over time and, for this reason, the response time of
any embedded system tends to worsen over time (the
longer an embedded system has been in use, the
slower its response time proves to be).

One of the ways to keep the firmware execution
time within its expected range is to perform the
maintenance of an embedded system on time, i.e., to
replace all the hardware items composing the
system, that tend to show some noticeable decline in
their response time with age.

If a replacement of hardware components has
been done too early, long before any considerable
change in the firmware response time takes place,
the procedure proves to be a waste of components,
costs for the delivery of an embedded system under
maintenance to the manufacturer’s office, and
human resources responsible for such a replacement.
On the other hand, if a replacement takes place too
late, the whole embedded system does not respond
within an expected time period any longer, i.e., fails
to function properly.

In [4] the approach and modeling technique for
estimation availability function of FPGA based-
systems using a two different strategy of
maintenance was presented. However, this approach
can be used for estimating embedded system that is
based on microcontroller.

The work is aimed at the development of a
method that would enable a manufacturer of a real-

computing@computingonline.net
www.computingonline.net

Print ISSN 1727-6209
On-line ISSN 2312-5381

International Journal of Computing

Dmytro Fedasyuk, Tetyana Marusenkova, Ratybor Chopey / International Journal of Computing, 17(2) 2018, 94-101

 95

time embedded system to determine the most
reasonable maintenance period, i.e., such a
maintenance period that is free of a waste of time
and costs attendant to replacing old specimens of
hardware components with new ones and, at the
same time, enables the manufacturer to ensure that
the execution time of the firmware running in the
embedded system never exceeds its maximum
allowed value.

2. RELEVANT WORKS

All the modern methods for analysis of the
firmware execution time fall into two large groups in
accordance with the main principle of their
execution: static methods and dynamic methods.

Static methods do not assume any real firmware
execution, i.e. the firmware runs neither in an
embedded system nor in an emulator during static
analysis. All methods of this group use the source
code of the firmware in question and/or the model of
the hardware architecture of the embedded system
being considered.

Since the architectures of processors are
constantly evolving, there is a constant need in
modification of the existing models so that they keep
applicable. Thus, when a new processor hardware
model is developed, those who work on
modification of static models focus their attention on
the structure of the cash memory and the analysis of
the content of the cash [5-7], the structure of the
instruction pipeline [8, 9], and losses in data rate
during transmitting data via communication
interfaces [10]. However, the more sophisticated the
architectures of modern processors become, the
more efforts and time their analysis and modification
of the models require.

Moreover, static methods never take into
consideration the influence of the environment on
the firmware execution time. Besides, static methods
do not make allowances for the dependence of the
firmware execution time on the age of the
underlying hardware components.

Dynamic methods for analysis of the firmware
execution time are based on the actual measurement
of the response time of the firmware running inside a
real embedded system or a simulator. Due to their
close connection with the real execution of
firmware, they are considered to be potentially more
accurate than static methods, for any measured
execution time does include the influence of
different ambient factors implicitly. Thus, a dynamic
method makes allowances for a variety of factors
influencing the firmware execution time and not
only the source code itself. Moreover, in most cases
measurement of the execution time is performed in
real working conditions, but not in some artificial,
laboratory environment, completely different from

the real one. Typically, dynamic methods are applied
to measure the firmware execution time using a
logical analyzer or an oscilloscope [11, 12],
hardware tracing [13, 14], integration of an
additional code into an embedded system being
tested [15, 16] or simulators of an embedded system
[17]. Each of these approaches has their advantages
and disadvantages. However, neither of dynamic
methods takes into consideration the fact that the
execution time of any firmware running inside a real
embedded system might change because the
underlying hardware components change their
behavior with age. Thus, these dynamic methods
provide one-shot results for an embedded system
either before it started being used or at the very
beginning of its life cycle, but no predictions were
made what would happen to the firmware execution
time with age.

All the above said statements lead to the idea of
developing a method that would promote to
determine the maintenance period to ensure that the
execution time of the firmware running in the
embedded system never exceeds its maximum
allowed value.

