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Abstract: The work deals with a significant problem of ensuring that the 
execution time of a firmware running inside a microcontroller-based real-time 
embedded system never goes out of its expected range, no matter for how long 
the embedded system has been used. Once having been tested before the first 
usage, a newly created embedded system is gradually getting slower in its 
response, due to the fact that its hardware components get worn-out with aging. 
A possible solution is a replacement of the hardware components that most 
contribute to such a change in the response time of the embedded system. If such 
a replacement takes place too far in advance, long before hardware components 
actually start showing any decline in their response time, the above-mentioned 
solution is cost-ineffective and impractical, as it leads to a waste of equipment 
and efforts. We introduce a method for predicting the appropriate maintenance 
period of a real-time embedded system on the basis of the characteristics of its 
hardware components. 

Copyright © Research Institute for Intelligent Computer Systems, 2018.  
All rights reserved. 

 

 

1. INTRODUCTION 

The firmware execution time is one of the most 
important metrics of software running in real-time 
embedded systems, as the applicability of the latter 
depends not only on the logical correctness of such a 
software, but also on the timeliness of its results [1]. 
If a real-time embedded system fails to accomplish 
its time-critical functions on time, it might lead to 
catastrophic consequences, thus a breach of time 
requirements can be considered as the failure of a 
system. 

Thus, in order to ensure the required level of 
reliability and safety of real-time embedded systems, 
additional kinds of software analysis should be 
applied to them. One of such kinds is an analysis of 
the firmware execution time controlled by standards 
DO178B [2] and ARINC 653 [3]. However, these 
standards do not regulate any conditions for testing 
and do not prescribe any methods that would make 
allowances for the fact that hardware components of 
an embedded system are gradually getting worn-out 
over time and, for this reason, the response time of 
any embedded system tends to worsen over time (the 
longer an embedded system has been in use, the 
slower its response time proves to be). 

One of the ways to keep the firmware execution 
time within its expected range is to perform the 
maintenance of an embedded system on time, i.e., to 
replace all the hardware items composing the 
system, that tend to show some noticeable decline in 
their response time with age.  

If a replacement of hardware components has 
been done too early, long before any considerable 
change in the firmware response time takes place, 
the procedure proves to be a waste of components, 
costs for the delivery of an embedded system under 
maintenance to the manufacturer’s office, and 
human resources responsible for such a replacement. 
On the other hand, if a replacement takes place too 
late, the whole embedded system does not respond 
within an expected time period any longer, i.e., fails 
to function properly.  

In [4] the approach and modeling technique for 
estimation availability function of FPGA based-
systems using a two different strategy of 
maintenance was presented. However, this approach 
can be used for estimating embedded system that is 
based on microcontroller. 

The work is aimed at the development of a 
method that would enable a manufacturer of a real-
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time embedded system to determine the most 
reasonable maintenance period, i.e., such a 
maintenance period that is free of a waste of time 
and costs attendant to replacing old specimens of 
hardware components with new ones and, at the 
same time, enables the manufacturer to ensure that 
the execution time of the firmware running in the 
embedded system never exceeds its maximum 
allowed value. 
 

2. RELEVANT WORKS 

All the modern methods for analysis of the 
firmware execution time fall into two large groups in 
accordance with the main principle of their 
execution: static methods and dynamic methods. 

Static methods do not assume any real firmware 
execution, i.e. the firmware runs neither in an 
embedded system nor in an emulator during static 
analysis. All methods of this group use the source 
code of the firmware in question and/or the model of 
the hardware architecture of the embedded system 
being considered. 

Since the architectures of processors are 
constantly evolving, there is a constant need in 
modification of the existing models so that they keep 
applicable. Thus, when a new processor hardware 
model is developed, those who work on 
modification of static models focus their attention on 
the structure of the cash memory and the analysis of 
the content of the cash [5-7], the structure of the 
instruction pipeline [8, 9], and losses in data rate 
during transmitting data via communication 
interfaces [10]. However, the more sophisticated the 
architectures of modern processors become, the 
more efforts and time their analysis and modification 
of the models require.  

Moreover, static methods never take into 
consideration the influence of the environment on 
the firmware execution time. Besides, static methods 
do not make allowances for the dependence of the 
firmware execution time on the age of the 
underlying hardware components. 

