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Abstract: The k-mers processing techniques based on partitioning of the data set 

on the disk using minimizer-type seeds have led to a significant reduction in 

memory requirements; however, it has added processes (search and distribution 

of super k-mers) that can be intensive given the large volume of data. This paper 

presents a massive parallel processing model in order to enable the efficient use 

of heterogeneous computation to accelerate the search of super k-mers based on 

seeds (minimizers or signatures). The model includes three main contributions: a 

new data structure called CISK for representing the super k-mers, their 

minimizers and two massive parallelization patterns in an indexed and compact 

way: one for obtaining the canonical m-mers of a set of reads and another for  

searching for super k-mers based on minimizers. The model was implemented 

through two OpenCL kernels. The evaluation of the kernels shows favorable 

results in terms of execution times and memory requirements to use the model 

for constructing heterogeneous solutions with simultaneous execution (workload 

distribution), which perform co-processing using the current search methods of 

super k -mers on the CPU and the methods presented herein on GPU. The model 

implementation code is available in the repository: 

https://github.com/BioinfUD/K-mersCL. 

Copyright © Research Institute for Intelligent Computer Systems, 2020.  

All rights reserved. 

 

 

1. INTRODUCTION 

The search of super k-mers of a genomic read is a 

task that demands finding the seed (canonical 

minimizer or signature) of each possible k-mer and 

compare them with each other in order to identify 

those contiguous k-mers that have the same 

minimizer [1]. This search becomes an intensive 

task when it must be performed for millions of reads 

due to the high number of processes and the large 

amount of both input and output data. Due to the 

independence of processes between reads, the search 

for super k-mers is a highly suitable task to be 

accelerated by simultaneous heterogeneous 

processing: the workload is partitioned to be 

processed simultaneously between the CPU and the 

GPU(s), either through a static, dynamic [2], or 

hybrid distribution [3]. However, for this type of 

processing to be carried out efficiently it is 

necessary to overcome the following challenge: the 

search for super k-mers is a process that has a very 

high and unpredictable memory requirement when it 

is massively parallelized because the space required 

depends on the data generated but not on the input 

data. The memory occupied by the super k-mers of a 

read depends on the sequence (it varies from read to 

read) and is much greater than the space occupied by 

the read due to redundancy. This prevents the search 

of super k-mers from running efficiently on many-

core platforms such as GPUs where the memory is 

limited and the cost of data transfer between the 

levels of the memory hierarchy is very high. 

This paper proposes a massive model of parallel 

processing for the search of super k-mers that allows 

the memory requirements and the execution times to 

be adequate to develop efficient heterogeneous 

solutions with simultaneous CPU-GPUs execution. 

The following section provides a background to the 
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thematic framework of the problem, in section 3 the 

components that constitute the massive parallel 

processing model are presented: a heterogeneous 

processing model, an efficient data structure and 2 

parallelization patterns; finally, the results are 

presented and analyzed, conclusions are drawn and 

future works are proposed. 

 

2. BACKGROUND 

2.1 WHAT ARE MINIMIZERS? 

Minimizers were initially proposed as a 

technique to reduce storage requirements in 

biological sequence comparison processes [4, 5], 

through the strategy of reducing the redundancy 

presented by the “seed-and-extend” technique [6]. 

As of 2013, the minimizers ventured into k-mers 

treatment tasks in de-novo assembly processes: (a) 

k-mers counters [7] KMC2 and KMC3 [8] and 

MSPKmerCounter [9], (b) graph builder 

MSPGraphBuilder [10], (c) graphs compactors 

[11,12], and (d) assembler EPGA2 [13].  A 

minimizer of a k-mer is the sub-sequence of length 

m (m-mer, where m < k); when comparing all 

possible m-mers of that k-mer, this minimizer 

presents the lowest value according to a criterion of 

comparison, which is usually the lexicographic 

weight. 

According to the previous definition, the 

minimizer of a k-mer is a unique sub-sequence, and 

those k-mers that are contiguous in a read are very 

likely to present the same minimizer. For this reason 

they can be considered “seeds” and used as a 

partitioning criterion and as a data structure (super 

k-mers: merging contiguous k-mers with the same 

minimizers). 
 