3. CONCEPT CONSTRUCT AND TASK
FORMULATION

In order to predict the execution time of a
program code, we represent the code as a control
flow graph (Fig. 1).

Figure 1 – An example of a control flow graph that
represents a function in a program.

Dmytro Fedasyuk, Tetyana Marusenkova, Ratybor Chopey / International Journal of Computing, 17(2) 2018, 94-101

 96

The vertices of a control flow graph denote
operators or function calls. The edges represent
connections between vertices.

The execution time of any branch in a program

(b) can be calculated by the following formula:





n

i
ib

1

 , (1)

where i is the time spent on vertex i (i.e., the time

spent on execution of instruction i), n is the total
number of vertices in the branch.

The total execution time of a program branch
depends not only on the duration of an instruction
but on the response time of different peripheral
devices as well, and the latter tend to get slower in
their response over time.

Taking into account this fact, we can expand
formula (1) as follows:

)(
11

T
l

i
i

k

j
jb 



  , (2)

where j is the time spent on vertex j (the time of

execution of the corresponding instruction), k is the
number of vertices that take always the same amount
of time to be executed (the corresponding
instructions do not depend on any peripheral
devices, but on the microcontroller’s computational

resources only), і is the time spent on execution of

an instruction that depends on the response time of a
peripheral device (the response time changes with
the age of a peripheral device), T is the time period
of the embedded system’s being in use, l is the
number of vertices such that the time spent on them
depends on the response time of peripheral devices
composing the embedded system.

Thus, we came to the conclusion that there exists
a lack of such a method for estimation of the
firmware execution time that would make
allowances for the fact that the response time of
peripheral devices changes over the time of their
use. Such a method would allow calculation of the
maintenance period of an embedded system in
question.

4. MATHEMATICAL MODELS

4.1 INPUT DATA

In accordance with the technical report [18], we
established the dependence of the response time of a
hardware component on the time during which it has
been in use. The results are summarized in Table 1.

Table 1. The influence of aging of a peripheral device
on the response time.

Time of being in use,
years

The difference between
the actual value of the

response time of a
peripheral device and its

nominal value, %
0 0

0.25 10

0.5 10
0.6 10
1.7 10
1.9 15
2.2 15
3 18

The nominal value of the response time is equal

to 7.812·10-3 s [19]. The results of calculation of the
response time of a peripheral device on the basis of
the data from Table 1, are presented in Table 2.

Table 2. The dependence of the response time on how
long the system has been in use.

The time of being in
use, years

The response time of a
peripheral device, s

0 7.8125·10-3

0.25 8.59375·10-3

0.5 8.59375·10-3

0.6 8.59375·10-3

1.7 8.59375·10-3

1.9 8.984375·10-3

2.2 8.984375·10-3

3 9.21875·10-3

The dependence of the response time on the time

of being in use, drawn on the basis of the
experimental data, is shown in Fig. 2.

Figure 2 –The dependence of the response time on the
time of being in use.

Having analyzed the above-stated data, one can
conclude that the analytical dependence could be
approximated well enough using regression methods

Dmytro Fedasyuk, Tetyana Marusenkova, Ratybor Chopey / International Journal of Computing, 17(2) 2018, 94-101

 97

including methods of linear, cubic and logarithmic
regression.

4.2 CHOSING AN APPROPRIATE MODEL

In order to calculate the response time of a
peripheral device using the linear regression method,
we apply the following formula:

ˆ aT b   , (3)

where T is the time period during which the
peripheral device has been used, and a and b are
some coefficients that can be evaluated using
formulas (4) and (5):





















n

i
i

n

i
i

n

i
ii

n

i
i

n

i
i

TnT

TnT

a

1

2

2

1

111



, (4)





















n

i
i

n

i
i

n

i
i

n

i
i

n

i
ii

n

i
i

TnT

TTT

b

1

2

2

1

11

2

11



. (5)

