
Moheb R. Girgis, Bahgat A. Abdel Latef, Tahany Akl / International Journal of Computing, 19(3) 2020, 355-364

 355

A GUI TESTING STRATEGY AND TOOL FOR ANDROID APPS

Moheb R. Girgis, Bahgat A. Abdel Latef, Tahany Akl

Department of Computer Science, Faculty of Science, Minia University, El-Minia, Egypt

moheb.girgis@mu.edu.eg, bahgat.ahmed@mu.edu.eg, thany_00_11@yahoo.com

Paper history:

Received 24 July 2019

Received in revised form 23 April 2020

Accepted 08 July 2020

Available online 27 September 2020

Keywords:

Mobile apps;

GUI testing;

Android app GUI testing;
Model-based testing;

Automated testing tools;

Event-based coverage criteria;
Robotium test framework.

Abstract: The increasing popularity of Android and the GUI-driven nature of its

apps have motivated the need for applicable automated GUI testing techniques.

This paper presents a proposed strategy and a supporting tool for GUI testing of

Android apps. The strategy employs a model-based approach to capture the

event-driven nature of Android apps. It includes two phases: Modeling Phase

and Test Evaluation Phase. In the modeling phase, an event sequence diagram

(ESD) is created for each activity in the app under test (AUT), which depicts its

events and possible transitions between them, and used to generate event

sequences (test cases). In the test evaluation phase, certain event-based coverage

criteria are employed to measure the adequacy of the generated test cases. The

proposed tool analyses the AUT, creates an ESD for each activity, and generates

event sequences. It handles the event sequences explosion problem and ensures

the event sequences feasibility. For each event sequence, the tool generates a test

script and a corresponding Robotium test class, adds it to the AUT and executes

it. The paper also presents a case study that illustrates the use of the proposed

strategy and tool for testing a simple Android app.

Copyright © Research Institute for Intelligent Computer Systems, 2020.

All rights reserved.

1. INTRODUCTION

The number of mobile apps continues to grow at

a rapid pace and the requirements for their

performance grow as they become more advanced

and are exposed to higher loads of users. This makes

the subject of mobile app testing important and of

continuing interest. Mobile apps heavily depend on

graphical user interfaces (GUIs). Testing of these

GUIs is very important, as it lets developers ensure

that the app meets its functional requirements and

achieves a high standard of quality such that it is

more likely to be successfully adopted by users.

Automating these tests is very useful since it saves a

lot of time, but it is very difficult due to the

complexity of mobile apps and the limited resources

available in mobile devices.

Due to the widespread use of Android platform,

the work in this paper focuses on testing the GUI of

Android apps. The paper presents a proposed

strategy for GUI testing of Android apps, and a

supporting tool for analyzing the app under test

(AUT), generating test cases based on certain event-

based coverage criteria, adapted for Android app,

and executing these test cases. The proposed

strategy employs a model-based approach to capture

the event-driven nature of Android apps. The

employed model is the event sequence diagram

(ESD), which depicts the events for an app and the

possible transitions between them. The proposed

tool collects the IO/Clickable views in each activity

of the AUT and their events. Then, it generates an

ESD for each activity, and uses it to generate a set of

event sequences according to the specified event-

based criteria. For each event sequence, the tool

generates a test script, from which it generates a

Robotium test class, adds it to the AUT and executes

it. The paper also presents a case study that

illustrates the use of the proposed GUI testing

strategy and the supporting tool for testing a simple

Android app.

The paper is organized as follows: Section 2

presents a review of related research in the area of

model-based GUI testing of Android apps. Section 3

briefly describes the main components of Android

app GUI. Section 4 gives an overview of Robotium

Test Framework. Section 5 describes the proposed

computing@computingonline.net

www.computingonline.net

Print ISSN 1727-6209

On-line ISSN 2312-5381

International Journal of Computing

Moheb R. Girgis, Bahgat A. Abdel Latef, Tahany Akl / International Journal of Computing, 19(3) 2020, 355-364

 356

GUI testing strategy for Android apps. Section 6

describes the proposed testing tool, which

implements the proposed strategy. Section 7 presents

an example of using the proposed approach and tool

for testing a simple Android app. Section 8 presents

the conclusion of the work presented in this paper.

2. RELATED WORK

For Android app testing, several approaches have

been proposed that focus on test input generation,

i.e., event generation. These approaches can be

categorized as follows: random testing (see e.g. [1-

3]); model-based testing (see e.g. [4-10]); symbolic

execution testing (see e.g. [11-15]); and search-

based testing and other testing approaches, which

use more sophisticated techniques to generate events

(see e.g. [16-20]).

Since this paper focuses on model-based GUI

testing of Android apps, a review of related research

in this area is given below.

Amalfitano et al. [4] presented a technique for

rapid crash testing and regression testing of Android

apps. The technique is based on a crawler that

automatically builds a model of the app GUI and

obtains test cases that can be automatically executed.

