
Samuel O. Obadan, Zenghui Wang / International Journal of Computing, 19(3) 2020, 377-386

 377

A MULTI-AGENT APPROACH TO POMDPS USING OFF-POLICY

REINFORCEMENT LEARNING AND GENETIC ALGORITHMS

Samuel O. Obadan, Zenghui Wang

College of Science, Engineering and Technology, University of South Africa, Florida 1710, South Africa

obadansam@gmail.com, wangzengh@gmail.com

Paper history:

Received 22 November 2019

Received in revised form 19 March 2020

Accepted 08 July 2020
Available online 27 September 2020

Keywords:

Genetic algorithm;

Evolutionary Neural networks;
Reinforcement Learning;

Particle filters;

Markov decision processes;
POMDPs.

Abstract: This paper introduces novel concepts for accelerating learning in an

off-policy reinforcement learning algorithm for Partially Observable Markov

Decision Processes (POMDP) by leveraging multiple agents frame work.

Reinforcement learning (RL) algorithm is considerably a slow but elegant

approach to learning in an unknown environment. Although the action-value (Q-

learning) is faster than the state-value, the rate of convergence to an optimal

policy or maximum cumulative reward remains a constraint. Consequently, in an

attempt to optimize the learning phase of an RL problem within POMD

environment, we present two multi-agent learning paradigms: the multi-agent

off-policy reinforcement learning and an ingenious GA (genetic Algorithm)

approach for multi-agent offline learning using feedforward neural networks. At

the end of the trainings (episodes and epochs) for reinforcement learning and

genetic algorithm respectively, we compare the convergence rate for both

algorithms with respect to creating the underlying MDPs for POMDP problems.

Finally, we demonstrate the impact of layered resampling of Monte Carlo’s

particle filter for improving the belief state estimation accuracy with respect to

ground truth within POMDP domains. Initial empirical results suggest

practicable solutions.

Copyright © Research Institute for Intelligent Computer Systems, 2020.

All rights reserved.

1. INTRODUCTION

Recent advances in the field of artificial

intelligence (AI) has unveiled a wide range of

efficient algorithms [1] which if skillfully

hybridized, could result in a plausible model for

solving some of the problems in the field.

Since the introduction of value iteration

algorithm for planning [2-5] in the 1970s, it has

undergone a couple of refinement by numerous

authors with an attempt to adapt it to solving more

complex real world Problems. The combinational

explosion of linear components (also referred to as

the curse of dimensionality in some literature

sources) in the value function is one of the major

reasons that POMDPs are impractical for most

applications [6-8]. Another related problem with

value iteration is the exponential growth of distinct

action-observation histories (also referred to as the

curse of history). Some ingenious pruning methods

have been used to ameliorate the problem but these

pruning methods are in themselves computationally

expensive to implement and only work for small

finite horizon problems [9, 10].

Some better strategies have been implemented

such as PBVI (Point Based Value Iteration) [3]

which iteratively update a sub set of representative

belief points. Another promising method

implemented for both discrete and continuous belief

states is the MCMDP (Monte Carlos Markov

Decision Process) [6, 11]. This method attempts to

map POMDPs directly to their underlying MDPs

using Bayes Particle filter for belief updates.

On a parallel front, Reinforcement learning (RL)

algorithm is considerably a slow but elegant

approach to learning in an unknown environment.

Although the action-value (Q-learning) is faster than

the state-value, the rate of convergence to an optimal

policy or maximum cumulative reward remains a

constraint. However, RL has the advantage of

learning an underlying MDP for both dynamic and

stochastic environments [12-14].

computing@computingonline.net

www.computingonline.net

Print ISSN 1727-6209

On-line ISSN 2312-5381

International Journal of Computing

Samuel O. Obadan, Zenghui Wang / International Journal of Computing, 19(3) 2020, 377-386

 378

In this paper, the authors via experiments,

investigate the effect, impact or/and contributions of

multi-agents to accelerating the rate (thereby

shortening the duration) at which the utilities

converge to an optimal policy for planning within

POMDP environments. The agents leverage on the

greedy strategy for online exploration-exploitation

using off-policy model free algorithm [15]. We then

compare this multi-agent RL model with an

ingenious multi-agent framework equipped with a

feedforward neural network which is optimized

offline via an objective function (based on

localization of the goal and absorbing nodes) using

genetic algorithm. We then identify the promises

and constraints of both paradigms and thus propose

future recommendations.

Furthermore, because every POMDP can be

mapped directly to its underlying MDP, we examine

how an agent armed with a single range sensor could

minimize the margin of error between an agent’s

belief state and its actual state via an ingenious

resampling algorithm for the Monte Carlos particle

filter [16-19]. The rational is to unveil (in the failure

one or more sensors) a cost saving and relatively

efficient approach to robot localization in POMDP

environments. Empirical results show that this

simple procedure quickly filters out outliers

responsible for large errors in the initial approximate

belief of an agent’s state.