Using formulas (4) and (5), we can figure out that

the values of the coefficients a and b for
approximation by the linear regression method are as
follows:

0003.0a , 0083.0b . (6)

In order to evaluate the response time of a
peripheral device using the cubic regression method,
we apply the following formula:

3 2ˆ aT bT cT d     , (7)

where cba ,, and d are some coefficients that can

be evaluated when solving the following equation
set:











































;

,

,

,

1

3

1

3

1

4

1

5

1

6

1

2

1

2

1

3

1

4

1

5

111

2

1

3

1

4

111

2

1

3

n

i

ii

n

i

i

n

i

i

n

i

i

n

i

i

n

i

ii

n

i

i

n

i

i

n

i

i

n

i

i

n

i

ii

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

TTdTcTbTa

TTdTcTbTa

TTdTcTbTa

ndTcTbTa









 (8)

Using formula (8) we evaluate the values of the
coefficients cba ,, and d for approximation by the

cubic regression method:

0002.0a , 001.0b , 0017.0c ,

008.0d .
(9)

The response time of a peripheral device using

the logarithmic regression method can be calculated
by the applying the following formula:

ˆ lna b T   , (10)

where a and b are some coefficients that have to
be calculated using formulas (11) and (12).

 

 

 

 














n

i

n

i
ii

n

i

n

i
i

n

i
iii

TTn

TTn

b

1 1

2

1 11

ln

ln)ln(

, (11)





n

i
i

n

i
i T

n

b

n
a

11

ln
1

 . (12)

Using formulas (11) and (12), we have figured

out that the values of coefficients a and b for
approximation by the logarithmic regression
methods are as follows:

0083.0a , 0391.1b . (13)

4.3 THE INACCURACY OF THE MODELS

In order to choose the most appropriate
regression model, we have to verify how the results
provided by each of the above-mentioned models fit
the experimental data. In order to do this, we first
visualize the analytical dependencies obtained on the
basis of the coefficients, calculated previously, and
visually compare the resulting curves with the graph
built on the basis of the experimental data.

Then, we choose a number of equal-distant points
on the time axis that did not participate in either of
the above-mentioned equation sets used for
calculation of coefficients a and b . For each of the
chosen time points, we evaluate the difference
between the experimental data and the results
provided by each of the regression methods.

The average approximation error is calculated by
the formula:

1
100

ˆ
%i i

i

A
n

 




  . (14)

Dmytro Fedasyuk, Tetyana Marusenkova, Ratybor Chopey / International Journal of Computing, 17(2) 2018, 94-101

 98

Using formula (14) we calculated the average
approximation errors:

for linear regression method:

%05.2A , (15)

for cubic regression method:

%53.1A , (16)

for logarithmic regression method:

%64.1A . (17)

For visual comparison of the obtained results, we

show a graph depicting the experimental data and
the approximation results obtained by the linear,
cubic and logarithmic regression methods, Fig. 3.

Figure 3 – The experimental data and analytical
dependencies of the response time of a peripheral

device on the time of being in use.

As one can see on the graph, the cubic regression

method provides the least approximation inaccuracy
(on average). Thus, we chose this method for
predicting the firmware execution time and the right
time moments of embedded systems’ maintenance.

5. EXPERIMENTS

In order to verify our ideas about the importance
of taking into account the aging effects of electronic
units for predicting an appropriate maintenance
period of an embedded system, we chose a
commercial product, the main functions of which
include regular measurement of the temperature and
pressure inside industrial pumps, logging all the
values of the temperature and pressure lower or
higher than their allowed lower an upper limits
correspondingly, and control of valves on the basis
of the temperature and pressure readings.

The firmware thread responsible for
measurement is shown in Fig. 4.

Figure 4 – An example of a time-critical thread in
firmware.

In accordance with the user requirements, the

thread responsible for measurement should be
executed each 100 ms, and the maximum execution
time of the thread’s fragment intended for
measurement and saving data, should not exceed 70
ms.