Amalfitano et al. [5] presented AndroidRipper, an

automated technique that tests Android apps via

their GUI. AndroidRipper is based on a user-

interface driven ripper that automatically explores

the app GUI with the aim of exercising the

application in a structured manner. Yang et al. [6]

presented a grey-box approach and a tool, for

automatically extracting a model of a given mobile

app. In this approach, static analysis extracts the set

of events of the app GUI. Then, dynamic crawling

reverse-engineers a model of the app, by exercising

these events on the running app. Azim and Neamtiu

[7] presented Android App Explorer (A3E), an

approach and tool that allows Android apps to be

explored while running on actual phones, yet

without requiring access to the app source code.

They construct a high-level control flow graph from

the app bytecode that captures legal transitions

among activities, and use it to develop an

exploration strategy named Targeted Exploration

that permits fast, direct exploration of activities,

including activities that would be difficult to reach

during normal use. They also developed a strategy

named Depth-first Exploration that mimics user

actions for exploring activities and their constituents.

Choi et al. [8] proposed an automated technique,

called SwiftHand, for generating sequences of test

inputs for Android apps. The technique uses

machine learning to learn a model of the app during

testing, uses the learned model to generate user

inputs that visit unexplored states of the app, and

uses the execution of the app on the generated inputs

to refine the model. Amalfitano et al. [9] presented

MobiGUITAR for automated GUI-driven testing of

Android apps, which is based on observation,

extraction, and abstraction of the run-time state of

GUI widgets. The abstraction is a scalable state-

machine model that, together with test coverage

criteria, provides a way to automatically generate

test cases. Su et al. [10] introduced Stoat, a guided

approach to perform stochastic model-based testing

on Android apps. Stoat operates in two phases: (1)

Given an app as input, it uses dynamic analysis

enhanced by a weighted UI exploration strategy and

static analysis to reverse engineering a stochastic

model of the app GUI interactions; and (2) it adapts

Gibbs sampling to iteratively mutate/refine the

stochastic model and guides test generation from the

mutated models toward achieving high code and

model coverage and exhibiting diverse sequences.
The proposed approach differs from the reviewed

approaches in the following aspects: (1) it creates a

simple model, ESD, to represent the events in the UI

of each activity and possible transitions between

them, and uses it to generate test cases; (2) it

employs event-based coverage criteria, adapted for

Android app, to measure the adequacy of the

generated test cases; (3) it significantly reduces the

number of generated event sequences by identifying

subsumption between different event sequences and

discarding any sequence that is a subsequence of

another one, and by checking event sequences

feasibility, i.e. their ability to be executed, and

discarding any sequence that includes any illegal

event subsequences; and (4) it utilizes the features of

the Robotium Test Framework to extract the AUT

activities' views and related information, and to

execute the generated test classes.

3. ANDROID APPS UI COMPONENTS

The main components of an Android app, which

dictate the UI and handle the user interaction to the

mobile device screen, are activities [21]. An activity

represents a single screen with a UI. An app may

have more than one activity. For example, an email

app might have one activity for showing new emails,

another activity for composing an email, and another

activity for reading emails. In this case, these

activities can interact with each other, and the one,

which is presented when the app is launched, is

called the main activity.

The UI for each component (activity) of an app is

defined using a hierarchy of View and ViewGroup

objects. Each view group is an invisible container

that organizes child views, while the child views

http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/view/ViewGroup.html

Moheb R. Girgis, Bahgat A. Abdel Latef, Tahany Akl / International Journal of Computing, 19(3) 2020, 355-364

 357

may be input controls or other widgets that draw

some part of the UI. Input controls are the

interactive components in the app UI. Android

provides a wide variety of controls, such as

TextView, EditText, Button, CheckBox,

RadioButton, RadioGroup, and many more. UI

inputs of an app include the input controls and their

events (actions) for each activity. Events are a useful

way to collect data about a user's interaction with

interactive components of apps, such as button

presses or screen touch, etc. When an event happens,

the corresponding Event Handler, which is the

method that actually handles the event, is called to

perform any required task.

4. ROBOTIUM TEST FRAMEWORK

Robotium is an extension of the Android test

framework and was created to make it easy to write

UI test automation scripts for Android apps [22].

Robotium tests allow the tester to define test cases

across Android activities. Robotium tests perceive

the AUT as black box, i.e., it only interacts with the

user interface and not via the internal code of the

app.

The main class for testing with Robotium is Solo.

Through a Solo object and its methods, we can set

values in input fields, click on buttons and get

results from other UI components. Methods of

JUnits Assert class can then be used to check those

results. Table 1 shows examples of the Solo

methods.

