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Abstract: With respect to the ‘no free launch’ theorem, no single algorithm has 
a better performance when tested against a completely stochastic algorithm on all 
objective functions. Consequently, choosing the best algorithm for a particular 
problem is often more of an art than science. The complexity of an objective 
function can be determined by certain features such as the modality, the basins, 
the valleys, the separability, and the dimensionality of the objective function. 
While the separability and modality contribute to the complexity of the function, 
the dimensionality and domain range increases the function’s search space 
exponentially. In this paper, the authors analyze the algorithmic constructs of 
Simulated Annealing (SA), Cuckoo-search (CK), Particle Swarm Optimization 
(PSO) and Genetic Algorithm (GA) along with two hybrid paradigms. In 
addition, an extensive comparative study was conducted using 30 standard bench 
mark functions to demonstrate how an ingenious hybrid algorithm could 
significantly shorten the amount of function calls (generations) needed to attain 
the optimal or rather near optimal solution for almost any complex objective 
function. Results from empirical analysis unveil the precision, robustness and 
success of the hybrid algorithm (without compromising run-time complexity) 
over its counterparts. 

Copyright © Research Institute for Intelligent Computer Systems, 2018.  
All rights reserved. 

 
 

1. INTRODUCTION 

Optimization is a branch of science that involves 
the search for the best parametric values to a 
solution of a specific problem [1]. The objective is 
to find the solution to a predefined objective 
function via an iterative process, towards an optimal 
value. In optimization problems, a mathematical 
representation of the objective function is clearly 
defined along with its constraints.  

Optimization problems are usually classified 
under various paradigms such as linear 
programming, quadratic programming, 
combinatorial optimizations and meta-heuristics. 
While classical algorithms use methods based on the 
hessian matrix [2] and gradient decent (especially 
for objective functions with computable derivatives), 
the meta-heuristic algorithms on the other hand are 
deployed on non-differentiable and non-linear 
objective functions. Such functions are either 

impracticable or very difficult to solve using 
classical methods. However, solutions provided by 
meta-heuristic algorithms are usually referred to as 
suboptimal solutions. 

Some of the raciest meta-heuristic algorithms 
include: Genetic algorithm (GA), Particle Swarm 
Optimization (PSO), Simulated Annealing (SA), 
Differential Evolution Algorithm (DE), Cuckoo 
Search Algorithm (CK) etc. These algorithms 
leverage on a model matrix which evolves random 
solutions to the predefined objective function. In 
addition, some of these meta-heuristic algorithms 
use the variant of the basic genetic algorithm schema 
(selection, Mutation, and crossover) while evolving 
solutions. These variants can be summarized into 
two basic strategies namely, exploration and 
exploitation. While exploitation targets the best local 
solution within the search space, exploration 
attempts to leverage diversification in an attempt to 
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incur the best solution which in most cases lies 
around one of the local solutions. 

A good meta-heuristic algorithm can be 
characterized by the rate at which it finds the global 
optimal solution to the objective function. In this 
paper, the authors propose a frame work for 
hybridization of multiple meta-heuristic algorithms. 
This frame work leverages on the strengths of each 
meta-heuristic algorithm in order to rapidly 
converge a search process to an optimal or 
suboptimal solution with minimal computational 
complexity. 

Objective functions (Table 1) could be qualified 
or grouped into categories such that they are either 
continuous functions or discontinuous functions, 
linear functions or polynomial, differentiable or non-
differentiable, uni-modal or multi-modal, separable 
or non-separable. In this paper, some artificial 
multifarious problems also referred to as test 
functions has been chosen to evaluate the robustness 
of our proposed algorithm. Artificial problems has 
the advantage of ease in modification and 
manipulation of the test algorithm in diverse 
scenarios. In addition, objective functions can be 
sorted or grouped by their modality, basins, valleys, 
separablity and dimensionality [3]. 

Modality: This represents the number of peaks in 
the function’s topology. When an algorithm come 
across such peaks during a search cycle, there exist 
the likelihood of the algorithm to asymptote at a 
local optima or minima depending on the predefined 
search criteria. 

Basins: unlike peaks, these are steep decline 
around a large area. The presence of basins could 
have a significant impact on the success of an 
algorithm due to insufficient information to guide 
the algorithm towards the global minima. 

Valleys: These occur when narrow domains of 
minimal difference is surrounded by multiple basins. 
The floor of a valley could have a significant impact 
on the success of a search algorithm. 