The thread used here as an example contains
functions of two types:

 Functions, the execution time of which
depends only on the computational
capabilities of the underlying microcontroller
(osSignalWait, memset, local_compensation,
ADC_code2temp).

 Functions, the execution time of which
depends on the response time of peripheral
devices (the execution time of function
ADS_Read() depends on the response time of
an external ADC ASD1118. The execution
time of function WriteToExternalMemory()

Dmytro Fedasyuk, Tetyana Marusenkova, Ratybor Chopey / International Journal of Computing, 17(2) 2018, 94-101

 99

depends on the response time of an external
flash memory. The execution time of
Valve_control function depends on the
execution time of the module responsible for
controlling the valves.

In order to predict the execution time of a
firmware fragment, we find out that the nominal
value of the response time for external ADC
ADS1118 is equal to 15.625 mcs, in accordance
with the device’s datasheet [19].

From the datasheet [20] of flash memory
AT45DB041E we fetch the nominal value of its
response time (0.5 mcs).

Here we assume that the dependence of the
response time on the time of being in use is similar
to that one presented in Table 1.

We have calculated the response time of the
peripheral devices in the reference points. The
calculation results are given in Tables 3 and 4.

Table 3. The dependence of the response time of ADC
ADS1118 on the time during which it has been in use.

Time of being in use,
years

The response time of a
peripheral device, s

0 15.625·10-3
0.25 17.188·10-3
0.5 17.188·10-3
0.6 17.188·10-3
1.7 17.188·10-3
1.9 17.969·10-3
2.2 17.969·10-3
3 18.438·10-3

Table 4. The dependence of the response time of Flash
AT45DB041E on the time during which it has been in

use.

Time of being in use,
years

The response time of a
peripheral device, s

0 0.5·10-3
0.25 0.55·10-3
0.5 0.55·10-3
0.6 0.55·10-3
1.7 0.55·10-3
1.9 0.575·10-3
2.2 0.575·10-3
3 0.59·10-3

Using formula (8), we calculate the following:
1) The approximation coefficients for

calculating the response time of ADC
ADS1118.

0004.0a , 0021.0b , 0034.0c ,

0159.0d .
(18)

2) The approximation coefficients for
calculating the response time of flash
memory AT45DB041E.

0a , 0001.0b , 0001.0c ,

0005.0d .
(19)

Using the approach described in [10], we

estimate the execution time of each function that
depends only on the computational resources of the
underlying microcontroller.

In accordance with formula (2), we evaluate the
execution time of the fragment of the thread in
firmware intended for measuring and logging data.
The calculation results of the execution time with
consideration of the aging effect and without such
consideration are shown in Fig. 5.

Fig. 5 – The execution time of a software code that
taking into account the aging effect and without it.

The obtained results demonstrate that if one
ignores the influence of the aging effect of a
peripheral device on the response time of the latter
particularly and the firmware execution time in
general, one is likely to underestimate the execution
time of the whole embedded system’s firmware
drastically, and such an underestimation might have
catastrophic consequences in real-time embedded
systems.

Making allowances for the influence of the aging
effect on the firmware execution time would enable
us to predict the right time for the maintenance of an
embedded system before the latter becomes
inapplicable because it fails to perform its time-
critical tasks quickly enough.

For example, on the basis of the obtained results,
we came to the conclusion that in order to ensure
that a specific firmware fragment meets its required
execution time, one should replace the worn-out
components in the embedded system in question
after three years of being in use.

Dmytro Fedasyuk, Tetyana Marusenkova, Ratybor Chopey / International Journal of Computing, 17(2) 2018, 94-101

 100

6. DISCUSSION OF THE RESULTS

The research carried out by the authors show that
the least approximation inaccuracy can be achieved
due to the cubic regression method, thus one needs
to choose the cubic approximation when predicting
the suitable maintenance period.

It’s worth bearing in mind that in order to
calculate the approximation coefficients with the
minimum inaccuracy we need to use the response
time of a peripheral device, not the difference
between the nominal value of the response time and
the actual value.