Table 1. Examples of Solo objects methods

Method Description

assertCurrentActivity

(text, Activity)

Verify whether the current

activity is the activity

which is passed as the send

parameter.

getCurrentViews() Returns an ArrayList of

Views currently displayed

in focused Activity.

clickOnButton(int) Click on button with

specified index.

enterText(int, text) Type text to editbox with

specified index.

clickOnCheckbox(int) Click on checkbox with

given index

clickOnRadioButton

(int)

Click on Radio button with

given index

clearEditText(int) Clear text in edit box with

given index

5. THE PROPOSED ANDROID APPS UI
TESTING STRATEGY

This section describes the proposed strategy for

UI testing of Android apps. In this strategy, testing is

conducted at two levels: activity level and app level.

Firstly, all activities in the AUT are identified. This

is a process to divide a large complex app into

independent components that can be tested in

isolation. Then, all views within each activity and

their events are identified. In the activity level

testing, each activity is tested in isolation to verify

whether it works as expected. Then, in the app level

testing, the app as a whole is tested to verify whether

all of its activities can communicate with each other

to complete the desired tasks. In this level, each

activity will be treated as a trusted component

because it has passed the activity level testing. An

execution path of the app will be represented by a

sequence of these trusted components.

Each testing level of the proposed strategy

includes two phases: Modeling phase and Test

Evaluation phase. In the modeling phase, a model is

created for each activity/app that is used to generate

test cases for testing the UI of the activity/app, and

in the test evaluation phase, event-based coverage

criteria are employed to determine whether the

generated test cases have adequately tested the UI of

the activity/app. In the next two subsections, the

model used to represent each activity/app, and the

UI test coverage criteria employed in the test

evaluation phase, are described.

5.1 THE EVENT SEQUENCE DIAGRAM

All the possible execution paths in an app UI are

represented by a model based on the Finite State

Machine (FSM) model, called the Event Sequence

Diagram (ESD) [23]. In an ESD, each node

represents an event while a state transition is

determined based on how the current node is

responding to the inputs. An ESD is created for each

app activity, then the ESDs of all app activities are

grouped together to create an App ESD.
An Event Sequence Diagram D is a two-tuple

<N, E> where:

1. N is a set of nodes representing all the events

for an activity/app. Each node nN represents

an event in D.

2. E  N x N is a set of directed edges between the

nodes. Each edge eE represents transition

from one event to the next. An event e2 is said

to follow e1 if and only if e2 can be initiated

after e1.

The constructed ESDs are used in generating test

cases (event sequences) for each activity, in the

activity level testing, and then for the app as whole,

in the app level testing, based on certain event-based

coverage criteria.

https://www.tutorialspoint.com/android/android_textview_control.htm
https://www.tutorialspoint.com/android/android_edittext_control.htm
https://www.tutorialspoint.com/android/android_button_control.htm
https://www.tutorialspoint.com/android/android_checkbox_control.htm
https://www.tutorialspoint.com/android/android_radiobutton_control.htm
https://www.tutorialspoint.com/android/android_radiogroup_control.htm

Moheb R. Girgis, Bahgat A. Abdel Latef, Tahany Akl / International Journal of Computing, 19(3) 2020, 355-364

 358

5.2 THE UI TESTING COVERAGE
CRITERIA

As described in the previous subsection, the

events identified within each UI's activity are

represented by an ESD, which is used to generate

event sequences as test cases. In order to measure

the test adequacy of test cases, Memon [24] has

defined two kinds of event-based coverage criteria:

(1) intra-component criteria for events within a

component and (2) inter-component criteria for

events across components. Intra-component criteria

include: event coverage, event-interaction coverage,

and length-n event-sequence coverage; and inter-

component criteria include: invocation coverage,

invocation-termination coverage, and length-n

event-sequence coverage. We adapted these criteria

for Android apps. We called the adapted criteria

Intra-activity criteria and Inter-activity criteria,

respectively, and defined them as follows:

Intra-activity criteria

– Event Coverage: each event in the activity

should be triggered at least once.

– Event-Interaction Coverage: after an event e has

been performed, all events that can interact with e

should be executed at least once.

– Length-n Event-sequence Coverage: all length-n

event sequences within an activity should be

executed at least once.

These criteria are employed in the test evaluation

phase of the activity level testing.

Inter-activity criteria

– Invocation Coverage: each event that starts a

new activity must be performed at least once.

– Invocation-termination Coverage: all length 2

event sequences consisting of an event followed

by one of the invoked activity’s termination

events has to be tested.

– Length-n Event-sequence Coverage: all length-n

event sequences that start with an event in an

activity and end with an event in another activity

must be tested.

These criteria are employed in the test evaluation

phase of the app level testing.

Having defined the ESD and the event-based

coverage criteria for UI testing, the following steps

are performed in order to apply the proposed UI

testing strategy to test the UI of an Android app:

– Identify the app activities and create the

corresponding ESDs.

– Using the activities ESDs, construct the App

ESD.

– Generate test cases according to the defined

coverage criteria.

