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Abstract: The aim of the present paper is to propose a polynomial-time 

plaintext-recovery attack on the matrix-based knapsack cipher. The aforesaid 

algorithm uses only public information and has time complexity O(t1.34), where t 

is the decryption time of the attacked cryptosystem. The matrix-based knapsack 

cipher is a novel additively homomorphic asymmetric encryption scheme, which 

is a representative of group-based knapsack ciphers. This cryptosystem is based 

on the isomorphic transformation’s properties of the inner direct product of 

diagonal subgroups of a general linear group over a Galois field. Unlike the 

classical knapsack cryptoschemes, the cryptographic strength of the aforesaid 

cipher depends on the computational complexity of the multidimensional 

discrete logarithm problem. Due to the attack proposed in the given paper, the 

matrix-based knapsack cipher can be considered broken and should not be used 

as a privacy tool. However, this cryptosystem is still suitable for educational 

purposes as an example of the application of linear and abstract algebras in 

asymmetric cryptography. 
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All rights reserved. 

 

 

1. INTRODUCTION1 

Asymmetric encryption schemes are widely used 

to ensure the confidentiality of communication via 

insecure channels. These cryptosystems allow the 

interacting parties to create a shared secret key for a 

symmetric cipher in such a way that an eavesdropper 

gets no information useful for cryptanalysis [1, 2]. 

Network protocols that use asymmetric encryption 

include TLS [3], S/MIME [4], OpenPGP [5], Tor [6] 

and many others [7]. 

Some of asymmetric ciphers are homomorphic 

meaning that they allow calculations on encrypted 

data to be performed without preliminary 

decryption. This property makes it possible to use 

the given cryptosystems in several areas of 

applications besides symmetric key establishment. 

In particular, homomorphic asymmetric ciphers are 

used in secret e-voting protocols [8] and cloud 

computing [9]. 

 
1 This paper has been submitted fir the Open Special Issue on 

Green Mobile Computing and IoT Systems. Assessment, 

Modeling, Assurance. 

The matrix-based knapsack cipher is a novel 

additively homomorphic asymmetric encryption 

scheme, which is a representative of group-based 

knapsack ciphers [10]. This cryptosystem is based 

on the isomorphic transformation properties of the 

inner direct product of diagonal subgroups of a 

general linear group over a Galois field [11].  

Unlike the classical knapsack cryptoschemes, the 

cryptographic strength of the aforesaid cipher 

depends on the computational complexity of the 

multidimensional discrete logarithm problem [10]. 

The given cipher was originally proposed  

in [11]. The approach to building this cryptosystem 

over a Galois field with a multiplicative group of  

a large smooth order was proposed in [12]. Another 

approach, in which the aforesaid cipher is built over 

a small Galois field, was used in [10], where the 

property of additive homomorphism was proven for 

this cryptoscheme. Also, in [10] a secret e-voting 

protocol based on the given cipher was briefly 

described. 

The aim of the present paper is to propose a 

plaintext-recovery attack on the matrix-based 
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knapsack cipher. This algorithm uses only public 

information and has computational complexity 

polynomial in the time required for decryption by 

the attacked cryptoscheme. 

 

2. MATRIX-BASED KNAPSACK CIPHER 

The given cryptosystem has two parameters [10]: 

1. The order of the finite field, over which the 

cipher is built. The given parameter is designated as 

q. It is necessary that q - 1 be small (or just smooth 

in the case of the approach using a large Galois 

field) and larger than 1. 

2. The order of the square matrices being used. It 

is denoted as n. The minimum value of n is 2. 

The key generation procedure begins with 

choosing the generating set of the abelian group G, 

which is the diagonal subgroup of the general linear 

group GL(n, GF(q)). This set is represented by the 

tuple (g1, g2, ..., gn) obtained from (z1, z2, ..., zn), 

where zі is a randomly chosen primitive element of 

GF(q). The element gi is obtained from the 

n-dimensional identity matrix over GF(q) by means 

of replacing the (i, i) entry with zi [10]. Since the 

order of each gi is equal to q - 1, each d G has a 

single representation in the following form [10]: 

 
1 2

1 2 ... ,npp p

nd g g g=   
                 

(1) 

 

where pі is a nonnegative integer less than q - 1. 