Separable: This measures the difficulty of a 
function. It is easier for a search algorithm to 
transverse a separable function than a non-separable 
function. When the variables of a function are 
independent of each other the derivative of the 
function can be decomposed into sub functions. This 
separable feature makes it easier for an algorithm to 
solve. On the other hand, if the variables are 
dependent on each other, the function becomes non-
separable thus making it more difficult for an 
algorithm to solve. 

Dimensionality: the magnitude of the parametric 
variables defines the dimensionality of the objective 
function. Every one step increase in the number of 
parameters has an exponential overhead in the 
amount of computational search space. Almost every 

meta-heuristic algorithm has dimensionality as a 
major bottleneck.  

The complexity of the function can determined 
by two major factors: modality and separability as 
depicted in table 1(a) below. 

Table 1(a) Complexity variants 

Objective function Complexity level 
Single peaks (unimodal), 
separable  

LOW (L) 

(Unimodal, non-separable) 
OR  
(multi-modal, separable) 

MEDIUM (M) 

Multiple peaks (multi-
modal), non-separable 

HIGH (H) 

 

Table 1(b) (30 bench mark functions) 

Label Function 
name/Complexity 

Function Plot F(x)* 

F1 Ackley2 Function 
[4] (M) 

 

 
 

-200 

F2 Bartels Conn 
Function [3] (H) 

 

 
 

1 

F3  Beale Function [3] 
(M) 

 

 
 

0 

F4  Bird Function [3] 
(H) 

 

 
 

−106.76 

F5 Bohachevsky 1 
Function 
[5] (M) 

 

 
 

0 

F6 Bohachevsky 3 
Function 
[5] (H) 

 

 
 

0 

F7  Booth Function [3] 
(M) 

 

 
 

0 

F8  Branin RCOS-2 
Function [6] (H) 
 

 

 
 

-39.195 

F9  Brent Function [7] 
(M) 

 

 
 

0 

F10 Camel Function – 
Six Hump [7] (H) 

 

 
 

−1.0316 

F11 Camel Function – 
Three Hump [7] 
(H) 

 

 
 

0 
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F12 Chichinadze 
Function [3] (M) 

 

 
 

-
42.9444 

F13 Cube Function [8] 
(M) 

 

 
 

0 

F14 Deckkers-Aarts 
Function [9] (H) 

 

 
 

-
24776.5 

F15 Easom Function 
[10] (M) 

 

 
 

-1 

F16 Freudenstein Roth 
Function [11] (H) 

 

 
 

0 

F17 Haupt Function 16 
[2] (M) 

 

 
 
 

-
25.2305 
 

F18 Haupt Function 07 
[2] (H) 

 

 
 
 

-
18.5547 

F19 Haupt Function 15 
[2] (M) 

 

 
 

-345.36 

F20 Egg Crate Function 
[3] (M) 

 

 
 

0 

F21 Goldstein Price 
Function [12] (H) 

 

 
 

3 

F22 Rosenbrock 
Modified Function 
[13] (H) 

 

 
 

34.0412 
 

F23 Rotated Ellipse 
Function [3] (M) 

 

 
 

0 

F24 Scahffer-1 
Function [14] (M) 

 

 
 

0 

F25 Test-tube Holder 
Function [15] (M) 

 

 
 

−10.872 

F26 Pen-Holder 
Function [15] (H) 

 

 
 

−0.9635 

F27 Trefethen Function 
[16] (H) 

 

 
 

-3.388 

F28 Adjiman Function 
[17] (H) 

 

 
 

-
2.02181 

F29 Cross-in-Tray 
Function [15] (H) 

 

 
 

-
2.06261 

F30 Damavandi 
Function [18] (H) 

 

 
 

0 

 

2. LITERATURE REVIEW 

Evolution computation is a combination of 
genetic programming and genetic algorithm which 
incorporates models such as selection and mutation 
which forms the core of the entire evolution 
computation algorithm. 

Genetic algorithm (GA) is a classical 
optimization meta-heuristic based on the biological 
model of natural selection. The algorithm involves a 
clever manipulation of an objective function, a 
vector or matrix of objective variables, definition of 
variable constraints, selection, crossover and 
mutation (Fig. 1). The total number of iterations 
(epochs) usually depends on the chosen termination 
criteria which could either be a predetermined 
number of epochs or the convergence of the 
algorithm. The GA is said to have converged when 
little or no significant improvement is observed in 
the population. 
 