– Execute the test cases.

– Analyze and evaluate the execution results.

Figure 1 – The steps of the proposed GUI testing

approach of Android Apps

6. THE PROPOSED ANDROID APPS UI
TESTING TOOL

This section describes the proposed tool that

implements the proposed UI testing strategy for

Android apps.

Fig. 1 shows the steps that are followed by the

tool to generate and execute test cases for each

activity in the AUT. The tool utilizes the

functionalities provided by the Robotium Test

Framework in two of these steps: in analyzing the

AUT activities to extract their views and related

information, and in executing the generated test

class for each event sequence.

Yes

No

Identify the current activity

Identify all UI views within

the activity

Select IO/clickable views

and identify their events

Create event sequences

Generate test script

Generate Robotium test
class

Run Robotium test class

Produce accumulated

criteria coverage and test

results reports

Load app under test (AUT)

Select an event sequence

Are more tests

required?

Exit

Moheb R. Girgis, Bahgat A. Abdel Latef, Tahany Akl / International Journal of Computing, 19(3) 2020, 355-364

 359

Generate_and_Run_Test_Cases Algorithm

Input: app, the AUT

Output: Test classes, Test results report, and Criteria

 coverage report

Begin

1. Create a Solo object, solo.

2. Identify the current activity act in app, by

using the method solo.getCurrentActivety().

3. Detect all UI views in act, by using the

method solo.getCurrentViews(), then select

from them IO/clickable views and save the

text of each view with its event in the event

list L.

4. Generate the Event Index List IL, which

contains for each event its index in L, type,

text, and id

5. S =  // Initialize Event Sequences Set

6. For each event e  L

7. Begin

// generate all possible legal sequences of e

// with all other events in L and store them

// in Se

8. Se = Generate_Event_Sequences(e, L)

9. S = S ∪ Se

10. End For

11. For each event sequence s  S

12. Begin

13. Generate_Test_Script(s, IL) →

 testScriptFile

14. Create_Test_Class(testScriptFile) →

 Robotium test class testClassFile

15. add testClassFile to app.

16. Run app with the Robotium test class.

17. Produce accumulated Criteria Coverage

Report and Test Results Report.

18. End For

End.

Figure 2 – Generate_and_Run_Test_Cases Algorithm

The procedural details of the tool steps are

described in the Generate_and_Run_Test_Cases

algorithm, shown in Fig. 2. In this algorithm, three

data structures are created: Event list L, which

contains, for each activity, its IO/clickable views

with their events; Event Index List IL, which

contains for each view its index in L, type, text, and

id; and Event Sequences Set S, which contains all

possible legal event sequences.

The tool builds an ESD for each activity, and

generates test cases based on the ESDs of the AUT

and the coverage criteria, described in Sec. 5. The

input to the tool is the AUT, and the outputs

produced by the tool are: UI event sequences,

Executable test cases, Criteria coverage report, and

Test results report.

Procedure Generate_Event_Sequences(e, L)

Input: an event e; Event List L

Output: Event sequences list for event e, Se

Begin

1. Se = ;

2. While there are possible event sequences

from e to other events in L

3. Begin

4. Generate a possible event sequence s from

e to other events in L;

5. If s is a subsequence of another generated

sequence in Se or it includes any illegal

event subsequences Then

6. Discard s;

7. Else

8. Add s to list Se;

9. End If

10. End While

11. Return Se;

End.

Figure 3 – Generate_Event_Sequences Procedure

The tool works as follows: Firstly, it uses a Solo

object to identify the current activity and detect its

views. From the detected views and related

information, which includes the view's type, event,

text and id, the tool selects only IO/clickable views

and saves the text of each view with its event in the

Event List L, and generates the Event Index List IL.

Then, for each event e  L, the tool generates all

possible legal sequences of e with all other events in

L, using the procedure Generate_Event_Sequences,

shown in Fig. 3, and stores them in the Event

Sequences Set S. To overcome the event sequences

explosion problem, the procedure identifies

subsumption between different event sequences, and

discards any sequence that is a subsequence of a

previously generated sequence. Also, to ensure the

feasibility of event sequences, i.e., their ability to be

executed, the procedure discards any sequence that

includes any illegal event subsequences. Next, for

each event sequence s  S, the tool generates a test

script by using IL and the procedure

Generate_Test_Script, shown in Fig. 4. For each

event in s, the test script includes a line that contains

the type of the corresponding view, its text and id.

From the generated test script, the tool generates a

Robotium test class, using the procedure

Create_Test_Class, shown in Fig. 5, and adds it to

app. Finally, app with the Robotium test class is

executed, and the tool produces test results and

criteria coverage reports. These reports provide the

tester with information about the detected errors, if

any, and the fulfilment of the specified testing

coverage criteria, to decide whether more tests are

required or not.