Therefore, it is not hard to see the correctness of the 

formula 

 

( ) ,ip

і ie znt d =
                       

(2) 

 

in which enti(d) is the (i, i) entry of d. 

The private key is a randomly selected matrix  

s   GL(n, GF(q)). This matrix is used to define the 

group H, which is a subgroup of GL(n, GF(q)), the 

isomorphism f: G → H and its inverse f-1: H → G. 

This pair of isomorphisms can be described as 

follows [10]: 

 
1:    ·  · ,f s s −→

 
1 1:    ·  · .f s s − −→  

 

The public key is a tuple (e1, e2, ..., en). Its 

elements are calculated by the formula 

 

( ), 
iіe f g=

                          
(3) 

 

where (σ1, σ2, ..., σn) is a random permutation of  

(1, 2, ..., n). Although the original version of the 

considered cipher does not use the aforementioned 

secret permutation [10, 11], this feature should be 

introduced to complicate a cryptanalytic attack on 

the given cryptosystem. 

The encryption procedure converts a plaintext 

into an integer tuple (x1, x2, ..., xn), for which  

0 ≤ xі ≤ q - 2, and computes the ciphertext c in the 

following way [10]: 

 
1 2

1 2 ... .nxx x

nc e e e=   
                   

(4) 

 

Since (g1, g2, ..., gn) is a generating set of G, the 

encryption procedure and (3) imply that each 

element of H belongs to the set of ciphertexts. Thus, 

there is a bijection between plaintexts and elements 

of H. 

Decryption is performed as follows: 

1. The tuple (y1, y2, ..., yn), where yi is the (i, i) 

entry of f-1(c), is computed. By virtue of (1)-(4), 

iσ
y equals 

iσ
z to the power of xi. 

2. The tuples (z1, z2, ..., zn) and (σ1, σ2, ..., σn) are 

found using the following condition. If the (k, k) 

entry of f-1(ei) is not equal to 1, then σi is k and zk 

equals this entry. This approach follows from (3) 

and the definition of gi. The given step can be 

avoided by storing the aforesaid tuples along with 

the private key. 

3. The plaintext tuple (x1, x2, ..., xn) is restored by 

the formula 

 

 dl ( ),og
ii

і zx y
 =

                       
(5) 

 

where dlogβ(α) is the discrete logarithm of α base β. 

Since q - 1 is small (or at least smooth), this step can 

be performed efficiently. 

The given cipher is additively homomorphic due 

to the following properties [10]: 

1. The plaintexts set is an additive abelian group 

under the operation ,
 

which is defined as follows: 

 

( ) ( )1 1, ..., , ...,  n nu u v v =  

( ) ( ) ( ) ( )( )1 1   mod  - 1 , ...,   mod  - ,1n nu v q u v q= + +

 

where (u1, u2, ..., un) and (v1, v2, ..., vn) are plaintext 

tuples. Thus, the plaintext group is s an additive 

group of the n-dimensional module over the residue 

ring modulo n. 

2. The ciphertext set equipped with the matrix 

product operation is the multiplicative abelian group 

H mentioned above. 

3. If ci denotes the ciphertext obtained from the 

plaintext tuple mi by encryption performed using 

some fixed public key, then decryption of the 

ciphertext c1 ⋅ c2 ⋅ ... ⋅ ck with the corresponding 

private key produces m1m2 ...mk. 
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These properties, together with the bijection 

between elements of H and plaintexts, make the 

ciphertext group isomorphic to the plaintext one. 

The following toy example of this cryptosystem, 

where q = 13 and n = 4, aims at demonstrating its 

property of additive homomorphism. Due to the 

aforesaid values of the parameters, the group G is  

a diagonal subgroup of GL(4, GF(13)). The tuple 

(z1, z2, z3, z4) is selected as (2, 6, 7, 11), therefore 

(g1, g2, g3, g4) is described as follows: 

 

1 2

2 0 0 0 1 0 0 0

0 1 0 0 0 6 0 0
, ,

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

g g

  
  
  = =
  
  

  

3 4

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0
, .