2.2 WHAT DO THE MINIMIZERS 
CONTRIBUTE TO THE PROCESSING OF 
K-MERS? 

Minimizer are used to face the two challenges of 

processing k-mers: the high volume of data due to 

redundancy and the impossibility or difficulty of 

partitioning treatment [7]. 
 

 

Figure 1 – Super k-mers. Data structure for reducing 

redundancy 

Data structure to reduce redundancy: 

Minimizers are used to define data structures where 

not all the k-mers of a read are stored, but those that 

are contiguous and have the same minimizer are 

merged [14]. The product of this fusion is sub-

sequences called super k-mers [8]. Fig. 1 shows how 

to go from 7 k-mers (112 bases) to 2 super k-mers 

(37 bases). 

Criterion for partition of the data set: Although 

the merger of k-mers in super k-mers reduces 

redundancy, when dealing with said super k-mers it 

is very likely that the process needs to obtain all its 

k-mers; this would demand the same memory as if 

all the k-mers of the readings of the data set had 

been obtained and stored initially. For this reason, 

minimizers are also used as a criterion to divide the 

data set by creating partitions (files on disk) that 

contain all the super k-mers that have the same 

minimizer, so that these files can be stored on 

memory and process separately by ensuring that the 

same k-mer will not exist in a different partition and 

that all contiguous k-mers that have the same 

minimizers will be in the same partition (see Fig. 2). 

 

Figure 2 – Minimizer. Criterion for partition of the 

data set 

 

2.3 WHAT ARE THE CANONICAL 
MINIMIZERS? 

The partitioning technique is performed to 

execute a type of processing that takes into account 

the reverse complement of the sequences and sub-

sequences [15, 16]. The minimizer criterion could 

not be applied as explained above, because a k-mer 

could remain in one partition and its reverse 

complement in another. To solve this, a small 

modification is made to the selection criterion of the 

minimizer in such a way that the one with the lowest 

lexicographic weight is chosen, but in this case not 

only the m-mers but also its reverse complements 

are included. 

 

2.4 WHAT ARE THE SIGNATURES? 

If the criterion for selecting the minimizers is 

exclusively the lexicographic weight of the m-mers, 

the sizes of each of the partitions will depend 
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directly on the frequency of occurrence of the 

minimizers. This means that they are defined by the 

trends in the biological sequences. For example, 

minimizers with several As can be very common, 

while minimizers with several Ts can be very rare. 

This could lead to non-uniform distributions that 

generate large and small files that do not optimize 

the use of memory. In order to achieve more 

homogeneous distributions, the authors of the k-

mers counting tools KMC 2 and KMC 3 proposed a 

canonical minimizer alternative where some of them 

are vetoed according to specific characteristics. 

Therefore, those allowed minimizers have not so 

different frequencies of occurrence. Allowed 

minimizers are those that meet the following 

characteristics: they do not start with AAA or ACA 

and do not contain AA anywhere (except at the 

start). 

 

3. MATERIAL AND METHODS 

3.1 HETEROGENEOUS PROCESSING 
MODEL 

This model is supported in three pillars: (1) a data 

structure called CISK (Compact-Indexed Super k-

mers representation) for representing the super k-

mers and their seeds in a compact and indexed way, 

so the identification process of super k-mers can be 

carried out without performing the process of 

explicit extraction of the super k-mers, and (2,3) two 

massive parallelization algorithms for obtaining the 

canonical m-mers and identifying the super k-mers 

of a set of readings through the efficient use of 

many-core devices. The purpose of the proposed 

model and its three contributions is to facilitate the 

development of simultaneous heterogeneous 

solutions:  current efficient search processes of super 

k-mers executed in parallel on CPU, accelerated by 

simultaneous co-processing on GPU(s) (see Fig. 3). 