 

Figure 1 – Flowchart for genetic algorithm. 
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Two key process guides the GA towards an 
optimal solution: the selection and the crossover 
[19]. The roulette wheel selection model is a typical 
and intuitive probabilistic approach which favors the 
best pair of objective variables (variables with high 
fitness scores) for participating in the mating 
process. 

The mating process is implemented by the 
crossover model. A typical procedure is binary 
fission of binary encoded objective variables. A 
random split point is chosen for both selected string 
of binary coded bits, thereafter an exchange 
(crossover) is conducted. 

A subtle but very efficient model is the mutation 
process. Given a predetermined probabilistic 
mutation rate, the resulting string from the crossover 
process may undergo an alteration in one or more of 
its bits. This procedure helps the algorithm’s 
converging process progress towards the global 
optima. 

 
2.1. SIMULATED ANNEALING (SA) 

The simulated annealing algorithm as a meta-
heuristic optimizer was the ‘brain child’ of 
Kirkpatrick et. al., in the year 1983 [20]. The 
algorithm mimic’s the process of a crystal-like 
lattice via a quick heating and slow cooling process. 
Like other standard procedures, the algorithm begins 
with generating a random number of objective 
variables that are modified via some parametric 
turning before assigning them to a fitness function 
which then outputs a fitness score for each pair/ 
vector of variables.  

 

�(���) =  �. �(���)          (1) 
 
where, 

 v(new) = new variables, 
 v(old) = old variables, 
 d = control variable. 

 
It’s important to note that most literature refer to 

a set of objective variables as a chromosome. In the 
Simulated annealing iterative algorithm, a new set of 
objective values replaces the old ones if there was an 
improvement in their corresponding fitness scores, 
however some of the less fit pairs may proceed to 
the next generation even if their fitness scores 
worsened as long as they satisfy the following 
conditions: 
 

� ≤ �[�(���)��(���)]/�   (2) 
 

Otherwise, they are rejected. 
where,  

r = uniform stochastic variable, 

T= temperature. 
The algorithm slowly reduces the T value until it 

gets close to zero before terminating. During this 
cooling process, the algorithm does a percentage 
wise reduction of the d value in an attempt to 
enhance the fitness scores of the population. 

 

2.2. PARTICLE SWAM OPTIMIZATION 
(PSO) 

The PSO algorithm is a relatively less involved 
algorithm with few parameters to manipulate, first 
proposed by Kennedy and Eberhart [21]. Like the 
Genetic algorithm, the PSO meta-heuristic mimic’s a 
biological model however, it exempts the crossover 
and mutation procedures of the GA. 

The PSO algorithm iteratively updates the 
objective variables via a velocity vector. For brevity, 
the algorithm modifies each set of objective values 
updating their vector velocities via a clever 
manipulation of the global best and local best 
solutions. While the global best is indicative of the 
best fitness score thus far in the iterative process, the 
local best is indicative of the best fitness score 
within the current run. The equation below show the 
simplicity of this elegant algorithm:  
 

������ = ������ + � .  �1 . (������ ���� − ����) +
� .  �2 . �������� ���� − �����  (3) 

 
���� = ���� + ������      (4) 

where, 
vel = velocity of each particle, 
P = particle variables, 
Plocal best = best local fitness for each particle, 
Pglobal best = global local fitness for each particle, 
γ = learning rate (constant), 
r1, r2 = stochastic variables. 
The ease of implementation is another significant 

advantage of this algorithm. 
 
2.3. CUCKOOS SEARCH ALGORITHM 
(CS) 

The cuckoos search meta-heuristic algorithm was 
first proposed by Deb and yang [22]. The algorithm 
was inspired the interesting reproductive 
characteristics of the cuckoos’ bird. The cuckoos’ 
bird is an opportunistic bird that lays its eggs among 
other eggs in a host nest. On return of the host bird, 
the host bird may or may not detect the presence of 
the cuckoos’ egg. If the cuckoo egg is undetected, all 
eggs are hatched otherwise, the nest is completely 
abandoned or ruined. 

The CS meta-heuristic combines the behavior of 
the host bird and the cuckoos’ bird. Intuitively, each 
nest is a representation of a set objective variables. 
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The algorithm first generates an N – population pair 
or vector of objective variables usually referred to as 
candidate solutions in literature. Next, the cuckoos’ 
egg is laid in a randomly chosen nest using a typical 
random walk ‘levy flight’ approach: 
 

�� ′ = �� + ���� . (���� ����ℎ�)��     (5)  
 

 �� ′ = �� + ���� . (���� ����ℎ�)��     (6) 
 

Next, the fitness of the nest with the cuckoos’ 
egg is compared with the host nest. The host nest is 
replaced if it has a worse fitness score when 
compared with the cuckoo’s nest. However, if the 
host bird notices the presence of the of the cuckoos 
egg, the nest is discarded usually with a probability 
p < 0.25 consequently creating a new nest. 
 