0 0 7 0 0 0 1 0

0 0 0 1 0 0 0 11

g g

  
  
  = =
  
  

  

 

 

Since each gi is of order 12, a plaintext tuple 

must contain only integers lying in the interval  

[0 .. 11]. 

The private key matrix s and its inverse s-1 are 

chosen in the following way: 

 

-1,

4 0 2 10 6 4 12 6

3 10 0 11 5 11 1 12

10 12 9 8 7 8 4 7

11 4 6 10 8 2 10

.

4

s s

  
  
  = =
  
  

  

 

 

The tuple (σ1, σ2, σ3, σ4) used in this example is  

(2, 4, 3, 1). Therefore, in accordance with (3), the 

public key (e1, e2, e3, e4) is specified as follows: 

 

1 2

9 5 0 12 11 6 9 2

9 5 0 7 7 0 5 4

3 10 1 11 3 7 5 11

4 9 0 7 11 4 6 11

, ,e e

  
  
  = =
  
  

  

 

3 4

6 6 11 4 12 0 12 8

8 8 2 9 7 1 10 11

6 2 9 10 2 0 2 5

2 5 7 0 6 0 3 3

, .e e

  
  
  = =
  
  

  

 

 

The plaintexts tuples m1 = (3, 8, 1, 5) and  

m2 = (9, 7, 4, 11) are chosen for encryption. The 

corresponding pair of ciphertexts c1 and c2 is 

obtained as shown below: 

 

3 8 1

1 1 2 3

5

4

10 10 8 0

4 5 4 12

7 6 12 2

10 0 6 3

,c e e e e



=



 

=   
 

9 7

3

14

2 1 2 4

1

10 10 10 12

9 0  9 6

11 4 12 6

7 3 8 1

.c e e e e



=



 

=     

 

The ciphertext cp selected for decryption is 

defined in the following way: 

 

p 1 2

5 2 0 7

5 1 8 10
c = c c

10 7 11 12

5 3

= .

1 3







 

  

 

The decryption procedure starts by computing the 

value of f-1(cp). Inasmuch as 

 

p

-1

3 0 0 0

0 1 0 0
(c )

0 0 11 0

0 0 0 5

f = ,







 

 

 

the first step of the decryption establishes the 

identity (y1, y2, y3, y4) = (3, 1, 11, 5). 

The optional next step begins with calculating the 

value of f-1(e1). The second element of the main 

diagonal of f-1(e1) is 6 and other ones are equal to 1, 

so σ1 = 2 and z2 = 6. The same approach applied to 

e2, e3 and e4 is used to determine that (σ1, σ2, σ3, σ4) 

is (2, 4, 3, 1) and (z1, z2, z3, z4) equals (2, 6, 7, 11). 

The final step of the decryption lies in computing 

the elements of the plaintext tuple (x1, x2, x3, x4) in 

the following way: 

 

11
1 6( )  d dlog log (1)  0,zx y

 = = =

22
2 11( )  dlog lo d (5) ,g  3zx y

  == =
 

33
3 7( )  dlog log d (11)  5,zx y

 = = =

44
4 2( )  d dlog log (3)  4.zx y

 = = =  

 

Thus, the decryption of cp defined as c1 ⋅ c2 yields 

the plaintext (0, 3, 5, 4), which equals m1  m2 due 

to the used cipher being additively homomorphic. 

The only known plaintext-recovery attack on this 

cryptosystem lies in solving the multidimensional 

discrete logarithm problem, which can be described 

(6)

(7)
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by (4). General purpose algorithms, which are used 

for solving problems of this kind in arbitrary groups, 

are considered to be computationally difficult for 

non-quantum computers [7, 13]. Nevertheless, the 

special purpose algorithm proposed in the section 

below solves the aforesaid problem in polynomial 

time and does not require a quantum computer. 

 

3. PLAINTEXT-RECOVERY ATTACK 

The attack proposed in this section recovers the 

plaintext from the ciphertext of the matrix-based 

knapsack cipher by using only public information. 