 

 

Figure 3 – Heterogeneous processing model with 

simultaneous CPU-GPUs execution 

3.2 CISK (COMPACT-INDEXED SUPER K-
MERS REPRESENTATION) 

The model proposes a data structure for 

representing the super k-mers and their minimizers 

in an indexed and compact way, so they are detected 

and stored in the GPU without extracting them 

explicitly. Each super k-mer of a read is represented 

by three data (minimizer, position of the super k-

mer, and length of the super k-mer minus k) that are 

compacted in only 32 bits (see Fig. 4). The 7 least 

significant bits are used to represent the number of 

k-mers that are added to the initial k-mer to build the 

super k-mer (the length of the super k-mer minus k), 

so the maximum length of super k-mer is k + 2 ^ (7) 

and the maximum k is 2 ^ 7 + m. The remaining 25 

bits are shared to represent the seed (canonical 

minimizer or signature) and the initial position of the 

super k-mer within the read. The distribution of 

these 25 bits is performed dynamically as a function 

of m: the 2 * m most significant bits are reserved to 

represent the seed and the rest are assigned to 

represent the position of the super k-mer. In this way 

the maximum read length supported is 2 ^ (25 - 2 * 

m) + k - 1. For example, with m = 4 the length of the 

reads can be up to 131,072 + k - 1 (PacBio reads 

[17, 18]), and with m = 9 it can be up to 128 + k 

(typical short reads).  Note: The use of small m 

generates few partitions that could cause an 

unbalanced distribution; in this case the use of 

signatures is recommended in order to reduce this 

problem. 

 

Figure 4 – CISK. Compact-Indexed Super k-mers 

representation 

 

3.3 MASSIVE PARALLELIZATION 
ALGORITHM: OBTAINING CANONICAL 
M-MERS OF A SET OF READS 

A canonical m-mer is the smallest between the 

m-mer and its reverse complement taking its 

lexicographic weight as a comparison value. The 

conventional way to find these weights is by means 

of its base-10 numerical representation. The decimal 

values could be calculated in a relatively simple way 

on an ideal many-core device (infinite physical 

threads, unlimited memory, and non-latency) by 

assigning a thread to compute each base. However, 

an implementation of this form on a real device 
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would lead to an over-access of each of the bases of 

the read up to m-1 times, which would be 

catastrophic for the operational intensity. In 

addition, it would have overly fine granularity that 

would be inefficient considering the way the threads 

are executed. As a consequence, this model proposes 

a new parallelization algorithm for obtaining the 

canonical m-mers of a set of reads based on tiles 

with hybrid granularity, in such a way that a massive 

parallelism (m threads per tile) can be used to obtain 

the first m-mer of each tile (by means of 

conventional numerical conversion equations) and a 

moderate parallelism (1 thread per tile) to obtain the 

rest of m-mers by means of a roll strategy that 

allows the reuse of the results, thereby avoiding 

redundancy in the access to each element of the 

input vector (see “kernels algorithms” in the 

repository: https://github.com/BioinfUD/K-

mersCL). 

 

3.4 MASSIVE PARALLELIZATION 
ALGORITHM: SEARCH FOR SUPER K-
MERS BASED ON MINIMIZERS 

The search process of the super k-mers of a read 

demands the analysis of all its k-mers to identify 

those that are contiguous and have the same 

minimizer. This model proposes a sequential / 

parallel strategy that significantly reduces the 

number of k-mers to be analyzed and the number of 

threads to be used: through a sequential process 

(window by leaps) the zones that contain the 

boundaries between two super k-mers are identified, 

and through a parallel process these zones are 

analyzed to accurately detect the boundaries 

according to the minimizers (see Fig. 5). 

 

 

Figure 5 – Sequential / parallel strategy. Search for 

super k-mers using GPUs 

 

If the zone has a reference minimizer, a pattern 

that finds the closest lowest canonical m-mer using 

atomic operations will be used; this pattern will be 

the minimizer of the new super k-mer. If the zone 

does not have a reference minimizer, a mixed and 

adaptive reduction pattern will be used to find the 

new minimizer. This pattern is mixed because it uses 

a three-level tree structure, but its branches converge 

through atomic operations, and it is adaptive because 

the number of branches of the second level (to which 

the initial elements converge) is adapted according 

to the size of the zone. Then the number of elements 

per block to be reduced in each level slightly varies 

and has low levels (around 8). The atomic operations 

therefore have high and homogeneous performance 

in each of the tree levels [19]. 

