
Vladyslav Hamolia, Viktor Melnyk, Pavlo Zhezhnych, Anna Shilinh / International Journal of Computing, 19(3) 2020, 442-448

 442

INTRUSION DETECTION IN COMPUTER NETWORKS
USING LATENT SPACE REPRESENTATION AND MACHINE LEARNING

Vladyslav Hamolia 1), Viktor Melnyk 1,2), Pavlo Zhezhnych 3), Anna Shilinh 4)

1) Department of Information Technologies Security, Lviv Polytechnic National University,

12 S. Bandery str., Lviv, 79000, Lviv, Ukraine

2) Institute of Mathematics, IT and Landscape Architecture, John Paul II Catholic University of Lublin,

Konstantynow 1H, Lublin, Poland, viktor.melnyk@kul.pl

3) Department of Social Communication and Information Activities, Lviv Polytechnic National University,

12 S. Bandery str., Lviv, 79000, Ukraine, pavlo.i.zhezhnych@lpnu.ua

4) Department of Information Systems and Networks, Lviv Polytechnic National University,

12 S. Bandery str., Lviv, 79000, Lviv, Ukraine, AnnaShiling@gmail.com

Paper history:

Received 12 May 2020
Received in revised form 27 June 2020

Accepted 08 July 2020

Available online 27 September 2020

Keywords:

intrusion detection;

machine learning;

clustering;
traffic detection;

anomalies;

neural nets.

Abstract: Anomaly detection (AD) identifies samples that are not related to the

overall distribution in the feature space. This problem has a long history of

research through diverse methods, including statistical and modern Deep Neural

Networks (DNN) methods. Non-trivial tasks such as covering ambiguous user

actions and the complexity of standard algorithms challenged researchers. This

article discusses the results of introducing an intrusion detection system using a

machine learning (ML) approach. We compared these results with the

characteristics of the most common existing rule-based Snort system. Signature

Based Intrusion Detection System (SBIDS) has critical limitations well observed

in a large number of previous studies. The crucial disadvantage is the limited

variety of the same attack type due to the predetermination of all the rules. DNN

solves this problem with long short-term memory (LSTM). However, requiring

the amount of data and resources for training, this solution is not suitable for a

real-world system. This necessitated a compromise solution based on DNN and

latent space techniques.

Copyright © Research Institute for Intelligent Computer Systems, 2020.

All rights reserved.

1. INTRODUCTION

The basic concept for anomaly detection (AD) is

monitoring regular and irregular network behavior.

AD has several complications that are not typical of

traditional machine learning. Firstly, anomalies are

significantly fewer than nominal patterns. Secondly,

there is no rigid boundary distributing anomalies and

nominals.

The most common approach to network security

is utilizing several techniques for protection, route

tracking, authentication, etc. Complex Intrusion

detection systems (IDS) have an input and output

predefined in advance. It is a brand-new level able to

expand or substitute other mechanisms in the

network security architecture.

According to the existing study [1], there are

difficulties in SBIDS like handling the unknown

attack and LSTM’s problems such as computational

expense and the tendency to overfitting. This

research aims at finding an alternative solution

without these difficulties by comparing the NSL-

KDD dataset of our ML approach with the popular

Snort [2] open-source IDS and the LSTM

architecture. In synthetic tests, the empirical results

confirmed the better performance of the proposed

approach using Deep Neural Networks (DNN)

output as a latent space in combination with the one-

class Support Vector Machine (SVM) classification

[3] method.

2. ANOMALY DETECTION TECHNIQUES

The IDS can implement a specific technique or a

set of methods such as signature analysis, traffic

monitoring, anomaly detection, etc.

computing@computingonline.net

www.computingonline.net

Print ISSN 1727-6209

On-line ISSN 2312-5381

International Journal of Computing

Vladyslav Hamolia, Viktor Melnyk, Pavlo Zhezhnych, Anna Shilinh / International Journal of Computing, 19(3) 2020, 442-448

 443

The Signature-based IDS (SBIDS) belongs to the

attack detection searching for specific patterns, such

as byte sequences in network traffic or known

malicious intrusion sequences used by malware.