2. LITERATURE REVIEW

Hybrid Genetic algorithms Evolution

computation is a field that includes genetic

algorithm, genetic programming along with

evolution techniques which capture the entire

process of selection and mutation [20-22]. The

biological model of natural selection and genetics

form the basis on which these computational

techniques are implemented. A class of ‘random

search algorithm’ with theory firmly embedded in

biological models of selection and evolution is

referred to as genetic algorithm (GA). Given a

clearly defined problem to be solved, a basic GA can

be represented as a set of string of bits

(chromosome) which could be decoded to represent

a solution to the problem. Each chromosome is

tested to see how good it is at solving the problem

by assigning a fitness function to them [23, 24]. The

probability of a chromosome being selected is

proportional to its fitness. The higher the fitness

score, the better the probability of chromosome

being selected. A popular method of selection is the

Roulette wheel selection. This iterative process

unveils an ingenious paradigm for optimal path

creation in maximizing the coverage of the search

space when solving the multisource/target problem.

An evolutionary neural network is a

hybridization of two powerful AI algorithms: the

genetic algorithm and the artificial neural networks

[25-27]. They are both biologically inspired and are

often designed as feed forward ENNs when

combined. This combination is achieved by evolving

the weights in a fixed neural network while

providing the network with a set of inputs [28-30].

2.1 REINFORCEMENT LEARNING

Reinforcement learning is the science of

sequential decision making. For grid world agents, it

is characterized by an agent’s ability to maximize

long term rewards leveraging on past experiences

obtained via interaction with a stochastic

environment. Because the environment is initially

unknown to the agent, the agent has to surmount the

challenge of handling the delicate balance between

exploring and exploiting the environment while

maximizing the expected long term reward.

Consequently, RL agents usually combine online

learning and planning simultaneously via policy

optimization [31, 32].

The utilities of each state in RL are often referred

to as state-value function. Analogous to the state-

valued function is the action value function often

referred to as Q-value function. The process of

learning with Q-value functions is referred to as Q-

learning [33].

𝑄(𝑠𝑡 , 𝑎)𝑛𝑒𝑤 = 𝑄(𝑠𝑡 , 𝑎)+ ∝ (𝑟𝑡+1 +

𝛾 𝑚𝑎𝑥𝑎 𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎)) (1)

where,

𝑄(𝑠𝑡 , 𝑎) is the current value of the state under a

specific action policy 𝑎;

𝑟𝑡+1 is the received reward;

𝑚𝑎𝑥𝑎 𝑄(𝑠𝑡+1, 𝑎) is the maximum Q-value of the

subsequent state under a specific action policy 𝑎;

∝ is proportional to the learning rate weighted by

𝛾 the discount factor.

In this paper, we adopt a Q-learning RL for our

implementation because it learns considerably faster

than the state-value function. However, the

reinforcement learning process is generally slow.

Consequently, we attempt to accelerate the learning

phase via the introduction of multi-agents.

2.2 MDP AND POMDPs

MDPs have a reputation for robotic navigations

in a known environment. The environment is

assumed to be Markovian (i.e., the effects of an

action stochastically depends on the current state of

the world and the executed action). Because the

resulting state from the action is not deterministic,

Samuel O. Obadan, Zenghui Wang / International Journal of Computing, 19(3) 2020, 377-386

 379

the subsequent state of the agent may be unintended.

Amidst the stochasticity, the robot must navigate

from its current location to a goal location with the

minimum possible steps. Thus, MDPs create a

policy for every possible node in grid world that is

fully observable and stochastic [3, 6, 11]. MDPs are

usually defined as a tuple < S, A, T, R> where:

S- a set of environment states (which must

encapsulate all relevant information for taking

correct decisions – e.g., Map, exact location within

map, state of the world (open or closed door).

A- all actions that the agent can execute. A

simplified example would be UP, DOWN, LEFT,

RIGHT;

T- the stochastic transition function T(S, A, S’)

= P(S’
t+1 = So | St =s, At= a) – the probability of

executing an action ‘a’ from state ‘S’ at time ‘t’ and

arriving at state S’ at time ‘t+1’;

R- the reward function which models the utility

of the current state as well as the cost of taking a

particular action R(S, a). A negative living reward

(non-zero cost) is usually associated with grid world

implementations.

In this paper, our simulation is based on planning

problems which has a finite and discrete state and

action space. The purpose of planning is to find a

policy (set of optimal actions) that describes the

agent’s behavior in order to maximize the sum of

expected rewards

𝑈(𝑠) = ∑ 𝐸[𝛾𝑡∞
𝑡=0 𝑅(𝑆𝑡)] (2)

where, 𝛾 is the discounted reward as ‘t’ tends

towards infinity 0 ≤ 𝛾 < 1. This keeps the solution

bounded. However, since our horizon is finite, (i.e.,

has an absorbing or goal state) we set 𝛾 = 1

For every state S, we can compute a utility

function with the following equation:

𝑈(𝑠) = 𝑅(𝑠) + 𝛾 ∑ 𝑇(𝑆, 𝑎, 𝑆′
𝑠′)𝑈(𝑆′) (3)

The optimal utility for each state is given by the

Bellman equation

𝑈(𝑠) = 𝑅(𝑠) + 𝛾 𝑀𝑎𝑥𝑎 ∑ 𝑇(𝑆, 𝑎, 𝑆′
𝑠′)𝑈(𝑆′) (4)

The optimal policy is given by the equation.