Moheb R. Girgis, Bahgat A. Abdel Latef, Tahany Akl / International Journal of Computing, 19(3) 2020, 355-364

 360

Procedure Generate_Test_Script (s, IL)

Input: an event sequence s; Event Index List IL

Output: A test script file for the event sequence s,

 testScriptFile

Begin

1. For each e  s

2. Begin

3. Get the view type that corresponds to event

e, with its text and id, from IL

4. Add a line representing the action of this

view, which contains this information, to

the test script.

5. End

6. Save the generated test script in

testScriptFile

End.

Figure 4 – Generate_Test_Script Procedure

Procedure Create_Test_Class (testScriptFile)

Input: The test script for an event sequence,

 testScriptFile

Output: A Java test class file, testClassFile

Begin

1. Insert the following lines into testClassFile:

public void setUp() throws Exception {

solo = new

Solo(getInstrumentation(),

getActivity());

}

public void testRun() {

2. While ! testScriptFile.EOF()

3. Begin

4. Read a line ln from testScriptFile

5. From ln, get view_type, text, and id

6. If view_type == "RadioButton" ||

view_type == "Button" Then

7. Insert the following instruction into

testClassFile:

solo.clickOnView(solo.getView(id));

8. Else If view_type == "TextView" Then

9. Insert the following instructions into

testClassFile:

TextView textField = (TextView)

solo.getView(id);

assertEquals((String)textField.

getText(), text);

10. Else If view == "EditText" Then

11. Insert the following instructions into

testClassFile:

EditText vEditText = (EditText)

solo.getView(id);

solo.enterText(vEditText, some text);

12. Else If …

….

13. End;

14. Insert "}" into testClassFile

End.

Figure 5 – Create_Test_Class Procedure

Figure 6 – The interface of the proposed tool

The presented automated GUI testing tool was

developed using Android Studio 3.0.1 and Microsoft

Visual Studio 2010 on a Laptop with processor: Intel

Core i5 – 4300U CPU – 2.50 GHz and RAM: 8 GB.

The AUT tests are executed using an Android

emulator. The tool provides users with the GUI

interface shown in Fig. 6. The main components of

the tool interface are: four buttons, “Browse”, “Load

AUT and Get Views and Sequences”, “Generate

Test Script and Test Class”, “Run test class”; one

EditTextBox; and one ListBox. Firstly, the user

selects an app for testing by clicking on “Browse”

button. Then, when the user clicks “Load AUT and

Get Views and Sequences” button, the selected app

is loaded, list of all the clickable/IO views of each

activity of this app and their events are extracted,

and from this list the tool generates all possible legal

event sequences of views. Next, a cycle starts: when

the user clicks “Generate Test Script and Test Class”

button, the tool selects an event sequence and

generates a test script for it, then generates a

Robotium test class for the generated test script, and

shows its file name in the ListBox. This test class is

added to the AUT. Each test class contains calls to

Robotium functions through a Solo object that

correspond to lines in the test script. When the user

clicks “Run test class” button the test class is

executed. Then, the tool asks the user whether

he/she wants to continue, if the answer is no, the tool

stops, otherwise, the tool allows the user to do more

tests by clicking “Generate Test Script and Test

Class” button, which repeats the above cycle, (see

Fig. 1).

Moheb R. Girgis, Bahgat A. Abdel Latef, Tahany Akl / International Journal of Computing, 19(3) 2020, 355-364

 361

7. CASE STUDY

This section presents an example of using the

proposed approach and tool for testing a simple

Android app called Currency_Converter. Fig. 7

shows the window (main activity) of this app. Its UI

includes 3 buttons (“Compute”, “Clear”, and

“Exit”), 3 Radio buttons (“Egypt”, “Canada”, and

“Japan”), one EditText control, 4 TextView controls.

When the app is launched, its initial

window/activity, shown in Fig. 7, appears. The app

takes as input an amount of money in United States

Dollars (USD) and outputs the equivalent amount in

Egyptian Pounds, Canadian Dollars, or Japanese

Yen, according to the selected country: Egypt,

Canada, or Japan, respectively. It produces an error

message if no country is selected or no USD amount

is entered before clicking the “Compute” button. At

any time, the user can clear the window, by clicking

the “Clear” button, which returns the AUT to its

initial state, or close the window, by clicking the

“Exit” button, which quits the app.

The tool detects the IO/clickable views and saves

the text of each view with its event in the events list,

L, as shown in Table 2. Fig. 8 shows the events

index list, IL, which contains, for each event, its

index in L, its type, text, and id. Fig. 9 shows the

corresponding ESD. From the list L and the ESD the

tool generates all possible legal sequences of views.

Table 3 shows some of the generated test cases

(event sequences). For each sequence the tool

generates a test script as the one shown in Fig. 10,

which corresponds to the event sequence [Idle -1-3-

7-5] (Test case T1). Each line in the test script

contains the view type, text, and id, separated by

commas. If a view does not have text, e.g., EditText,

the text positon is left empty. Then, the tool

generates a Robotium test class for the generated test

script, as shown in Fig. 11, and adds it to the AUT.