For this reason, one should evaluate the
approximation coefficients for each peripheral
device individually, even if different peripheral
devices are characterized by the same change of
their response time with respect to the nominal value
in percent, with age. For example, device 1
responses within 1 ms, device 2 – within 5 ms and
device 3 – within 7 ms and the response time of each
of these devices changes by 10% after three months
and by 15% after six months of being in use. Despite
the fact that it would be convenient to operate with
relative values, which are identical for the three
devices, we still should take the absolute value of
the response time of each device individually.

Significant advantage is in the fact that input data
for proposed method can be obtained using any
static or dynamic method for analysis of the
firmware execution time, which was represented in
chapter 2.

7. CONCLUSION AND FUTURE WORK

In this work, we have solved an important
problem of determining the most appropriate time
moments for maintaining an embedded system in
order to ensure that the execution time of the
firmware running in this system is kept within its
required range and the system is still able to perform
its time-critical tasks on time.

The approximation coefficients presented in this
paper are unique for the hardware component taken
as an example to show the significance of the aging
effect in electronic units in general. In order to apply
the proposed method for predicting the most
appropriate maintenance period for an arbitrary
microcontroller-based real-time embedded system,
one should take the following steps. First, one is
supposed to detect the hardware components that
tend to change their behavior over time and apply
the cubic regression method in order to draw the
analytical dependency of the hardware component’s
response time on the time period, during which it
has been in use. One should make sure that the
analytical dependency is correct by evaluation the
average approximation error. Then, one finds the

maximum time value at which the execution time
calculated using formula (2) still does not exceed the
allowed limit.

Our further planned research is aimed at
automating the proposed approach and integrating
the module that implements it into a software tool
intended for automated testing of the execution time
of firmware running in embedded systems.

7. REFERENCES

[1] J. Stankovic, “Misconceptions about real-time
computing: a serious problem for next
generation systems,” Computer, Vol. 21, Issue
10, pp. 10-19, 1988. DOI: 10.1109/2.7053

[2] T. K. Ferrel, U. D. Ferrel, RTCA DO-
178B/EUROCAE ED-12B, Ferrell and
Associates Consulting.

[3] ARINC 653 - An Avionics Standard for Safe,
Partitioned Systems. Wind River Systems,
IEEE Seminar, 2008.

[4] V. Kharchenko, Y. Ponochovnyi, A.-S. M. Q.
Abdulmunem and A. Boyarchuk, “Security and
availability models for smart building
automation systems”, International Journal of
Computing, Vol. 16, Issue 4, pp. 194-202,
2017.

[5] X. Li, A. Roychoudhury, T. Mitra, “Modeling
out-of-order processors for software timing
analysis,” in Proceedings of the 25th IEEE
Real-Time Systems Symposium (RTSS’04),
Libon, December 5-8, 2004, pp. 92-103. DOI:
10.1109/REAL.2004.33.

[6] J. Souyris, E. Pavec, G. Himbert, “Computing
the worst-case execution time of an avionics
program by abstract interpretation,” in
Proceedings of the 5th International Workshop
on Worst-Case Execution Time Analysis,
(WCET’2005), Palma de Mallorca, July 5,
2005, pp. 55-59. DOI:10.4230/OASIcs.WCET.
2005.810.

[7] C. Ferdinand, R. Heckmann, H. Theiling,
“Convenient user annotations for a WCET
tool,” in Proceedings of the 3-rd International
Workshop on Worst-Case Execution Time
Analysis, (WCET’2003), Porto, July 1, 2003.
pp. 17–20.

[8] J. Engblom Processor Pipelines and Static
Worst-Case Execution Time Analysis: Ph.D.
thesis / J. Engblom – Uppsala: Uppsala
University, 2002. ISBN 91-554-5228-0.

[9] C. Healy, R. Arnold, F. Muller, “Bounding
pipeline and instruction cache performance,”
IEEE Transactions on Computers, Vol. 48,
Issue 1, pp. 53-70, 1999. DOI:
10.1109/12.743411.