Dynamic methods for analysis of the firmware 
execution time are based on the actual measurement 
of the response time of the firmware running inside a 
real embedded system or a simulator. Due to their 
close connection with the real execution of 
firmware, they are considered to be potentially more 
accurate than static methods, for any measured 
execution time does include the influence of 
different ambient factors implicitly. Thus, a dynamic 
method makes allowances for a variety of factors 
influencing the firmware execution time and not 
only the source code itself. Moreover, in most cases 
measurement of the execution time is performed in 
real working conditions, but not in some artificial, 
laboratory environment, completely different from 

the real one. Typically, dynamic methods are applied 
to measure the firmware execution time using a 
logical analyzer or an oscilloscope [11, 12], 
hardware tracing [13, 14], integration of an 
additional code into an embedded system being 
tested [15, 16] or simulators of an embedded system 
[17]. Each of these approaches has their advantages 
and disadvantages. However, neither of dynamic 
methods takes into consideration the fact that the 
execution time of any firmware running inside a real 
embedded system might change because the 
underlying hardware components change their 
behavior with age. Thus, these dynamic methods 
provide one-shot results for an embedded system 
either before it started being used or at the very 
beginning of its life cycle, but no predictions were 
made what would happen to the firmware execution 
time with age.  

All the above said statements lead to the idea of 
developing a method that would promote to 
determine the maintenance period to ensure that the 
execution time of the firmware running in the 
embedded system never exceeds its maximum 
allowed value. 
 

3. CONCEPT CONSTRUCT AND TASK 
FORMULATION 

In order to predict the execution time of a 
program code, we represent the code as a control 
flow graph (Fig. 1). 
 

 

Figure 1 – An example of a control flow graph that 
represents a function in a program. 
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The vertices of a control flow graph denote 
operators or function calls. The edges represent 
connections between vertices. 

The execution time of any branch in a program 

( b ) can be calculated by the following formula: 
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where i  is the time spent on vertex i (i.e., the time 

spent on execution of instruction i), n is the total 
number of vertices in the branch.  

The total execution time of a program branch 
depends not only on the duration of an instruction 
but on the response time of different peripheral 
devices as well, and the latter tend to get slower in 
their response over time.  

Taking into account this fact, we can expand 
formula (1) as follows: 
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where j  is the time spent on vertex j (the time of 

execution of the corresponding instruction), k  is the 
number of vertices that take always the same amount 
of time to be executed (the corresponding 
instructions do not depend on any peripheral 
devices, but on the microcontroller’s computational 

resources only),  і  is the time spent on execution of 

an instruction that depends on the response time of a 
peripheral device (the response time changes with 
the age of a peripheral device), T  is the time period 
of the embedded system’s being in use, l  is the 
number of vertices such that the time spent on them 
depends on the response time of peripheral devices 
composing the embedded system. 

Thus, we came to the conclusion that there exists 
a lack of such a method for estimation of the 
firmware execution time that would make 
allowances for the fact that the response time of 
peripheral devices changes over the time of their 
use. Such a method would allow calculation of the 
maintenance period of an embedded system in 
question. 
 

4. MATHEMATICAL MODELS 

4.1 INPUT DATA 

In accordance with the technical report [18], we 
established the dependence of the response time of a 
hardware component on the time during which it has 
been in use. The results are summarized in Table 1. 

Table 1. The influence of aging of a peripheral device 
on the response time. 

Time of being in use, 
years 

The difference between 
the actual value of the 

response time of a 
peripheral device and its 

nominal value, %  
0 0 

0.25 10 

0.5 10 
0.6 10 
1.7 10 
1.9 15 
2.2 15 
3 18 

 
The nominal value of the response time is equal 

to 7.812·10-3 s [19]. The results of calculation of the 
response time of a peripheral device on the basis of 
the data from Table 1, are presented in Table 2. 

 

Table 2. The dependence of the response time on how 
long the system has been in use. 

The time of being in 
use, years 

The response time of a 
peripheral device, s 

0 7.8125·10-3 

0.25 8.59375·10-3 

0.5 8.59375·10-3 

0.6 8.59375·10-3 

1.7 8.59375·10-3 

1.9 8.984375·10-3 

2.2 8.984375·10-3 

3 9.21875·10-3 

 
The dependence of the response time on the time 

of being in use, drawn on the basis of the 
experimental data, is shown in Fig. 2. 

 

 

Figure 2 –The dependence of the response time on the 
time of being in use. 

 

Having analyzed the above-stated data, one can 
conclude that the analytical dependence could be 
approximated well enough using regression methods 
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including methods of linear, cubic and logarithmic 
regression. 