Finally, the app with the test class is executed.

Figure 7 – The Currency_Converter App window

(main activity)

Table 2. Event List of the example app

Index Text Event

1 “” enterText

2 “Egypt” Click

3 “Canada” Click

4 “Japan” Click

5 “” Output equivalent amount

6 “Clear” Click

7 “Compute” Click

8 “Exit” Click

9 “” Show error message

Figure 8 – The Event Index List of the example

app

Figure 9 – The ESD of the GUI of the example app (10

nodes and 35 edges)

Table 3. Some of the test cases generated for the main

activity of the example app

Test Case No. Test Case

T1 Idle -1-3-7-5

T2 idle-1-2-7-5

T.3 Idle -1-7-9

T4 Idle -1-8

T5 Idle – 4-7-9

T6 Idle -3-6

T7 Idle -4-7-9-6

T8 idle-1-7-9-6

T9 Idle -1-7-9-2

T10 Idle -4-1-7-5

T11 Idle -7-9-1-7-9

T12 Idle -7-9-1-2-7-5

T13 Idle -1-4-7-5

T14 Idle -7-9-1-7-9-1-6

T15 Idle-8

...

Idle

1

5

8

2 4 3

7 6 9

https://www.tutorialspoint.com/android/android_edittext_control.htm

Moheb R. Girgis, Bahgat A. Abdel Latef, Tahany Akl / International Journal of Computing, 19(3) 2020, 355-364

 362

Fig. 12 shows part of the Criteria Coverage

Report produced by tool for the test cases, shown in

Table 3. It shows for each test case: the event

sequence; the Event Coverage, which includes: the

newly covered events, and the accumulated event

coverage percentage; the Event-Interaction

Coverage, which includes: the newly covered edges,

and the accumulated event-interaction coverage; and

finally, Length-n Event-sequence Coverage.

Figure 10 – The test script for the event sequence

[Idle -1-3-7-5] (Test case T1)

public void setUp() throws Exception {

solo = new Solo(getInstrumentation(),

getActivity());

}

public void testRun() {

EditText vEditText1 =

 (EditText)solo.getView(R.id.e1);

solo.enterText(vEditText1, "10 ");

solo.clickOnView(solo.getView("r2"));

solo.clickOnView(solo.getView("b1"));

TextView textField1 = (TextView)solo.

 getView("t2");

assertEquals((String)textField1.getText(),

 "20");

}

Figure 11 – The test class generated for the test script

shown in Fig. 10

8. CONCLUSION

This paper presented a proposed strategy for

testing the GUIs of Android apps. This strategy

employs a model-based approach to capture the

event-driven nature of Android apps. The employed

model is the ESD, which depicts the events for an

app and the possible transitions between them. The

proposed strategy includes two phases: Modeling

Phase and Test Evaluation Phase. In the modeling

phase, an ESD is created for each activity in the

AUT and used to generate test cases (event

sequences). In the test evaluation phase, certain

event-based coverage criteria, adapted for Android

app, are employed to measure the adequacy of the

generated test cases for testing the GUI of the AUT.

Then, the paper presented a supporting tool for

analyzing the AUT, generating test cases, and

executing these test cases. The proposed tool

collects the IO/Clickable views in each activity of

the AUT and the associated events. Then, it

generates an ESD for each activity, and uses it to

generate a set of event sequences according to the

specified coverage criteria. The tool handles the

event sequences explosion problem, by discarding

any sequence that is a subsequence of another

sequence; and ensures the feasibility of event

sequences, by discarding any sequence that includes

any illegal event subsequences. By considering these

two situations, the number of generated sequences is

significantly reduced.

Criteria Coverage Report

App Name: Currency_Converter

Activity Name: Main Activity

ESD: 10 nodes, 35 edges

Test Case No.: T1

Event Sequence: Idle-1-3-7-5

Event Coverage: Newly covered events: Idle, 1, 3, 5, 7,

 Accumulated Event Coverage: 50%

Event-Interaction Coverage: Newly covered edges:

Idle-1, 1-3, 3-7, 7-5

Accumulated Event-Interaction Coverage: 11.43%

Length-n Event-sequence Coverage: n = 5

Test Case No.: T2

Event Sequence: idle-1-2-7-5

Event Coverage: Newly covered events: 2,

 Accumulated Event Coverage: 60%

Event-Interaction Coverage: Newly covered edges: 1-2,

2-7,

Accumulated Event-Interaction Coverage: 17.14%

Length-n Event-sequence Coverage: n = 5

Test Case No.: T3

Event Sequence: Idle-1-7-9

Event Coverage: Newly covered events: 9,

 Accumulated Event Coverage: 70%

Event-Interaction Coverage: Newly covered edges: 1-7,

7-9,

Accumulated Event-Interaction Coverage: 22.86%

Length-n Event-sequence Coverage: n = 4

Test Case No.: T4

Event Sequence: Idle-1-8

Event Coverage: Newly covered events: 8,

 Accumulated Event Coverage: 80%

Event-Interaction Coverage: Newly covered edges: 1-8,

Accumulated Event-Interaction Coverage: 25.71%

Length-n Event-sequence Coverage: n = 3

Test Case No.: T5

Event Sequence: Idle-4-7-9

Event Coverage: Newly covered events: 4,

 Accumulated Event Coverage: 90%

Event-Interaction Coverage: Newly covered edges:

Idle-4, 4-7,

Accumulated Event-Interaction Coverage: 31.43%

Length-n Event-sequence Coverage: n = 4

Test Case No.: T6

Event Sequence: Idle-3-6

Event Coverage: Newly covered events: 6,

 Accumulated Event Coverage: 100%

Event-Interaction Coverage: Newly covered edges:

Idle-3, 3-6,

Accumulated Event-Interaction Coverage: 37.14%

Length-n Event-sequence Coverage: n = 3

Figure 12 – Part of the Test Coverage Report

produced by tool for the test cases, shown in Table 3

Moheb R. Girgis, Bahgat A. Abdel Latef, Tahany Akl / International Journal of Computing, 19(3) 2020, 355-364

 363

For each event sequence, the tool generates a test

script, then generates a corresponding Robotium test

class, adds it to the AUT and executes it. The tool

utilizes the functionalities provided by the Robotium

framework for extracting information about the

views in each activity in the AUT, and for executing

the generated test class of each event sequence.

Finally, the paper presented a case study that

illustrates the use of the proposed GUI testing

strategy and the supporting tool in testing the UI of a

simple Android app.

9. REFERENCES

[1] UI/Application Exerciser Monkey — Android

Developers. [Online]. Available at:

http://developer.android.com/tools/help/monke

y.html.

[2] C. Hu and I. Neamtiu, “Automating GUI

testing for android applications,” Proceedings

of the 6th International Workshop on

Automation of Software Test, AST’11, Waikiki,

Honolulu, HI, USA, May 23-24, 2011, pp. 77–

83.

[3] A. Machiry, R. Tahiliani, and M. Naik,

“Dynodroid: an input generation system for

android apps,” Proceedings of the 9th Joint

Meeting on Foundations of Software

Engineering, Saint Petersburg, Russia, August

18–26, 2013, pp. 224-234.

[4] D. Amalfitano, A.R. Fasolino, and P.

Tramontana, “A GUI crawling-based technique

for Android mobile application testing,”

Proceedings of the IEEE Fourth International

Conference on Software Testing, Verification

and Validation Workshops (ICSTW’11), Berlin,

Germany, 21-25 March, 2011, pp. 252–261.

[5] D. Amalfitano, A.R. Fasolino, P. Tramontana,

S. De Carmine, and A.M. Memon, “Using GUI

ripping for automated testing of Android

applications,” Proceedings of the IEEE/ACM

International Conference on Automated

Software Engineering, ASE’12, Essen,

Germany, September 3-7, 2012, pp. 258–261.

[6] W. Yang, M. R. Prasad, and T. Xie, “A grey-

box approach for automated GUI-model

generation of mobile applications,”

Proceedings of the 16th International

Conference on Fundamental Approaches to

Software Engineering, FASE’13, Rome, Italy,

March 16-24, 2013, pp. 250–265.

[7] T. Azim and I. Neamtiu, “Targeted and depth-

first exploration for systematic testing of

android apps,” Proceedings of the ACM

SIGPLAN International Conference on Object

Oriented Programming Systems Languages &

Applications, OOPSLA’13, Indianapolis, IN,

USA, October 26-31, 2013, pp. 641–660.

[8] W. Choi, G. C. Necula, and K. Sen, “Guided

GUI testing of Android apps with minimal

restart and approximate learning,” Proceedings

of the 2013 ACM SIGPLAN International

Conference on Object Oriented Programming

Systems Languages & Applications,

OOPSLA’13, Indianapolis, IN, USA, October

26-31, 2013, pp. 623–640.

[9] D. Amalfitano, A. R. Fasolino, P. Tramontana,

B. D. Ta, and A. M. Memon, “MobiGUITAR:

automated model-based testing of mobile

apps,” IEEE Software, vol. 32, issue 5, pp. 53–

59, 2015.

[10] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y.

Yao, G. Pu, Y. Liu, and Z. Su, “Guided,

stochastic model-based GUI testing of Android

apps,” Proceedings of the Symposium on the

Foundations of Software Engineering

ESEC/FSE’17, Paderborn, Germany,

September 4–8, 2017, pp. 245-256.

[11] N. Mirzaei, S. Malek, C.S. Păsăreanu, N.