This terminology originates from anti-virus software

referring to these detected patterns as signatures.

Therefore, it can only identify an attack if there is an

accurate matching behavior against the stored or

known patterns termed as signatures.

The Anomaly-based IDS (ABIDS) detects

unknown attacks due to the rapid development of

malware. Their basic approach is using ML to create

a model and extract nonlinear features of the

trustworthy activity, as well as to compare this

model with new behavior in the network. Since these

models are amenable to training according to the

applications and hardware configurations, the ML-

based method has a better generalizing property

observed in [4] and [6] in comparison to traditional

signature-based IDS. Most attempts to build ABIDS

are conceptual models aiming at testing the

possibility of applying mathematical modeling.

Generally, all methods [7] designed for the

detection of anomalies form such groups:

– based on the storage of examples of behavior;

– based on frequency distribution and Bayesian

Networks;

– modeling anomalies detection using ML models

(including DNN).

It is possible to combine all of these approaches.

For example, the frequency analysis is suitable for

post-processing of the ML results; through the

signatures, it is achievable to detect the most trivial

cases of anomalies ahead of the entire ABIDS

system. However, some combinations can be more

efficient, for example, feature extraction by DNN

and the following use of these features as an input to

ML algorithms.

3. MACHINE LEARNING
IN ANOMALY DETECTION

Applying machine learning techniques, we can

automatically construct a model based on the

training data set containing records of individual

observations. It is possible to describe records

employing a set of attributes (features) and

associated labels. A typical IDS pipeline, which

includes machine learning, has the following stages:

– monitored environment exploration,

– feature engineering (FE) – the process of

extraction of the most essential attributes from

the raw data,

– ML model training,

– detection of an anomaly,

– intrusion report.

Various machine learning techniques have been

used to develop IDS such as DNN, Support Vector

Machines (SVM), Naive-Bayesian (NB), Self-

Organizing Maps (SOM), K-Nearest Neighbors

(KNN), and Decision Tree (DT). All these ML

techniques are trained in a supervised or

unsupervised manner to identify the normal and

attack packets in network traffic. With the increase

of network bandwidth and traffic speed, the

difficulties with traditional ABIDS are packet loss,

slow detection, and higher response time to deal

with the massive network data.

The algorithms differ in their approaches to

solving the AD problem. However, at an abstract

level, all of them attempt to create a decision

boundary – the plane in multidimensional space to

split into two entities (normal and attacks), as in the

synthetic example in Fig. 1:

Figure 1 – Principle of normal and anomaly data

distinguishing

In the paper, we are going to observe how the

decision boundary, created by the ML method,

separates the anomaly entities from normal ones.

4. DATA USED FOR ABIDS
EVALUATION

To verify the ABIDS comparison hypothesis, we

have chosen the NSL-KDD dataset as an input to

selected models. The dataset has 41 attributes

unfolding various features of the traffic flow. A

label is assigned to each of them either as a

particular attack type or as a normal one. The details

of the attributes, namely their names, description,

and sample data, are given in [9]. Table 1 and Table

2 present the example of attack classes (which our

final model will attempt to predict) and attack types

based on our previous exploration data analysis.

To validate our model and build our vision of its

reliability, we divided the data into two types:

training and testing. We conducted this separation

using stratified sampling, which means creating two

groups of data based on the target variable (whether

the record refers to an anomaly or a regular sampling

space).