2.4. HYBRID OPTIMIZATION 

A typical hybrid algorithm blends the strengths 
of genetic algorithms along with the converging 
speed of any local optimizer. A couple of authors 
such as Kazarlis et al. [23] implemented a scaled 
down genetic algorithm with a minute population 
size as a local optimizing strategy. The rationale 
behind hybridization is often to combine the power 
of GAs (exploration) with the swiftness at which a 
local optimizer asymptotes (exploitation). When the 
GA seem to gradually asymptotes, its assumed to at 
least be in the domain of the global solution, 
thereafter the local optimizing algorithm seizes the 
search process in an attempt to obtain optimal 
solution. Hybridization could be in any of the forms 
below: 

1. Beginning with a GA until it decelerates 
before seeding a local optimizer 

2. Start the GA with some local minima 
obtained from random starting points in the 
population 

3. After a predefined number of iterations, seed 
a local optimizer on a selected elite population using 
elitism and incorporate the resulting chromosome 
into the population. Haupt [2] demonstrated finding 
the global optima by combining a continuous GA 
with Nelder-Mead downhill simplex algorithm. 

 
3. HYBRID METHODOLOGY 

Preliminary analysis of the reviewed meta-
heuristic algorithms revealed the strengths of each 
algorithm on the 30 different benchmark objective 
functions. The classical GA employs a moderately 
balanced explorative and exploitative strategy while 
the cuckoos search algorithm is highly explorative. 
This quality of the cuckoo’s algorithm gives it an 
edge over the classical GA when deployed on 

complex objective functions. The polygamy induced 
GA provides a highly exploitative strategy. These 
diverse capabilities informed our choice of 
algorithms for the creation of the hybridized model.  

The proposed hybrid model leverages on any 
three different meta-heuristics combinations for 
solving the optimization problem. The three meta-
heuristic of choice are the GA, CK, and POLY (i.e. 
GA-with polygamy). Using 3 meta-heuristics avails 
us with 3 factorial (3!) possible unique combinations 
of the meta-heuristics. For example [CK, GA, 
POLY] with [CK2, GA4, POLY5] where the 
superscripts represents the duration of sub epoch 
assigned to each meta-heuristic. The algorithm 
(Table 2.) begins by first sampling a random 
population of 50 (�) chromosomes with a scalable 
dimension size of 2 (�1, �2) continuous variables. 
Simultaneously, a sub population (� ≤ �) of 
random combinations of meta-heuristics are spurned 
to evolve or optimize the matrix of chromosomes 
towards an optimal solution to the given objective 
function. It is important to note that each meta-

heuristic randomly obtains a duration (��
�(�)

) of 
range [0, 5]. Thus the maximum number of sub 
epoch for each  
� ≤ �(max) �ℎ��� �(max) =15.  

From Fig. 2, the COMa represents the stochastic 
combination or order of meta-heurictic 
implementation. A typical initial order for COMa = 
0, could be [CK2, GA4,POLY5], for [INTa, INTb, 
INTc] respectively, with the supper scripts 
representing the number of sub epochs (duration) 
each algorithm is permitted to run.  

 

 

Figure 2 – High level abstraction of the hybrid frame 
work 

 
At the end of the first main epoch, a typical GA 

style algorithm (without the crossover operator) is 
used to select and mutate the � chromosomes. 
Exempting the crossover operator reduces the 
computational complexity and helps the hybrid 
algorithm evolve faster.  

(x1, x2) 
Population Matrix 

 COMa INTa INTb INTc 

COMb INTb 
 

INTd 
 

INTa 
 

COMc INTc 
 

INTe 
 

INTk 
 

FITNESS 
1 

FITNESS 
2 

FITNESS 
3 
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Table 2. Algorithm for Hybridized Model 

�*-> 0 , � ->population size, �-> duration of sub 

epochs  

� = �������� (�������[0 5])  

� = ���
�(�)

, ��
�(�)

, … … ��
�(�)

� ≤  � 

��
�(�)

= ����ℎ��������(�) ���ℎ  ��������(�(�)) 

� =  ∑ ��
�(�)�

���  ∀ ��  ∈ �, �. �   � ≤

 �(max)   

1. Sample New Random population (�) of size � 

2. While (�) 

3.         For each ( �(�) < �) 

4.         Evaluate  �(�) =

���
�(�)