This algorithm relies on the properties of the 

polynomials B(λ) and Wі(λ), which are defined over 

GF(q) in the following way: 

 

( ) det( ),B I c =  −
 

( ) det( ),i iW I c e =  − 
 

 

where c is the ciphertext chosen for decryption,  

(e1, e2, ..., en) denotes the corresponding public key 

and I stands for the n-order unit matrix over GF(q). 

It is clear that B(λ) and Wі(λ) are characteristic 

polynomials [14] of the matrices c and c ⋅ ei 

respectively. The theorem proposed below describes 

the relationship between these polynomials and the 

variables of the decryption procedure. 
Theorem 1. If the permutation (σ1, σ2, ...,  σn) is 

used to generate the public key and the tuple  

(y1, y2, ..., yn) is obtained on the initial step of 

decryption, then 
iσ

y can be found by the formula 

 

( )

( ) ( )( )
,

gcd ,i

i

B
y

B W





 
= −

              
(8)

 

 

where gcd(B(λ), Wi(λ)) denotes the monic greatest 

common divisor of B(λ) and Wi(λ). 

Proof. The isomorphism f-1(μ) preserves the 

characteristic polynomial [14] of μ, since μ and  

f-1(μ) are similar [14] matrices. The identity 

 

( )1 1( )
iif c e f c g

− − =   

 

holds true due to (3). Therefore, B(λ) and Wi(λ) are 

characteristic polynomials of the matrices f-1(c) and 

f-1(c) ⋅
iσ

g respectively. Inasmuch as f-1(c) ∈ G, it can 

be shown using (1) and (2) that f-1(c) differs from  

f-1(c) ⋅
iσ

g only in the (σi, σi) entry. Since both f-1(c) 

and f-1(c) ⋅ 
iσ

g are diagonal matrices, the foregoing 

implies that the difference between the root multisets 

of B(λ) and Wi(λ) contains only the (σi, σi) element 

of f-1(c). By virtue of the first step of the decryption 

algorithm, this element equals 
iσ

y , so the aforesaid 

difference of multisets is
iσ

{ y }. Hence, 

 

( ) ( ) ( ) ( )( )gcd , ,
i iB y B W    =  − 

   
(9) 

 

where φ ∈ GF(q). Since B(λ) is a monic polynomial, 

φ equals 1. Thus, (9) can be transformed into (8). ∎ 
The value of 

iσ
z ,

 
which is used on the third step 

of decryption, can be found without possessing the 

private key s. The identity 

 

det( )
i i

z g =
 

 

follows from the definition of iσ
g .

 Due to (3), the 

matrices ei and iσ
g

are similar, so their determinants 

are equal. Therefore, 

 

iσ idetz (e ),=
                        

(10)
 

 

where (e1, e2, ..., en) is the public key tuple. 

The plaintext-recovery attack receives the 

ciphertext c and the corresponding public key  

(e1, e2, ..., en) as input. The cipher parameters q and n 

are considered to be specified along with the public 

key. The output of this algorithm is the recovered 

plaintext tuple (x1, x2, ..., xn). The attack procedure 

consists of the following steps: 

1. The coefficients of B(λ) are calculated, and the 

variable i is set to 0. 

2. The coefficients of Wi(λ) are computed, and 

the variable i is increased by 1. 

3. The value of 
iσ

y is obtained by (8). 

4. The value of 
iσ

z is computed using (10). 

5. The plaintext fragment xi is recovered in 

accordance with (5). 

6. If i < n, the algorithm proceeds to the second 

step. Otherwise, the plaintext tuple (x1, x2, ..., xn) is 

output. 

The following toy example of the aforementioned 

attack is constructed using the decryption instance 

described in Section 2. The input is represented by 

the ciphertext c, which equals cp in (7), and the 

public key (e1, e2, e3, e4) defined by (6). The 

parameters q and n are 13 and 4 respectively. 