Dmytro Fedasyuk, Tetyana Marusenkova, Ratybor Chopey / International Journal of Computing, 17(2) 2018, 94-101

 101

[10] P. Atanassov, R. Kirner, P. Puschner, “Using
real hardware to create an accurate timing
model for execution-time analysis,” in
Proceedings of the IEEE Real-Time Embedded
Systems Workshop, held in conjunction with
(RTSS'2001), 2001.

[11] D. Stewart, “Measuring execution time and
real-time performance,” in Proceedings of the
Embedded Systems Conference (ESCSF), San
Francisco, 2004.

[12] Y. Zhang, Evaluation of methods for dynamic
time analysis for CC systems AB, Thesis of
Master’s degree, Vasteras, Malardalen
University, 2005.

[13] M. Wahler, E. Ferranti, R. Steiger, R. Jain,
“CAST: automating software tests for
embedded systems,” in Proceedings of the 15th
International Conference on Software Testing,
Verification and Validation, April 17-21, 2012,
pp. 123-133. DOI: 10.1109/ICST.2012.126.

[14] R. Chopey, B. Knysh, D. Fedasyuk, “The
model of software execution time remote
testing,” in Proceedings of the 9th International
Conference of Young Scientists «Computer
Science and Engineering 2017» (CSE’2017),
Lviv, 2017, pp. 398–402.

[15] R. Kirner, “The WCET Analysis Tool
CalcWcet167,” in Proceedings of the 5th
International Symposium on Leveraging
Applications of Formal Methods, Verification
and Validation. Applications and Case Studies,
October 15-18, 2012, pp. 158-172. DOI:
10.1007/978-3-642-34032-1_17.

[16] D. Fedasyuk, R. Chopey, B. Knysh,
“Architecture of a tool for automated testing
the worst-case execution time of real-time
embedded systems' firmware,” in Proceedings
of the 14th International Conference of
Experience of Designing and Application of
CAD Systems in Microelectronics (CADSM),
Lviv, February 21-25, 2017, pp. 278–282. DOI:
10.1109/CADSM.2017.7916134

[17] J. Engblom, F. Stappert, A. Ermedahl,
“Structured testing of worst-case execution
time analysis tools,” in Proceedings of the 21st
Real-Time System Symposium (RTSS/WIP’00),
Orlando, November 27-30, 2000, pp. 154–163.

[18] U.S. Nuclear Regulatory Commission, Effect of
Aging on Response Time of Nuclear Plant
Pressure Sensors, Washington DC, 1989.

[19] ADS1118 Ultrasmall, Low-Power, SPI™-
Compatible, 16-Bit Analog-to-Digital
Converter with Internal Reference and
Temperature Sensor. Texas Instruments, 2013.

[20] AT45DB041E 4-Mbit DataFlash SPI Serial
Flash Memory. Adesto Technologies, 2013.

Dmytro V. Fedasyuk was born
in 1955. In 2000 he became a
doctor of science after defending
his work in Lviv. In 2002 he was
promoted to the academic rank
of professor. His scientific
contribution is contained in four
monographs and over 250 works
published in a wide range of

scientific journals included those well-known all over
the world.

His main fields of interest are mathematical
modeling; modeling and analysis of thermo-electrical
processes in microelectronic systems, Internet
technologies, software design.

Tetyana A. Marusenkova was
born in 1982. In 2011 she joined
Software Department of Lviv
Polytechnic National University
as a teacher. In 2014 she started
working in the team built of
teachers and students of
Software department in order to
develop embedded systems in

collaboration with Dinamica Generale S.p.A., an
Italian company providing modern electronic
solutions and sensors.

She is a co-author of over 50 papers and
proceedings.

Ratybor S. Chopey is a
postgraduate student of the
Software Department of Lviv
Polytechnic National University. He
received his master degree in
radio-frequency engineering in Lviv
Polytechnic National University in
2014.

He is a co-author of 7 papers in
scientific journals and international

conferences proceedings. His area of interest is
embedded systems and the reliability of complex
systems