Esfahani, and R. Mahmood, “Testing Android

apps through symbolic execution,” ACM

SIGSOFT Software Engineering Notes, vol. 37,

issue 6, pp. 1-5, 2012.

[12] S. Anand, M. Naik, M. J. Harrold, and H.

Yang, “Automated concolic testing of

smartphone apps,” Proceedings of the 20th

ACM SIGSOFT Symposium on the Foundations

of Software Engineering, SIGSOFT/FSE’12,

Cary, NC, USA, November 11-16, 2012, pp.

59-69.

[13] C. S. Jensen, M. R. Prasad, and A. Møller,

“Automated testing with targeted event

sequence generation,” Proceedings of the

International Symposium on Software Testing

and Analysis, ISSTA’13, Lugano, Switzerland,

July 15-20, 2013, pp. 67–77.

[14] N. Mirzaei, H. Bagheri, R. Mahmood, and S.

Malek, “SIG-Droid: Automated system input

generation for android applications,”

Proceedings of the 26th IEEE International

Symposium on Software Reliability

Engineering, ISSRE’15, Gaithersbury,

Maryland, USA, November 2-5, 2015, pp. 461-

471.

[15] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi,

and S. Malek, “Reducing combinatorics in GUI

testing of android applications,” Proceedings of

the 38th International Conference on Software

Engineering, ICSE’16, Austin, TX, USA, May

14-22, 2016, pp. 559–570.

[16] R. Mahmood, N. Mirzaei, and S. Malek,

“EvoDroid: segmented evolutionary testing of

android apps,” Proceedings of the 22nd ACM

Moheb R. Girgis, Bahgat A. Abdel Latef, Tahany Akl / International Journal of Computing, 19(3) 2020, 355-364

 364

SIGSOFT International Symposium on

Foundations of Software Engineering,

ESEC/FSE’14, Hong Kong, China, November

16-22, 2014, pp. 599–609.

[17] K. Mao, M. Harman, and Y. Jia, “Sapienz:

multi-objective automated testing for android

applications,” Proceedings of the 25th

International Symposium on Software Testing

and Analysis, ISSTA’16, Saarbrucken,

Germany, July 18-20, 2016, pp. 94–105.

[18] A. Darvish and C. K. Chang, “Black-box test

data generation for GUI testing,” Proceedings

of the 14th International Conference on Quality

Software, 2-3 October 2014, Dallas, TX, USA,

pp. 133-138.

[19] M. Linares-Vásquez, M. White, C. Bernal-

Cárdenas, K. Moran, D. Poshyvanyk, “Mining

Android app usages for generating actionable

GUI-based execution scenarios,” Proceedings

of the 12th IEEE/ACMWorking Conference on

Mining Software Repositories, MSR’2015,

Florence, Italy, May 16-17, 2015, pp. 111–122.

[20] W. Song, X. Qian, and J. Huang, “EHBDroid:

Beyond GUI testing for Android applications,”

Proceedings of the 32nd IEEE/ACM

International Conference on Automated

Software Engineering (ASE), 30 October-3

November 2017, Urbana, IL, USA, pp. 27-37.

[21] Android – Application Components. [Online].

Available at: https://www.tutorialspoint.com/

android/android_application_components.htm.

[22] Android user interface testing with Robotium –

Tutorial. [Online]. Available at:

http://www.vogella.com/tutorials/Robotium/arti

cle.html.

[23] P. Li, T. Huynh, M. Reformat, and J. Miller, “A

practical approach to testing GUI systems,”

Empirical Software Engineering, vol. 12, issue

4, pp. 331–357, 2007.

[24] A. M. Memon, A Comprehensive Framework

for Testing Graphical User Interfaces, PhD

Thesis, Department of Computer Science,

University of Pittsburgh, July 2001.

Moheb R. Girgis, received his
B.Sc. degree from Mansoura
University, Egypt, in 1974, M.Sc.
degree from Assuit University,
Egypt, in 1980, and Ph.D.
degree from the University of
Liverpool, England, in 1986. He
is a professor of computer
science at Minia University,
Egypt.

His research interests include software
engineering, software testing, information retrieval,
evolutionary algorithms, image processing, and
computer networks.

Bahgat A. Abdel Latef,
received his B.Sc. and M.Sc.
degrees from Assuit University,
Egypt, in 1975 and 1983,
respectively, and Ph.D. degree
from the University of Liverpool,
England, in 1989. He is a pro-

fessor of computer science at Minia University,
Egypt. His research interests include software
engineering, information retrieval, and computer
networks.

Tahany Akl, received her B.Sc.
and M.Sc. degrees from Minia
University, Egypt, in 2005 and
2014, respectively. She is a
Ph.D. Student at Computer
Science Department, Minia
University, Egypt. Her research
interests include software
engineering and GUI testing.

https://ieeexplore.ieee.org/author/37276903000