The first two steps of the attack establish the 

identities 

 

( ) 4 3 26 5 5 9,B     + + + +=
 

( ) 4 3 2

1 9 10 2, W     = + + + +  

( ) 4 3 2

2 8 8 8, W     = + + + +  
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( ) 4 3 2

3 5 8 11,W     = + + ++

( ) 4 3 2

4 3 4 5.W    = + + +  

 

The intermediate calculations performed on the 

third step yield the following results: 

 

( ) ( )( ) 3 2

1 7 12 4,gcd ,   B W    = + + +
 

( ) ( )( ) 3 2

2 11 8 6, gcd ,B W    = + + +
 

( ) ( )( ) 3 2

3 4 10 11gcd , , B W    = + + +

( ) ( )( ) 3 2

4 9 6 10.gcd ,B W    = + + +
 

 

The outcomes of the third and the fourth steps can 

be described as follows: 

 

1 2 3 4
1, 5, 11, 3,y y y y   = = = =

1 2 3 4
6, 11, 7, 2.z z z z   = = = =  

 

The fifth step determines that x1 = 0, x2 = 3, x3 = 

5 and x4 = 4. 

Hence, the algorithm outputs (0, 3, 5, 4), which 

equals the plaintext tuple obtained in Section 2 by 

decryption of the corresponding ciphertext. 

 

4. TIME COMPLEXITY OF THE 
PLAINTEXT-RECOVERY ATTACK 

The most computationally difficult arithmetic 

operations in GF(q) are multiplication and division. 

The last one for a finite field is multiplication by the 

inverse of the divisor. The time complexity for these 

operations is O(log2(q)) [15]. Thus, multiplication  

of η-degree polynomials in GF(q), as well as their 

division, takes O(η2 ⋅ log2(q)) time. Multiplication of 

η-order matrices over GF(q) has time complexity 

O(η3 ⋅ log2(q)). 

Coefficients of the characteristic polynomial of 

an arbitrary η-dimensional matrix over GF(q) can be 

efficiently found using the Hessenberg algorithm by 

performing O(η3) arithmetic operations in the given 

field [16, 17]. Thus, the time complexity of the first 

two steps of the attack procedure is O(n3 ⋅ log2(q)). 

The greatest common divisor of two polynomials 

over GF(q) can be calculated using the Euclidean 

algorithm by means of performing O(η2) field 

arithmetic operations, where η is the largest of the 

degrees of the aforementioned polynomials [15]. So 

the third step has time complexity O(n2 ⋅ log2(q)). 

The determinant of a square matrix over GF(q) 

can be found using the Gaussian elimination in 

O(η3) field arithmetic operations, where η denotes 

the order of the given matrix [18, 19]. Thus, the time 

complexity of the fourth step is O(n3 ⋅ log2(q)). 

A discrete logarithm in GF(q) can be efficiently 

computed using the Pohlig-Hellman algorithm by 

executing O(log2(q)) field arithmetic operations due 

to q - 1 being smooth or small [20, 21]. Therefore, 

the fifth step requires at most O(log4(q)) time. 

Since each step except the first is performed by 

the attack algorithm n times, the foregoing implies 

that the time complexity of the plaintext-recovery 

attack is O(n4 ⋅ log2(q) + n ⋅ log4(q)). 

The time complexities of the considered attack 

and the decryption procedure can be compared in the 

following way. The first decryption step requires 2 

multiplications of η-order matrices over GF(q). The 

optional next step is recommended to be omitted by 

means of storing (σ1, σ2, σ3, σ4) and (z1, z2, z3, z4)  

along with the private key. The last step consists in 

computing n discrete logarithms in GF(q). In light of 

the above, performing the decryption procedure 

requires O(n3 ⋅ log2(q) + n ⋅ log4(q)) time. Therefore, 

if t denotes the decryption time, the time complexity 

of the plaintext-recovery attack is O(t1.34). 

 

5. CONCLUSION 

The plaintext-recovery attack proposed in the 

present paper has time complexity O(t1.34), where  

t stands for the decryption time of the attacked 

cryptosystem. In terms of the parameters of the 

matrix-based knapsack cipher, the time complexity 

of the given cryptanalytic method can be expressed 

as O(n4 ⋅ log2(q) + n ⋅ log4(q)). Hence, the aforesaid 

encryption scheme can be considered broken and 

should not be used as a privacy tool. However, this 

cipher is still suitable for educational purposes as an 

example of the application of linear and abstract 

algebras in asymmetric cryptography. The obtained 

results help to eliminate the information security 

risks, which arise from the use of the aforesaid 

cipher in the absence of information about its 

vulnerability. 
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