Vladyslav Hamolia, Viktor Melnyk, Pavlo Zhezhnych, Anna Shilinh / International Journal of Computing, 19(3) 2020, 442-448

 444

Table 1. Attack classes and examples

of different attack types

Attack Class Attack Types

DoS Back, Land Neptune, Pod, Smurf

Probe Satan, Ipsweep, Nmap, Portsweep, Mscan,
Saint

R2L Guess password, Ftp write, Imap

U2R Buffer overflow, Loadmodule

Table 2. Distribution of dataset based on attack type

Data
type

Amount of data samples

All Norm DoS Probe R2L U2R

Train 125973 67343 45927 11656 995 52

% 53.46 36.45 9.25 0.79 0.04

Test 22543 9711 7458 2421 2754 200

% 43.08 33.08 10.7 12.2 0.9

We will use the following data to train and
evaluate selected ABIDS. More analysis of dataset
can be found in [9].

5. COMPARISON OF THE MACHINE
LEARNING ALGORITHMS USED IN

ABIDS

Numerous unsupervised methods were applied to
solve the problem of detecting anomalies and
improving ABIDS rates at all levels, such as
clustering, factor analysis, etc. Based on the
description of various unsupervised anomaly
detection algorithms, Table 3 shows a comparison of
the most common algorithms, taking into account
the specifications and the mathematical background
of each of them.

Table 3: Pros and cons of ML algorithms

Technique Pros Cons

KNN 1. Computationally
cheap.
2. No data size
restriction.
3. Low complexity.

1. Heavy to store all
results.
2. Requires domain
knowledge for feature
extraction.
3. Cannot handle difficult
dependencies.

DNN 1. Automatic feature
extraction.
2. Modeling of non-
linear dependencies.
3. Various
architectures for
supervised and
unsupervised tasks.
4. Transfer learning.

1. Computationally
expensive (based on the
size of DNN).
2. Huge amount of data
for training.

SVM 1. Use kernel trick to
detect dependencies.
2. Efficient in cases of
high-dimensional data.

1. Requires both positive
and negative examples.
2. Results of kernel
function is not easy to
interpret.

DT 1. Easy to interpret. 2.
Requires little data
preparation.
3. Able to handle both
numerical and
categorical data.

1. DT learners create
over-complex trees that
do not generalize the data
well.
2. There are concepts that
are hard to learn because
decision trees do not
express them easily.

6. IMPLEMENTED SOLUTION

Some of the ML methods under consideration

have non-interceptable issues that differ in nature

and complexity illustrated in [8] and [9]. We focused

mainly on FE and computational tasks. To build a

robust automatic IDS, we selected Fully Connected

DNN (FCDNN) as the FE part of the general ML

flow (mentioned in Section 3). Typically, this part is

performed manually using the previous domain

analysis, data personality, etc.

In FCDNN, each neuron in one layer is

connected to all neurons in the next layer. Such an

architecture allows gaining performance in various

ML tasks, but it tends to overfit. However, it can be

used to embed input [10] data and represent a record

in a latent space [11]. Latent space is a

representation of squashed data, which form a new

space where similar items have small distance.

As a classifier (performing an attack

classification), the FCDNN hidden unit outputs

operate as an implementation of a nonlinear

projection of high-dimensional input (features) space

onto a lower and denser (abstract) feature space. In

this space, we outlined records for better separation

using the network output layer. Furthermore, the

visualization of the latest hidden internal

representations may facilitate the identification of

data structures. With this approach, the classifier

ideally acts as an FE.

Although feature extraction training is not a

classifier, it is based on class label information and

is therefore supervised. The number of input units

(Fig. 2) is specified as the number of objects, and the

number of output units is specified as pattern

classes.

Figure 2 – Example of FCDNN for feature extraction

using 2 layers (the hidden layer is used as a latent

space, the output of each layer marked as Yi. and the

weights between layers marked as wj)

Following the task, we designed and selected a

set of hidden layers (or a backbone) for exploratory

data projection, classification, etc. We use 5 layers

of the following sizes: 30, 24, 20, 18, 12, to classify

Vladyslav Hamolia, Viktor Melnyk, Pavlo Zhezhnych, Anna Shilinh / International Journal of Computing, 19(3) 2020, 442-448

 445

the type of attack for the training data set. The last

layer with 12 neurons will be used as a latent space.