𝜋∗(𝑠) = 𝑎𝑟𝑔𝑀𝑎𝑥𝑎 ∑ 𝑇(𝑆, 𝑎, 𝑆′
𝑠′)𝑈(𝑆′) (5)

In real world domains, most of the assumptions

behind the implementation of MDPs fall apart

because the agent cannot directly observe the state

of the environment. POMDPs give us more efficient

alternative to modeling real world problems via

probability distribution over states also referred to a

belief states. This is because the actual state of the

world cannot be fully observed due to inaccurate

sensor readings. Alternatively in POMDP

environments, beliefs provide a sufficient statistic

for the history thereby availing sufficient

information for the optimal policy per state with the

assumption that the underling MDP is also

Markovian [3].

POMDPs therefore can be defined as belief-space

MDP with the tuple < B, A, T, RB > such that:

-B is the set of possible states over beliefs over

state S;

-A is the set of possible actions;

-T is the belief transition function T (B, a, B’
o);

representing the transition probability of starting a

belief B, taking an action a, and arriving at a new

belief state B’
o.

-RB is the reward at each belief state.

Just like the MDP model, we define the Bellman

update operator [9] for the Belief-Space MDP

(POMDP) as:

𝑈(𝑏) = 𝑀𝑎𝑥𝑎 (𝑅(𝑏) + 𝛾 ∑ 𝑇(𝑏, 𝑎, 𝑏′

𝑏∈𝐵′

)𝑈(𝑏′)) (6)

Consequently, like MDPs the goal of POMDPs is

to find the policy for action selection that maximizes

the reward (𝑏) .

2.3 PARTICLE FILTERS ALGORITHM

Particle filter is an elegant algorithm with the

potential of mapping trajectory history into belief

states which consequently aid agents to learn a

mapping from belief states to action in POMDPs

[34-36]. Particle filters are the implementations of

recursive Bayesian filtering used for modeling non-

Gaussian distributions [37, 38]. Using the motion

and sensor observation model, the algorithm

iteratively updates the belief-states via a sequence of

prediction steps and correction steps usually referred

to as belief updates [39, 40].

Predictor step is given by:

𝐵𝑒𝑙̅̅ ̅̅̅(𝑥𝑡) = ∫ 𝑃(𝑥𝑡 |𝑈𝑡 , 𝑥𝑡−1)𝐵𝑒𝑙(𝑥𝑡−1)𝑑𝑥𝑡−1. (7)

While the correction step is given by:

𝐵𝑒𝑙(𝑥𝑡) = ɳ 𝑃(𝑍𝑡 |𝑥𝑡) 𝐵𝑒𝑙̅̅ ̅̅̅(𝑥𝑡−1) (8)

Combining both equations, we get the Bayes

particle filter equation as follows:

𝐵𝑒𝑙(𝑥𝑡)

= ɳ 𝑃(𝑍𝑡 |𝑥𝑡) ∫ 𝑃(𝑥𝑡 |𝑈𝑡−1, 𝑥𝑡−1)𝐵𝑒𝑙(𝑥𝑡−1)𝑑𝑥𝑡−1

 (9)

Samuel O. Obadan, Zenghui Wang / International Journal of Computing, 19(3) 2020, 377-386

 380

where,

ɳ is the normalization factor

𝐵𝑒𝑙(𝑥𝑡) is the belief of being in state 𝑥 at time t.

𝑃(𝑍𝑡 |𝑥𝑡) is the probability of sensing 𝑍𝑡given a

state location 𝑥𝑡 at time t.

𝑈𝑡 is the action or motion step at time t.

3. EXPERIMENTAL SETUP

The experiments can be divided into two sub

sections: Section A and Section B.

Figure – (1.0) Multi-agent RL environment with walls

(white cells), absorbing states (red cells), dynamic door

(blue cell) and goal node (green cell)

Section A

In this section (Section A), we show how the

multi-agent Q-learning RL algorithm [41-45]

converges quickly when compared with a single off-

policy agent. It is important to note that learning

algorithm creates an underlying MDP model for the

grid world (Fig. 1) at convergence.

The first simulation had a single RL agent in a 30

X 20 grid world (Fig. 2) with obstacles (white cells),

absorbing nodes (red cells), a single door (blue cell)

which toggles (open/close) between episodes and a

single goal node (in green). Below are the settings

of the environment used for all simulations (single

agent and multi-agent):

Living reward (R) = -0.1

Learning rate (α) = 0.1

Discount factor (𝛾) = 1.0

Maximum Reward: (RMax goal node) = +5000

Punishment (Absorbing nodes) = -5000

In the second simulation (Fig. 3), three more

agents were added to the single agent. In a deliberate

attempt to investigate the significance of the addition

of a single agent, we ran a third simulation with 5

agents (Fig 4.0).