 

4.2 CHOSING AN APPROPRIATE MODEL 

In order to calculate the response time of a 
peripheral device using the linear regression method, 
we apply the following formula:  

 
ˆ aT b   , (3) 

 
where T  is the time period during which the 
peripheral device has been used, and a  and b  are 
some coefficients that can be evaluated using 
formulas (4) and (5): 
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Using formulas (4) and (5), we can figure out that 

the values of the coefficients a  and b  for 
approximation by the linear regression method are as 
follows: 
 

0003.0a ,  0083.0b . (6) 
 

In order to evaluate the response time of a 
peripheral device using the cubic regression method, 
we apply the following formula: 
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be evaluated when solving the following equation 
set:  
 











































;

,

,

,

1

3

1

3

1

4

1

5

1

6

1

2

1

2

1

3

1

4

1

5

111

2

1

3

1

4

111

2

1

3

n

i

ii

n

i

i

n

i

i

n

i

i

n

i

i

n

i

ii

n

i

i

n

i

i

n

i

i

n

i

i

n

i

ii

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

TTdTcTbTa

TTdTcTbTa

TTdTcTbTa

ndTcTbTa









 (8) 

Using formula (8) we evaluate the values of the 
coefficients cba ,,  and d  for approximation by the 

cubic regression method: 
 

0002.0a , 001.0b , 0017.0c , 

008.0d . 
(9) 

 
The response time of a peripheral device using 

the logarithmic regression method can be calculated 
by the applying the following formula: 
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where a  and b  are some coefficients that have to 
be calculated using formulas (11) and (12). 
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Using formulas (11) and (12), we have figured 

out that the values of coefficients a  and b  for 
approximation by the logarithmic regression 
methods are as follows: 

 

0083.0a ,  0391.1b . (13) 
 

4.3 THE INACCURACY OF THE MODELS  

In order to choose the most appropriate 
regression model, we have to verify how the results 
provided by each of the above-mentioned models fit 
the experimental data. In order to do this, we first 
visualize the analytical dependencies obtained on the 
basis of the coefficients, calculated previously, and 
visually compare the resulting curves with the graph 
built on the basis of the experimental data. 

Then, we choose a number of equal-distant points 
on the time axis that did not participate in either of 
the above-mentioned equation sets used for 
calculation of coefficients a  and b . For each of the 
chosen time points, we evaluate the difference 
between the experimental data and the results 
provided by each of the regression methods. 

The average approximation error is calculated by 
the formula: 
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Using formula (14) we calculated the average 
approximation errors: 

for linear regression method: 
 

%05.2A , (15) 

 
for cubic regression method: 

 

%53.1A , (16) 

 
for logarithmic regression method:  

 

%64.1A . (17) 

 
For visual comparison of the obtained results, we 

show a graph depicting the experimental data and 
the approximation results obtained by the linear, 
cubic and logarithmic regression methods, Fig. 3.  
 

 

Figure 3 – The experimental data and analytical 
dependencies of the response time of a peripheral 

device on the time of being in use. 

 
As one can see on the graph, the cubic regression 

method provides the least approximation inaccuracy 
(on average). Thus, we chose this method for 
predicting the firmware execution time and the right 
time moments of embedded systems’ maintenance. 
 

5. EXPERIMENTS 

In order to verify our ideas about the importance 
of taking into account the aging effects of electronic 
units for predicting an appropriate maintenance 
period of an embedded system, we chose a 
commercial product, the main functions of which 
include regular measurement of the temperature and 
pressure inside industrial pumps, logging all the 
values of the temperature and pressure lower or 
higher than their allowed lower an upper limits 
correspondingly, and control of valves on the basis 
of the temperature and pressure readings. 

The firmware thread responsible for 
measurement is shown in Fig. 4. 
 

   

Figure 4 – An example of a time-critical thread in 
firmware. 

 
In accordance with the user requirements, the 

thread responsible for measurement should be 
executed each 100 ms, and the maximum execution 
time of the thread’s fragment intended for 
measurement and saving data, should not exceed 70 
ms.  

The thread used here as an example contains 
functions of two types:  

 Functions, the execution time of which 
depends only on the computational 
capabilities of the underlying microcontroller 
(osSignalWait, memset, local_compensation, 
ADC_code2temp). 

 Functions, the execution time of which 
depends on the response time of peripheral 
devices (the execution time of function 
ADS_Read() depends on the response time of 
an external ADC ASD1118. The execution 
time of function WriteToExternalMemory() 
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depends on the response time of an external 
flash memory. The execution time of 
Valve_control function depends on the 
execution time of the module responsible for 
controlling the valves.  

In order to predict the execution time of a 
firmware fragment, we find out that the nominal 
value of the response time for external ADC 
ADS1118 is equal to 15.625 mcs, in accordance 
with the device’s datasheet [19].  

From the datasheet [20] of flash memory 
AT45DB041E we fetch the nominal value of its 
response time (0.5 mcs). 

Here we assume that the dependence of the 
response time on the time of being in use is similar 
to that one presented in Table 1.  

We have calculated the response time of the 
peripheral devices in the reference points. The 
calculation results are given in Tables 3 and 4. 

 

Table 3. The dependence of the response time of ADC 
ADS1118 on the time during which it has been in use. 