The target has 6 classes: 5 classes of attack types

and 1 class for innocuous records.

Another problem, commonly associated with

DNN, is a requirement of extra computational

resources. In our solution, we separate the FE (using

Fully Connected DNN) from DNN and apply the

classification of the one-class SVM with the RBF

kernel (which shows the best result locally and it has

important property, it is invariant to transition)

instead of the part of the DNN classification. One-

class SVM attempts to find decision boundaries by

mapping the nominal data to high-dimensional

kernel space and separating them from the source

with maximum margin. Various techniques were

observed in [5] and [6].

We introduced slack variables ξ to prevent the

SVM classifier from overfitting with noisy data (or

to create a soft margin [7]). They allow some data

points to lie within the margin. The constant C > 0

determines compromise between maximizing the

margin size and the number of training data points

within that margin (and training errors) to maximize

the margin.

SVM has following minimization expression:

(1)

subject to:

ii

T

i bxwy −+ 1))((

0i

 for all i = 1, …, n

Here ξ is used as a slack variable to add an

inequality constraint, to transform it into equality, or

to ease constraints.

For our experimental setup, we chose

Tensorflow 1.14 as the main library for setting up

the model and configured our DNN (for 5 classes of

attack types) with the following hyperparameters

(fine tuned with approach described in [19]):

– Adam optimizer (which performs the best

according to our experiments) [12]:

o learning_rate=0.0005 (with an exponential

decay);

o beta1=0.85;

o epsilon=1e-07;

– batch size: 32;

– epoch: 10;

– cross validation [13], [14]: 5 folds.

We have used SVM classifier from sklearn 0.21.3

with following hyperparameters:

– C=1.2;

– kernel=rbf [15];

– degree=5.

– Testing hardware:

o Intel core i5-7300HQ

o RAM: 8GB DDR4, 2400Mhz

With given hyperparameters, it will be possible

to train models concerning the objective function of

models and reproduce our solution.

7. EVALUATION AND COMPARISON
OF OUR SYSTEM WITH EXISTING IDS

SOLUTIONS

We evaluated the effectiveness through training

and testing the NSL-KDD datasets discussed in

Section 4. We used the following entities to

evaluate: True Positives (TP), False Positives (FP),

True Negatives (TN), and False Negatives (FN). We

used these entities to compute the following various

indicators:

– Accuracy (A), which is defined as the

percentage of correctly classified records in

their total number.

– Precision (P), which is referred as Positive

Predictive Value (PPV), defined as the % ratio

of the number of TP records divided by the sum

of TP and FP classified records.

– Recall – referred to the TP rate (or sensitivity)

and defined as the % ratio of the number of TP

records divided by the sum of TP and FN

classified records.

– F-Measure – a measure to represent test

accuracy, defined as the harmonic mean of

precision and recall, which represents a balance

between them.

We assume that our model has found the best

solution, and is consistent with the training data at

the training stage. We select an independent sample

of verification data from the population sample as

training data. It generally turns out that most models

tend to overfit: there is a huge gap between results

on the testing and training samples. Many methods

for constructing the right validation strategies [17]

allow us to expect that the model will have

evaluation results on unseen data, as well as on test

data. Cross-validation attempts to estimate this

difference.

To test our model for robustness, we use an

approach called stratified k-fold cross-validation

[18] shown in Fig. 3. For each fold (one split of

dataset), we randomly remove 2 types of attacks

from different attack classes of the training dataset

and fit the model (Run 1-4 in Figure 3). Yet, we

leave them in the test dataset for examining the

model’s ability to acquire some general concepts and

not to overfit the training data [19].

Vladyslav Hamolia, Viktor Melnyk, Pavlo Zhezhnych, Anna Shilinh / International Journal of Computing, 19(3) 2020, 442-448

 446

Figure 3 – Example of stratified k-fold validation

In our experiment, we made 5 folds and averaged

the results of each fold. The accuracy metric should

be evaluated separately for individual attack classes

according to the nature of the evaluation metric.