Figure 2 – Single agent reinforcement learning graph

with respect to CPU-time

The results show a significant difference in the

convergence rate. It is interesting to note that multi-

agents displayed some emergent behaviors (outside

the scope of this research) during the on-line training

process while migrating the algorithm towards

convergence.

Figure 3 – Multi-agent (size of 4) reinforcement

learning graph with respect to CPU-time

Figure 4 – Multi-agent (size of 5) reinforcement

learning graph with respect to CPU-time

4533,88

272457

0

100000

200000

300000

400000

500000

600000

-6000

-4000

-2000

0

2000

4000

6000

C
P

U
 T

IM
E

R
EW

A
R

D

Single Agent RL Convergence

AVG REWARD CPU TIME

4266,76

52583

0

20000

40000

60000

80000

100000

120000

140000

-6000

-4000

-2000

0

2000

4000

6000

C
P

U
 T

IM
E

R
EW

A
R

D

Muti-Agent RL Convergence

AVG REWARD CPU TIME

39708

4228,21

-6000

-4000

-2000

0

2000

4000

6000

0

20000

40000

60000

80000

100000

120000

140000

R
EW

A
R

D

C
P

U
 T

IM
E

Multi-Agent RL Convergence

CPU TIME AVG REWARD

Samuel O. Obadan, Zenghui Wang / International Journal of Computing, 19(3) 2020, 377-386

 381

3.1 GENETIC ALGORITHM PARADIGM

In comparison, we simulate an alternate approach

to creating an underlying MDP model for a grid

world using multi-agents (4 agents) each equipped

with feedforward neural networks, whose weights

are optimized using genetic algorithm. The

objective of function of these agents is to learn the

model of the world via exploration. Training is done

off-line via epochs over multiple generations. The

fitness function for each generation of the multi-

agents is given by:

∑ ∑ 𝑅(𝑠)𝑖.𝑗 + 𝛽𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 (10)

where,

R(s) are the living positive reward for each new

explored state (i,j) in the grid world,

𝛽𝑖,𝑗 are extra rewards assigned to absorbing and

goal nodes.

The iteration terminates after a predefined

number of epochs or after a predefined minimum

sum of rewards has been obtained. When the

simulation terminates, it creates underlying MDP

(Optimal policy) using dynamic programming with

respect to the goal node. It is important to note that

the entire learning procedure is considered to be off-

line. Each epoch ran for a fixed duration (3750)

CPU-time over 12 epochs (Fig. 5) before

termination.

Figure 5 – Multi-agent (size of 4) feedforward neural

network (with GA) learning graph with respect to

CPU-time, and Epochs

Section B

In Section B, we simulate the planning phase for

a single agent in a POMDP environment that

leverages on the underlying MDP created in Section

A. Our methodology incorporates the particle filter

algorithm leveraging the roulette wheel selection for

the resampling phase [46].

Figure 6 – Agent motion model for POMDPs

In our simulation, four sensor nodes are

strategically placed at the edges of the grid world

with which the agent is able to localize itself with

respect to its belief update [47]. Gaussian noise was

added to the sensor inputs. For simplicity, we

discretized the agent’s motion within the stochastic

environment. The key idea is to efficiently map the

belief state of the agent (particle filter averaged

output) with the actual state of the agent. From

(Fig. 6), the agent’s policy is mapped directly to its

belief which is based on the underlying MDP.

Consequently, an accurate mapping would

ultimately guide the agent to the goal node.

Figure 7 – Process flow diagram for traditional

resampling and localization of belief state using

particle filters. Capital ‘A’ (Initial Random sample),

Lowercase ‘a’ (resampled)

Figure 8 – Agent belief state (particle filter) and actual

state transition from start position (upper left) to goal

position (lower right) for traditional resampling

0

10000

20000

30000

40000

50000

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12

C
p

u
 T

im
e

R
ew

ar
d

Epochs

Multi-agent (size of 4) feedforward neural network

Reward Cpu-Time

0

100

200

300

400

0 100 200 300 400

X
-p

o
si

ti
o

n

Y-position

Agent Position and Belief

Particle filter (belief) Agent

a

A ∑ 𝑎𝑣𝑔

Update

belief

Sense

Resample
Move

Samuel O. Obadan, Zenghui Wang / International Journal of Computing, 19(3) 2020, 377-386

 382

The resampling model depicted in (Fig. 7) is the

traditional resampling model where particles are

initialized randomly within the entire grid world [48]

as depicted with the capital A. Thereafter, a new

weighted sample based on important weights is

produced (lower case a) via the roulette wheel

selection algorithm. The x. y coordinates of the

belief state are thereafter obtained by averaging the

sum of the particles x. y coordinates. Fig. 8 shows

the average result of this model. It is important to

note that the agent motion model (Fig. 6) is iterated

about five times with zero motion at the

initialization phase before state transitions

commence. The key idea is to minimize the error

between the belief state and actual state before any

transition begins. It is important to note that the

initial state (position) of the agent in the world is

unknown.