, ��
�(�)

, … … ��
�(�)

� 

5.        �* <- update best local optima for each �(�) 

6.         End (for loop) 
7. Preserve elite schema 
8. Evaluate mutation condition = (TRUE) 

9. Mutate (��
�(�)

 ) order of combinations, mutate 

(�(�)) �������� 

10. Return  best �(�) schema order,   �best-

>parameters, �best-> global optima 

 
Elitism is used to preserve the best 5 performing 

chromosomes to the next generation. Fig. 3 shows 
the best performing combinations for the overall 
objective benchmark functions used in this research. 
The mutation process alters the combination or order 
of meta-heuristics along with their respective 
superscript durations. 

Leveraging tournament selection, as a selection 
strategy, the fittest chromosomes are passed to the 
next generation. �* (global minima) is updated at the 
end of each main epoch. For the research, the 
termination criteria was set at 50 epochs (MAX) or 
when the optimal solution has been found.  
 

3.1. Polygamy as an Exploitative Strategy 
for GAs 

The concept of diversity and exploitation are two 
paradigms that has contributed immensely to the 
success of the GA. While diversity attempts to 
prevent the algorithm from stagnating within a local 
optima, exploitation on the other hand attempts to 
achieve faster convergence of the algorithm. 

One approach towards maintaining diversity 
within a population is by replacing existing identical 
solution strains with newly formed strains especially 

in cases where they exist multiple similar strains in 
the population. [24] 

Other methods include a mechanism for favoring 
dissimilar strains while similar ones are discouraged 
leading to convergence on multiple peaks [25]. 
Another related approach is to restrict mating among 
similar strains while encouraging mating among 
dissimilar ones thereby increasing diversity [26]. 
Similarly, a tag stamping mechanism has been used 
to indicate strains that are eligible to mate as they 
pass from one generation to another [27]. 

Polygamy one the other hand attempts to explore 
the power of exploitation. Using this approach, 
every strain within the population is forced to mate 
with the fittest strain within each generation. A 
clever implementation of this strategy helped the 
algorithm converge faster to the global optima. 
Polygamy behavior was allowed when only little 
improvement was observed within five consecutive 
generations’ thus fine tuning population towards the 
global optima. 
 

 

Figure 3 – Hybrid frame work performance chart for 
all objective functions evaluations. Height indicative of 
the number of times each combination was responsible 

for the optimal solution. 

 
4. EXPERIMENTS 

On the basis of ANOVA, we reject the NULL 
Hypothesis (H0) on the premise of a significant 
difference between the mean optimal values of our 
tested meta-heuristics. Consequently, we proceed 
with our analysis to discover the pairs of meta-
heuristics that differ significantly. For this purpose, 
we use the SHEFFE’s test. The test states that “the 
critical difference (CD) for each pair of meta-
heuristic can be obtained using the equation below:” 
 

�����,��� =  ������ℎ�� (
�

��
+

�

��
) ∗ (� − 1) ∗

����,��� ∗∝ �  (7) 
 
where, ∝ = critical value at 5% significance. 
� = number of meta-heuristics 



Samuel O. Obadan, Zenghui Wang / International Journal of Computing, 17(2) 2018, 102-112 

 

 108

� = number of test bench mark functions 
�����ℎ�� = ANOVA mean square within samples 
 

In this paper, we use 30 bench mark functions to 
test the success of the CK, PSO, SA, POLY (a 
proposed exploitative strategy), and HYB (our 
proposed hybrid frame work). Table 3 shows the 
best optimal values for each meta-heuristic on the 
bench mark functions compared against standard 
expected optimal solutions f(x*). A fixed dimension 
size of 2 was implemented for all bench mark 
functions. The population size was preset at 50 while 
the maximum number of function evaluations for 
each iteration was set to 500. For the purpose of 
cohesion, the global minimal values below 10-15 
were considered as zero (0) in all experiments. 

In this paper, global optima (minima (Xbest)) of 
each bench mark function was evaluated 20 times 
using random initial population at every instance. 
The mean performance of optimal solutions and 
durations (number of function calls) during each 
phase of the experiments were recorded for further 
analysis.  

Also, two ANOVA tests were conducted for 
multiple comparisons of the performance of each 
meta-heuristic algorithm.  
 