Table 4 shows the accuracy metric for individual

classification:

Table 4. Comparison results of proposed system

with the Snort system

Attack

type

Metric

(%)

Normal DoS Probe

Snort DNN+

SVM

Snort DNN+

SVM

Snort DNN+

SVM

Accuracy 73.9 95.1 75.4 94.9 67.1 87.1

Precision 75.1 92.8 78.1 95.7 68.1 84.5

Recall 68.1 92.6 79.1 97.1 58.1 85.3

F-Measure 71.4 92.7 78.6 96.4 62.7 84.9

The presented solution is more lightweight in

contrast to most of DNN solutions. However, we

tried to keep the results score without sacrificing

performance. We have already mentioned one of the

most popular approaches using LSTM [1] networks.

In Table 5, we compare our model with the one

provided in [2], which deploys the LSTM network.

Table 5. Comparison results of proposed system with

LSTM system

Approach

Metric

DNN +SVM LSTM

Accuracy (%) 93.2 94.5

Precision (%) 91.2 93.7

Recall (%) 89.8 91.7

F-Measure (%) 90.4 92.7

Train time (sec) 138 891

Time to predict 1K records

(sec)

0.03 0.13

As we can see in Table 5, the LSTM model gives

better results in the test. It is time-consuming to

retrain it, though. Such criteria might be crucial in

real-world tasks [21] [22], and one should select the

type of system based on personal intentions.

8. CONCLUSION

In this paper, we examined the traditional

approaches to anomalies detection, namely ML-

based and SBIDS methods. ML techniques were

under consideration of the intrusion detection

researchers to eliminate the deficiencies of

knowledge base detection techniques. Also, our

results display a tremendous difference in

performance between our model and the models we

analyzed.

Evaluation experiments and the results of various

metrics confirmed that the proposed solution deals

with the main difficulties considered in the article: it

solves crucial problems of SBIDS, such as handling

unknown attacks, and LSTM`s problems, such as

computational expense and the tendency to overfit.

The proposed method, based on latent space,

provides a reduced number of features (the final

layer has output which contains 12 neurons) and

improves the detection accuracy of multiple attack

classes. The conducted research demonstrates that

the approaches using machine learning techniques

provide better results for classification tasks. A

proper dataset with a sufficient quantity of samples

should be developed for individual attack classes to

better training and proper feature extraction.

Training of each hidden layer will yield in the better

feature selection process, but it takes significant

time.

There are a lot of DNN architecture solutions that

should be validated with the proposed validation

method and a latent space representation. We also

plan to build some mechanism for interpretation of

developed approach, and get better visibility of

training and evaluation process.

9. REFERENCES

[1] S. Merity, N. S. Keskar, and R. Socher,

Regularizing and Optimizing LSTM Language

Models, arXiv preprint arXiv:1708.02182,

2017, [Online]. Available at:

https://arxiv.org/abs/1708.02182

[2] V. Kumar and O. P. Sangwan, “Signature base

intrusion detection system using SNORT,”

International Journal of Computer Application

& Information Technology, vol. 1, no. 3, pp.

35-41, 2012.

[3] T. Joachims, “Making large-scale SVM

learning practical,” In B. Scholkopf, C.J.C.

Burges, and A. J. Smola (Eds.), Advances in

Kernel Methods – Support Vector Learning,

Cambridge, MA: MIT Press, pp. 169-184,

1999.

[4] S. Lundberg and S. Lee, A Unified Approach to

Interpreting Model Predictions, arXiv preprint

https://arxiv.org/abs/1708.02182

Vladyslav Hamolia, Viktor Melnyk, Pavlo Zhezhnych, Anna Shilinh / International Journal of Computing, 19(3) 2020, 442-448

 447

arXiv:1705.07874, 2017, [Online]. Available

at: https://arxiv.org/pdf/1705.07874.pdf.