An improved model (Fig. 9) attempts to eliminate

outliers resulting from the weighted samples by

passing those samples through roulette wheel a

second time to produce better weighted sample

(Fig. 10) (lower case b) before averaging.

Figure 9 – Extended Process flow diagram for

traditional resampling and localization of belief state

using particle filters. Capital ‘A’ (Initial Random

sample), Lowercase ‘a, b’ (resampled) with double

phased resampling.

Figure 10 – Agent belief state (particle filter) and

actual state transition from start position (upper left)

to goal position (lower right) for double phased

resampling

Introducing a third layer (Fig. 11) resampling

produced even better results on the averages as

shown in Fig. 12.

Fig. 11 – Extended Process flow diagram for

traditional resampling and localization of belief state

using particle filters. Capital ‘A’ (Initial Random

sample), Lowercase ‘a, b, c’ (resampled) with triple

phased resampling.

Figure 12 – Agent belief state (particle filter) and

actual state transition from start position (upper left)

to goal position (lower right) for triple phased

resampling.

In our final model, we include a preprocessing

phase with N (such that N =1000) number of

particles randomly replicated 4 times in batches over

the entire world as depicted in the A, B, C and D

segments (Fig. 13).

Figure 13 – Modified Process flow diagram for

traditional resampling and localization of belief state

using particle filters. Capital ‘(A, B, C D)’ (Initial

Random sample), Capital A (selected sample),

Lowercase ‘a, b, c’ (resampled) with triple phased

resampling.

0

100

200

300

400

0 100 200 300 400

X
-P

o
si

ti
o

n

Y-Position

Agent Position and Belief

Particle filter (Belief) Agent

0

100

200

300

400

0 100 200 300 400

X
-p

o
si

ti
o

n

Y-Position

Agent Position and Belief

Particle filter (Belief) Agent

a

A B

C D
A b c ∑

a

 A b
c ∑ 𝑎𝑣𝑔

a

 A b
∑ 𝑎𝑣𝑔

Samuel O. Obadan, Zenghui Wang / International Journal of Computing, 19(3) 2020, 377-386

 383

The agent intuitively attracts the batch of
particles with the highest probabilistic weights into
the iterative phase, leaving behind other batches of
N- particles. This procedure keeps the computational
complexity simple while improving accuracy as
shown in Fig. 14.

Figure 14 – Agent belief state (particle filter) and

actual state transition from start position (upper left)

to goal position (lower right) for preprocessed

initialization with triple phased resampling.

This implementation drastically reduced the
frequency of occurrence of false negatives (Fig. 15a
the agent believes it is in a wall when it is actually
not), and false positives (Fig. 15b the agent believes
it is not in a wall, when it actually is) when observed
over multiple runs. The final model maintained true
positives (the agent’s belief and actual state are
approximately the same) over multiple runs as
shown in Fig. 15c.

(a) (b) (c)

Figure 15 – (a) False negatives (the agent believes it’s

in a wall (belief in RED) when it’s actually not), (b)

False positives (the agent believes it’s not in a wall,

when it actually is). (c) True positives (agents position

and belief are approximately same.

3.2. THE AMCL (ADAPTIVE MONTE
CARLOS LOCALIZATION) APPROACH

The AMCL model is a relatively recent state of
the art algorithm with which we compare our
proposed localization algorithm. This algorithm
randomly adjusts the number of free particles during

the resampling phase based on their weights. By
leveraging on the Kullback-Leibler divergence
(KLD) algorithm [50, 51], the AMCL adapts a linear
relationship to the number of particles in non-empty
cells of the state space, and an upper bound on the
number of resampled particles throughout the sense
and move cycle [52]. Agent belief state and actual
state transition from start position are shown in
Fig. 16.

Figure 16 – Agent belief state (particle filter) and

actual state transition from start position (upper left)

to goal position (lower right) for the AMCL (KLD)

4. DISCUSSION OF RESULTS

We have obtained preliminary results for ongoing
research in two phases: phase one for a typical
learning problem and phase two for a
complementary planning problem within a POMDP
environment. In the first phase, we simulate learning
of a POMDP environment using online, off-policy
reinforcement Q-learning using both single and
multi-agents. The rational is for the agents to learn
optimal policy within a stochastic environment. The
simulation results showed significant difference in
CPU-time over episodes between the single and
multi-agent frame work. The multi-agent (with a
size of 4) converged much faster. With the addition
of an extra agent, we witnessed even further
improvement in CPU-time.

In contrast, we simulate an alternative off-line
learning approach using feedforward neural
networks for multiple agents (with a size of 4)
whose weights were optimized using genetic
algorithm over multiple epochs. This approach
enables the agents learn the model of the world by
localizing all absorbing states including the goal
node and thereafter terminating with an optimal
policy with respect to the goal node using dynamic
programming [49]. This model converged faster than
the Q-learning model however not without some
drawbacks. The model is not naturally suited for
dynamic environments (such as open/closed doors)

0

50

100

150

200

250

300

350

400

0 100 200 300 400

X
-P

o
si

ti
o

n

Y-Position

Agent Position and Belief

Particle filter (Belief) Agent

0

100

200

300

400

0 100 200 300 400

X
-P

o
si

ti
o

n
Y-position

AMCL Agent Position and Belief

Particle filter (Belief) Agent

Samuel O. Obadan, Zenghui Wang / International Journal of Computing, 19(3) 2020, 377-386

 384

without a major modification to the algorithm which
could impact computational complexity.