Time of being in use, 
years 

The response time of a 
peripheral device, s 

0 15.625·10-3 
0.25 17.188·10-3 
0.5 17.188·10-3 
0.6 17.188·10-3 
1.7 17.188·10-3 
1.9 17.969·10-3 
2.2 17.969·10-3 
3 18.438·10-3 

 

Table 4. The dependence of the response time of Flash 
AT45DB041E on the time during which it has been in 

use. 

Time of being in use, 
years 

The response time of a 
peripheral device, s 

0 0.5·10-3 
0.25 0.55·10-3 
0.5 0.55·10-3 
0.6 0.55·10-3 
1.7 0.55·10-3 
1.9 0.575·10-3 
2.2 0.575·10-3 
3 0.59·10-3 

 
Using formula (8), we calculate the following: 
1) The approximation coefficients for 

calculating the response time of ADC 
ADS1118. 
 

0004.0a , 0021.0b , 0034.0c , 

0159.0d . 
(18) 

 

2) The approximation coefficients for 
calculating the response time of flash 
memory AT45DB041E. 

 
0a , 0001.0b , 0001.0c , 

0005.0d . 
(19) 

 
Using the approach described in [10], we 

estimate the execution time of each function that 
depends only on the computational resources of the 
underlying microcontroller.  

In accordance with formula (2), we evaluate the 
execution time of the fragment of the thread in 
firmware intended for measuring and logging data. 
The calculation results of the execution time with 
consideration of the aging effect and without such 
consideration are shown in Fig. 5. 
 

 

Fig. 5 – The execution time of a software code that 
taking into account the aging effect and without it. 

 

The obtained results demonstrate that if one 
ignores the influence of the aging effect of a 
peripheral device on the response time of the latter 
particularly and the firmware execution time in 
general, one is likely to underestimate the execution 
time of the whole embedded system’s firmware 
drastically, and such an underestimation might have 
catastrophic consequences in real-time embedded 
systems.  

Making allowances for the influence of the aging 
effect on the firmware execution time would enable 
us to predict the right time for the maintenance of an 
embedded system before the latter becomes 
inapplicable because it fails to perform its time-
critical tasks quickly enough.  

For example, on the basis of the obtained results, 
we came to the conclusion that in order to ensure 
that a specific firmware fragment meets its required 
execution time, one should replace the worn-out 
components in the embedded system in question 
after three years of being in use.  
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6. DISCUSSION OF THE RESULTS 

The research carried out by the authors show that 
the least approximation inaccuracy can be achieved 
due to the cubic regression method, thus one needs 
to choose the cubic approximation when predicting 
the suitable maintenance period.  

It’s worth bearing in mind that in order to 
calculate the approximation coefficients with the 
minimum inaccuracy we need to use the response 
time of a peripheral device, not the difference 
between the nominal value of the response time and 
the actual value. 

For this reason, one should evaluate the 
approximation coefficients for each peripheral 
device individually, even if different peripheral 
devices are characterized by the same change of 
their response time with respect to the nominal value 
in percent, with age. For example, device 1 
responses within 1 ms, device 2 – within 5 ms and 
device 3 – within 7 ms and the response time of each 
of these devices changes by 10% after three months 
and by 15% after six months of being in use. Despite 
the fact that it would be convenient to operate with 
relative values, which are identical for the three 
devices, we still should take the absolute value of 
the response time of each device individually. 

Significant advantage is in the fact that input data 
for proposed method can be obtained using any 
static or dynamic method for analysis of the 
firmware execution time, which was represented in 
chapter 2. 

 
7. CONCLUSION AND FUTURE WORK 

In this work, we have solved an important 
problem of determining the most appropriate time 
moments for maintaining an embedded system in 
order to ensure that the execution time of the 
firmware running in this system is kept within its 
required range and the system is still able to perform 
its time-critical tasks on time. 

The approximation coefficients presented in this 
paper are unique for the hardware component taken 
as an example to show the significance of the aging 
effect in electronic units in general. In order to apply 
the proposed method for predicting the most 
appropriate maintenance period for an arbitrary 
microcontroller-based real-time embedded system, 
one should take the following steps. First, one is 
supposed to detect the hardware components that 
tend to change their behavior over time and apply 
the cubic regression method in order to draw the 
analytical dependency of the hardware component’s 
response time on the time period, during which it 
has been in use. One should make sure that the 
analytical dependency is correct by evaluation the 
average approximation error. Then, one finds the 

maximum time value at which the execution time 
calculated using formula (2) still does not exceed the 
allowed limit. 

Our further planned research is aimed at 
automating the proposed approach and integrating 
the module that implements it into a software tool 
intended for automated testing of the execution time 
of firmware running in embedded systems. 
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