[5] S.S. Khan, M.G. Madden, “One-class

classification: Taxonomy of study and review

of techniques”, The Knowledge Engineering

Review, no. 29 (03), pp. 345–374, 2014.

[6] W. Zhu, P. Zhong, “A new one-class SVM

based on hidden information,” Knowledge-

Based Systems, no. 60, pp. 35–43, 2014.

[7] B. J. Radford, L. M. Apolonio, A. J. Trias, and

J. A. Simpson, Network Traffic Anomaly

Detection Using Recurrent Neural Networks,

arXiv preprint arXiv:1803.10769, 2018,

[Online]. Available at:

http://arxiv.org/abs/1803.10769

[8] R. Guidotti, A. Monreale, F. Turini, D.

Pedreschi, and F. Giannotti, A Survey of

Methods for Explaining Black Box Models,

arXiv preprint arXiv:1802.01933, 2018,

[Online]. Available at:

https://arxiv.org/pdf/1802.01933.pdf.

[9] L. Dhanabal, D. S. Shantharajah, “A study on

NSL-KDD dataset for intrusion detection

system based on classification algorithms,” Int.

J. Adv. Res. Comput. Commun. Eng., vol. 4,

no. 6, pp. 446-452, 2015.

[10] J. Cha, K. S. Kim, S. Lee, On the

Transformation of Latent Space in

Autoencoders, arXiv preprint

arXiv:1901.08479, 2018, [Online]. Available

at: https://arxiv.org/abs/1901.08479

[11] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio,

and P.-A. Manzagol, “Stacked denoising

autoencoders: Learning useful representations

in a deep network with a local denoising

criterion,” Journal of Machine Learning

Research, vol. 11, pp. 3371–3408, Dec. 2010,

[Online]. Available at:

http://www.jmlr.org/papers/volume11/vincent1

0a/vincent10a.pdf

[12] D. P. Kingma, J. Ba, Adam: A Method for

Stochastic Optimization, arXiv preprint

arXiv:1412.6980, 2015, [Online]. Available at:

https://arxiv.org/pdf/1412.6980.pdf.

[13] Y. Bengio and Y. Grandvalet, “Bias in

estimating the variance of K-Fold cross-

validation,” Statistical Modeling and Analysis

for Complex Data Problems, vol. 1, pp. 75-95,

2005.

[14] L. I. Kuncheva, Combining Pattern Classifiers:

Methods and Algorithms, Wiley, 2004, 350 p.

[15] O. Chapelle, V. Vapnik, O. Bousquet, and S.

Mukherjee, “Choosing multiple parameters for

support vector machines,” Machine Learning,

vol. 46, pp. 131–159, 2002.

[16] Liu H. and Yu L., “Toward integrating feature

selection algorithms for classification and

clustering,” IEEE Transactions on Knowledge

and Data Engineering, vol. 17, issue 4, pp.

491–502, 2005.

[17] A. Graves and J. Schmidhuber, “Framewise

phoneme classification with bidirectional

LSTM and other neural network architectures,”

Neural Networks, vol. 18, issues 5-6, pp. 602-

610, 2005.

[18] W. Siblini, J. Fréry, L. He-Guelton, F. Oblé,

Y.-Q. Wang, Master your Metrics with

Calibration, arXiv preprint arXiv:1909.02827,

2019, [Online]. Available at:

https://arxiv.org/pdf/1909.02827.pdf.

[19] Y. LeCun, Y. Bengio, and G. Hinton, “Deep

learning,” Nature, vol. 521, no. 7553, pp. 436–

444, May 2015. [Online]. Available at:

http://dx.doi.org/10.1038/nature14539.

[20] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer,

“Efficient processing of deep neural networks:

A tutorial and survey,” Proceedings of the

IEEE, vol. 105, pp. 2295–2329, 2017.