In the second phase (planning phase), results
show how segmented initialization of N-particles
combined with multi-layer resampling improved
belief state accuracy with respect to ground truth for
scenarios in which sensor fusion may be
impracticable. Our proposed approach to the
resampling phase revealed better accuracy when
compared with the AMCL (KLD) algorithm.
Consequently, the mapping of the POMDP to the
underlying MDP was with relatively high fidelity.

5. CONCLUSION

In this paper, the authors compare two learning
paradigms for POMDP problems and also
contributed to the planning phase via a clever
modification to the resampling stage of the particle
filter algorithm. The proposed algorithms could be
implemented in partially observable environments
where a search and rescue operation may be
required.

The multi-agent Q-learning showed more
robustness for both static and dynamic
environments, however it asymptotes relatively
slower when compared with the multi-agent
feedforward neural network counterpart. But then,
the feedforward neural network offline learning
paradigm is unable to adequately model dynamic
environments.

The results from the grid world for state
representation using multi-agent Q-learning showed
that the increase in the number of agents, increases
the rate of convergence. Though this may be true for
the grid world with a computable finite state space,
future research may reveal the veracity of this theory
in more complex scenarios where states are
represented using feature vectors.

Furthermore, we leverage on a classical
resampling method (the roulette wheel) to
demonstrate how an ingenious adaptation of the
particle filter algorithm improved the belief state
accuracy with respect to robot localization within
POMDP environments.

ACKNOWLEDGMENT

This research is supported partially by South
African National Research Foundation Grants (No.
112108&112142), South African National Research
Foundation Incentive Grant (No. 114911), and
ESKOM’s Tertiary Education Support Program
(TESP) of South Africa.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of
interest regarding the publication of this paper.

6. REFERENCES

[1] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian,
Y. Tao, M. Presa Reyes, M.-L. Shyu, S.-C.
Chen, and S. S. Iyengar, “A survey on deep
learning: Algorithms, techniques, and
applications,” ACM Computing Surveys
(CSUR), vol. 51, issue 5, pp. 92:1–92:36,
2018.

[2] S. Obadan, Z. Wang, “A hybrid optimization
approach for complex nonlinear objective
functions,” International Journal of
Computing, vol. 17, issue 2, pp. 102-112,
2018.

[3] J. Pineau, G. Gordon, and S. Thrun, “Point-
based value iteration: An anytime algorithm
for POMDPs,” Proceedings of the Int. Jnt.
Conf. on Artificial Intelligence, 2003, pp. 477–
484.

[4] N. Roy, G. Gordon, and S. Thrun, “Finding
approximate POMDP solutions through belief
compression,” J. Artificial Intelligence
Research, vol. 23, pp. 1–40, 2005.

[5] J. A. Bagnell, & J. Schneider, “Autonomous
helicopter control using reinforcement learning
policy search methods,” Proceedings of the
IEEE International Conference on Robotics
and Automation (ICRA), Seoul, South Korea,
2001, pp. 1615-1620.

[6] D. Silver and J. Veness, “Monte-Carlo
planning in large POMDPs,” Proc. Neur.
Inform. Process. Sys., Vancouver, Canada,
2010, pp. 1–9.

[7] C. Boutilier, & D. Poole, “Computing optimal
policies for partially observable Markov
decision processes using compact
representations,” Proceedings of the 13th
National Conference on Artificial Intelligence
(AAAI-96), 1996, pp. 1168-1175.

[8] E. Hansen, & Z. Feng, “Dynamic
programming for POMDPs using a factored
state representation,” Proceedings of the Fifth
International Conference on Artificial
Intelligence Planning and Scheduling (AIPS-
00), Breckenridge, CO., 2000, pp. 130-139.

[9] S. Omidshafiei, A.A. Agha-Mohammadi,
C. Amato, S.Y. Liu, J.P. How and J. Vian,
“Decentralized control of multi-robot partially
observable Markov decision processes using
belief space macro-actions,” The International
Journal of Robotics Research, vol. 36, issue 2,
pp. 231–258, 2017.

[10] Z. Sunberg, and M. Kochenderfer,
“POMCPOW: An online algorithm for
POMDPs with continuous state, action, and
observation spaces,” Proceedings of the
Twenty-Eighth International Conference on
Automated Planning and Scheduling, 2018,
pp. 1-9.

Samuel O. Obadan, Zenghui Wang / International Journal of Computing, 19(3) 2020, 377-386

 385

[11] H. Kurniawati and V. Yadav, “An online
POMDP solver for uncertainty planning in
dynamic environment,” Proceedings of the
International Symposium of Robotics
Research, 2013, pp. 611-629.