HYPOTHESIS 1 (H1) 

The Null hypothesis for the first ANOVA test is 
stated as follows: “There is no difference in the 
speed of convergence to the global optima among 
test meta-heuristic algorithms” (Table 4) 
 

HYPOTHESIS 2 (H2) 

The Null hypothesis for the second ANOVA test 
is stated as follows: “There is no difference in the 
mean global solutions between the tested meta-
heuristics” (Table 5) 

Both hypothesis were tested with 95% 
confidence (∝ = 0.05).  

Considering the relative complexity of the 
Hybrid algorithm, the algorithm was allowed to run 
for 1/10th of the max allowed epoch of 500. The 
rational was to give all algorithms a level playing 
ground as each one ran for approximately equal 
CPU time.  
 

Table 3. Minimum optimal values for each meta-
heuristic f(X*) = cross validating global optimal 

Values. 
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Table 4. ANOVA analysis of mean function calls of 
each meta-heuristic for all objective functions. (* 

indicates “no significant difference”) 

 
 

Table 5. ANOVA analysis of mean global optimal 
values of each meta-heuristic for all objective 

functions (* indicates “no significant difference”) 

 
 

5. SUMMARY OF RESULTS 

HYPOTHESIS 1 (H1) 

In this paper, the success of the proposed Hybrid 
model, CK, GA, SA, and a modified GA (polygamy 
induced) has been statistically compared. When 
compared over hypothesis 1 which is based on the 
mean function calls (speed of convergence), the 
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proposed hybrid algorithm displayed superiority 
over all other models. Next to the Hybridized model 
was the GA algorithm, thereafter the CK search 
algorithm. It was observed that the CK model 
outperformed the GA (with a statistically significant 
difference) in just 2 out of the 30 bench mark 
functions (Table 1(b)) (the F9 – ‘brent function’ and 
the F28- ‘Adjiman Function’) which are relatively 
complex functions in terms of their differentiability, 
modality, separability and modality. The PSO owes 
its performance to its stability problem and also, the 
amount of permitted epochs for evaluation used in 
most PSO implementations is usually high (approx. 
2 million) [28,29,30] for each bench mark function 
as against 500 used in this research. There exists no 
significant difference in the speed of convergence 
(in cases where convergence occurred) between the 
SA, PSO and the polygamy induced GA. However, 
the polygamy induced GA performed better than the 
CK in two of the bench mark functions (F4-bird 
Function, F5- Bohachevsky 1 Function). 

 

HYPOTHESIS 2 (H2) 

The success of the proposed Hybrid model can 
also be seen from the mean global optimal value as 
show from the ANOVA analysis (Table 5). In 
addition to the convergence speed advantage, the 
proposed hybrid model has a significant better 
performance when compared with the other meta-
heuristics with an impressive advantage over the 
traditional GA in (F8- ‘Branin RCOS-2 Function’, 
F9-‘Brent function’, F22- ‘Rosenbrock Modified 
Function’ F28-‘Adjiman Function’ and F30- 
‘Damavandi Function’). These functions are 
recognized for their complexity in terms of their 
differentiability, separability and modality. We can 
deduce from statistical results that the speed of 
convergence is a major advantage of our proposed 
model while its ability to consistently converge at 
the global optima within a minimal number of 
epochs is an added advantage. Figs. 4-8 show a box 
plot representation of the mean difference between 
test algorithms on the frequency with which the 
optimal solutions is found within the predefined 
number of epochs. 
 

 

Figure 4 – ‘Branin RCOS-2 Function (F8)’ with global 
minima = -39.1956 

 

Figure 5 – ‘Brent function (F9)’ with global minima = 
0 

 

 

Figure 6 – ‘Rosenbrock Modified Function (F22)’ with 
global minima = 34.0412 

 

 

Figure 7 – ‘Adjiman Function (28)’ with global 
minima = -2.02181 

 

 

Figure 8 – ‘Damavandi Function (F30)’ with global 
minima = 0 
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6. CONCLUSION 

This paper empirically compares the success of a 
hybrid algorithm with the CK, SA, GA, PSO and a 
modified GA in solving optimization problems. The 
framework systematically combines strengths of 
multiple meta-heuristics leveraging on the traditional 
GA mutation strategy. Empirical analysis revealed 
faster convergence to a global optima with minimal 
computational complexity.  

The algorithm provides a platform for future 
research work on the scalability (max number of 
meta-heuristics) and also the efficiency of the 
algorithm when combined with other meta-heuristics 
apart from those used in this research such as ABC 
(artificial bee colony), DE (Differential Evolution), 
Ant Colony, etc. In addition, the success of such 
framework could be analyzed on multi-objective 
optimization problems. 
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