[21] K. Kawaguchi, “Deep learning without poor

local minima,” Advances in Neural Information

Processing Systems, vol. 29, pp. 586–594,

2016.

[22] L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F.

Seide, M. Seltzer, G. Zweig, X. He, J. Williams

et al., “Recent advances in deep learning for

speech research at Microsoft,” Proceedings of

the IEEE International Conference on

Acoustics, Speech, and Signal Processing

(ICASSP), Vancouver, Canada, pp. 734-748

2013.

[23] M. Mathieu, M. Henaff, and Y. LeCun, “Fast

training of convolutional networks through

FFTs,” Proceedings of the International

Conference on Learning Representations

(ICLR2014), Banff, Canada, 2014. [Online].

Available at: https://arxiv.org/abs/1312.5851

[24] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,

Z. Chen, C. Citro, G. S. Corrado, A. Davis, J.

Dean, M. Devin, et al., Tensorflow: Large-

Scale Machine Learning on Heterogeneous

Distributed Systems, arXiv preprint

arXiv:1603.04467, 2016, [Online]. Available

at: https://arxiv.org/pdf/1603.04467.pdf

[25] S. Han, J. Pool, J. Tran, and W. Dally,

“Learning both weights and connections for

efficient neural network,” Advances in Neural

Information Processing Systems, pp. 1135–

1143, 2015.

https://arxiv.org/pdf/1705.07874.pdf
http://arxiv.org/abs/1803.10769
https://arxiv.org/pdf/1802.01933.pdf
https://arxiv.org/abs/1901.08479
http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf
http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1909.02827.pdf
https://arxiv.org/pdf/1603.04467.pdf

Vladyslav Hamolia, Viktor Melnyk, Pavlo Zhezhnych, Anna Shilinh / International Journal of Computing, 19(3) 2020, 442-448

 448

Vladyslav Hamolia is a PhD
student at the department of
Information Technologies
Security at Lviv Polytechnic
National University. He is
specialized in performing data
analysis and provides support
in making complex business
decisions based on it, building
predictive models, performing

data preprocessing and exploratory data analysis.
His research areas mostly lie in statistical learning,
predictive analytics, NLP, signal processing,
anomaly detection. He has experience in
development of computer vision systems, analyzing
and detecting patterns, implementing algorithms in
order to integrate business logic of large companies.

Viktor A. Melnyk is a
professor of the Department of
Information Technologies
Security at Lviv Polytechnic
National University. He was
awarded with the academic
degrees of Philosophy Doctor
in 2004, and Doctor of
Technical Sciences in 2013 at
Lviv Polytechnic National

University. He has scientific, academic and hands-
on experience in the field of computer systems
research and design, proven contribution into IP
Cores design methodology and high-performance
reconfigurable computer systems design
methodology. He is experienced in computer data
protection, including cryptographic algorithms,
cryptographic processors design and
implementation, wireless sensor network security.

Pavlo I. Zhezhnych is a
Professor, Sc.D, professor at
the department of Social
Communication and
Information Science, Institute
of Humanities and Social
Sciences, Lviv Polytechnic
National University. In 1996 he
graduated from the Faculty of
Applied Mathematics, at Lviv

Franko State University, the specialty “Applied
mathematics”. In 2001 he defended his thesis for the
degree of Candidate of technical sciences in Lviv
Polytechnic National University. In 2009 he
defended his thesis for the degree of doctor of
technical sciences. His Sc.D. thesis title is “Methods
and means of relational time-dependent databases
organizing”. The scientific and professional interests
are focused in the fields of relational and temporal
database modeling, Data analysis, Data mining,
Information security, Web technologies.

Anna Yu. Shilinh is a Ph.D.,
assistant lecturer at the
department of Social
Communication and
Information Science at Lviv
Polytechnic National
University. She graduated
from Drogobych State
Pedagogical University,

specialty “Informatics. Applied Mathematics”. Her
fields of scientific activity are internet linguistics,
research on informational activities in the web
space.