[12] P. Sunehag, G. Lever, A. Gruslys, W. M.
Czarnecki, V. Zambaldi, M. Jaderberg, M.
Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, et
al., “Value-decomposition networks for
cooperative multi-agent learning,” arXiv
preprint arXiv:1706.05296, 2017.

[13] R. S. Sutton, and A. G. Barto, Reinforcement
Learning: An Introduction, vol. 1. MIT Press
Cambridge, 1998.

[14] P. Henderson, R. Islam, P. Bachman,
J. Pineau, D. Precup, and D. Meger, “Deep
reinforcement learning that matters,”
arXiv:1709.06560, 2017.

[15] J. Schulman, P. Abbeel, and X. Chen,
“Equivalence between policy gradients and
soft Q-learning,” arXiv preprint
arXiv:1704.06440, 2017.

[16] J.-S. Gutmann, & D. Fox, “An experimental
comparison of localization methods
continued,” Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots
and Systems, Lausanne, Switzerland, 2002,
vol. 1, pp. 454-459.

[17] T. Patten, W. Martens, & R. Fitch, “Monte
Carlo planning for active object
classification,” Autonomous Robots, vol. 42,
pp. 391–421, 2018.
https://doi.org/10.1007/s10514-017-9626-0.

[18] N. Cao, K. H. Low, & J. M. Dolan, “Multi-
robot informative path planning for active
sensing of environmental phenomena: A tale
of two algorithms,” Proceedings of the 2013
International Conference on Autonomous
Agents and Multi-Agent Systems AAMAS'13,
May 2013, pp. 7–14.

[19] G. Best, M. Forrai, R.R. Mettu and R. Fitch,
“Planning-aware communication for
decentralised multi-robot coordination,”
Proceedings of the IEEE International
Conference on Robotics and Automation
(ICRA), 2018, pp. 1050-1057.

[20] M. Negnevitsky, Artificial Intelligence: a
Guide to Intelligent Systems, second edition,
Addison-Wesley, 2005.

[21] D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning,
Addison-Wesley, 1989.

[22] J. H. Holland, K. J. Holyoak, R. E. Nisbett and
P. R. Thagard. Induction: Processes of
Inference, Learning, and Discovery, MIT
Press, 1986.

[23] L. Davis (ed.), Genetic Algorithms and
Simulated Annealing, Morgan Kaufmann,
1987.

[24] R. Belew, L. Booker (eds.), Genetic
Algorithms, Proceedings of the Fourth
International Conference, Morgan Kaufmann,
1991.

[25] J. H. Holland, Adaptation in Natural and
Artificial Systems, MIT Press, 1992.

[26] J. Hertz, A. Krogh, and R. G. Palmer,
Introduction to the Theory of Neural
Computation. Santa Fe Institute Studies in the
Sciences of Complexity, Lecture Notes,
Addison-Wesley Longman Publ. Co., Inc.,
Reading, MA, 1991.

[27] C. Bishop, M. Svensen, & C. Williams,
“GTM: the Generative Topographic
Mapping,” Neural Computation, vol. 10, issue
1, pp. 215-234, 1998.

[28] J. H. Holland, “Complex adaptive systems,”
The MIT Press on behalf of American
Academy of Arts & Sciences, vol. 121, no. 1,
pp. 17-30, Winter, 1992.

[29] J.R. Koza, Genetic Programming: on the
Programming of Computers by Means of
Natural Selection, MIT Press, Cambridge,
1992

[30] P.W. Tsai, T.K. Dao, et al., “Robot path
planning optimization based on multiobjective
grey wolf optimizer,” Proceedings of the
International Conference on Genetic and
Evolutionary Computing, Springer, 2016, pp.
166–173.

[31] E. Shelhamer, P. Mahmoudieh, M. Argus, and
T. Darrell, “Loss is its own reward: Self-
supervision for reinforcement learning,” arXiv
preprint arXiv:1612.07307, 2016.

[32] R. S. Sutton, D. A. McAllester, S. P. Singh,
and Y. Mansour, “Policy gradient methods for
reinforcement learning with function
approximation,” Advances in Neural
Information Processing Systems, vol. 12,
pp. 1057–1063, 2000.

[33] H. Li, X. Liao, and L. Carin, “Multi-task
reinforcement learning in partially observable
stochastic environments,” Journal of Machine
Learning Research, vol. 10, pp. 1131-1186,
2009.

[34] T. Li, H. Fan, S. Sun, “Particle filtering:
Theory, approach, and application for
multitarget tracking,” Acta Autom. Sin., vol.
41, pp. 1981–2002, 2015.

[35] L. Martino, V. Elvira, G. Camps-Valls,
“Group importance sampling for particle
filtering and MCMC,” arXiv,
arXiv:1704.0277, 2017.

[36] S. Thrun, W. Burgard and D. Fox,
Probabilistic Robotics, Cambridge, MA: MIT
Press, 2005.

[37] G. Best, J. Faigl and R. Fitch, “Online
planning for multirobot active perception with
self-organising maps,” Autonomous Robots,

Samuel O. Obadan, Zenghui Wang / International Journal of Computing, 19(3) 2020, 377-386

 386

vol. 42, pp. 715–738, 2018. DOI:
10.1007/s10514-017-9691-4.

[38] C. Browne, E. Powley, D. Whitehouse, S.
Lucas, P. I. Cowling, P. Rohlfshagen, S.
Tavener, D. Perez, S. Samothrakis, and S.
Colton, “A survey of Monte Carlo tree search
methods,” IEEE Trans. on Comput. Intell. and
AI in Games, vol. 4, issue 1, pp. 1–43, 2012.

[39] M. Toussaint, “Robot trajectory optimization
using approximate inference,” Proceedings of
the ACM Int. Conf. on Machine Learning,
2009, pp. 1049–1056.

[40] Graeme, Best, et al., “Dec-MCTS:
Decentralized planning for multi-robot active
perception,” The International Journal of
Robotics Research, vol. 38, issues 2-3, pp.
316-337, 2019.

[41] H. Li, H. Gao, T. Lv, and Y. Lu, “Deep q-
learning based dynamic resource allocation for
self-powered ultra-dense networks,”
Proceedings of the IEEE ICC Workshops,
2018, pp. 1–6.

[42] N. C. Luong, D. T. Hoang, S. Gong, D.
Niyato, P. Wang, Y.-C. Liang, and D. I. Kim,
“Applications of deep reinforcement learning
in communications and networking: A
survey,” arXiv preprint arXiv:1810.07862,
2018.

[43] Y. Lin, X. Dai, L. Li, and F.-Y. Wang, “An
efficient deep reinforcement learning model
for urban traffic control,” arXiv preprint
arXiv:1808.01876, 2018.

[44] N. Zhao, Y.-C. Liang, D. Niyato, Y. Pei, M.
Wu, and Y. Jiang, “Deep reinforcement
learning for user association and resource
allocation in heterogeneous networks,”
Proceedings of the IEEE International
Conference GLOBECOM, Abu Dhabi, UAE,
Dec. 2018, pp. 1–6.

[45] J. Perolat, J. Z. Leibo, V. Zambaldi, C. Beattie,
K. Tuyls, and T. Graepel, “A multi-agent
reinforcement learning model of common-pool
resource appropriation,” arXiv preprint
arXiv:1707.06600, 2017.

[46] P. Vadakkepat, K. C. Tan, and W. Ming-
Liang, “Evolutionary artificial potential fields
and their application in real time robot path
planning,” Proceedings of the 2000 Congress
on Evolutionary Computation, 2000, vol. 1,
pp. 256–263.

[47] W. Wang, J. Hao, Y. Wang, and M. Taylor,
“Towards cooperation in sequential prisoner’s
dilemmas: a deep multiagent reinforcement
learning approach,” arXiv preprint
arXiv:1803.00162, 2018.

[48] T. Li, J.M. Corchado, S. Sun, H. Fan, “Multi-
EAP: Extended EAP for multi-estimate
extraction for SMC-PHD filter,” Chin. J.
Aeronaut, vol. 30, pp. 368–379, 2017.

[49] S. Obadan, Z. Wang, “A multi-objective
optimization approach to robot localization of
single and multiple emission sources, Procedia
Manufacturing, vol. 35, pp. 755-761, 2019.

[50] D. Sun, F. Geißer, and B. Nebel, “Towards
effective localization in dynamic
environments,” Proceedings of the 2016
IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS),
Daejeon, Korea, October 2016, pp. 4517–
4523.

[51] S. Sun, T. Li, and T. P. Sattar, “Adapting
sample size in particle filters through KLD-
resampling,” Electronics Letters, vol. 49, no.
12, pp. 740–742, 2013.

[52] G. Peng, W. Zheng, Z. Lu, J. Liao, L. Hu, G.
Zhang, and D. He, “An improved AMCL
algorithm based on laser scanning match in a
complex and unstructured environment,”
Complexity, vol. 2018, article ID 2327637,
2018.

Samuel Obadan is a
Graduate student (Computer
Science PHD), Masters (Infor-
mation Systems), Bachelor
(Computer Science). He
studies at College of Science,
Engineering and Technology,
University of South Africa.

His research interest area:

Artificial intelligence, Optimization, Optimal Control,
Fuzzy and/or Neural Network Control.

Prof. Zenghui Wang, PhD
(Control Theory and Control
Engineering), Bachelor (Auto-
matic Control). He works at
College of Science,
Engineering and Technology,
University of South Africa. His
research interest areas:
Automatic Control, Adaptive

Control, Predictive Control, Advanced PID Control,
Optimal Control, Fuzzy and/or Neural Network
Control, Fault Diagnosis and Fault Tolerant Control,
Electrical Machine Control; Artificial Intelligence and
Application: Particle Swarm Optimization, Genetic
Algorithm, Energy (power system) Optimization,
Multi-Objective Evolutionary Optimization, Deep
learning Neural Network, Image/video Processing,
Others: Industry 4.0, Encryption, Chaos, Internet of
Things.