It is possible that several elements of the zone 

have the same minimum value. In that case, the one 

with a greater position is selected in order to favor 

the construction of more extensive super k-mers (see 

“kernels algorithms” in the repository: 

https://github.com/BioinfUD/K-mersCL). 

 

3.5 IMPLEMENTATION AND 
EVALUATION 

The massive parallel processing model for the 

search of super k-mers was implemented through 

two OpenCL [20, 21] kernels, one for canonical 

minimizers and the other for signatures. In order to 

facilitate testing and evaluation of the kernels, a host 

code was implemented using PyOpenCL [22, 23]; 

this code performs the complementary tasks to 

search the super k-mers (load and numerical 

conversion of reads and explicit extraction of super 

k-mers). Both the kernels codes and the test host 

code are available in the following repository: 

https://github.com/BioinfUD/K-mersCL. (Note: 

when using the kernels, the following restrictions 

must be considered: (1) the kernels are not an 

independent tool; they are designed to be part of a 

heterogeneous solution. (2) The size of the data set 

is limited according to the memory of the GPU. (3) 

All the reads of the data set must have equal length). 

The evaluation measures and compares the 

execution times of the implementations of the model 

(OpenCL Kernels) with similar processes executed 

on CPU used in recognized k-mers counting tools 

with the aim  of determining if the model 

does represent an alternative to parallel co-

processing (many-core) for building efficient 

heterogeneous solutions with simultaneous CPU-

GPUs execution that integrate the current methods 

on multi-core and the model of processing on many-

core proposed in this project. 

Reference tools: The two seed-based k-mers 

counting tools that show (in their publications) the 

best performance in terms of processing time and 

memory use were selected. For the canonical 

minimizer kernel (kmercl-min) the 

MSPKmerCounter tool was used, and for the 
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signatures kernel (kmercl-sig) the KMC2 tool was 

used. MSPKmerCounter is a disk-based approach, to 

efficiently perform k-mer counting for large 

genomes using a small amount of memory. It is 

based on a novel technique called Minimum 

Substring Partitioning (MSP).  In [9] it is stated that 

the experiment results on large real-life short reads 

data sets demonstrate that MSPKmerCounter can 

achieve better overall performance than state-of-the-

art k-mer counting approaches. 

KMC2 uses a novel method (signature-based) for 

k-mer counting, on large datasets at least twice faster 

than the strongest competitors (Jellyfish 2 [24], 

KMC 1 [25]), using about 12 GB (or less) of RAM 

memory. 

In order to exclusively measure the time that 

MSPKmerCounter uses to perform the identification 

of super k-mers (excluding disk reading / writing 

times), a timer was introduced in Partition.java. 

KMC was modified in such way that the timer did 

not measure any reading / writing from/to disk. Time 

was measured only for the process that identifies the 

super k-mers by signatures; since this process can be 

executed sequentially several times for each thread, 

the times of each execution per thread were 

accumulated and the resulting times for each thread 

were averaged. 

Data set: A data set consisting of 4 files 

generated from short reads from the sequencing of 

chromosome 23th of Homo sapiens was used. The 

files vary in the number of reads (1.5 and 9 million 

reads) and in their length (180 and 300 bases). 

Computers: The evaluation was carried out on 

two computers in order to measure the performance 

of the model under the limitations of a desktop 

computer (Intel(R) Core(TM) i7-4790 CPU @ 

3.60GHz, GeForce GTX 750Ti, 16GB DDR3, SSD 

1TB, Ubuntu 16.04) and under the advantages of a 

HPC - High Performance Computer (Intel(R) 

Xeon(R) CPU E5-2697 v3 @ 2.60GHz, Nvidia k80, 

128GB DDR3, SSD 480GB, CentOS 7.3), which are 

part of the Centro de Cómputo de Alto Desempeño 

de la Universidad Distrital (CECAD): 

http://cecad.udistrital.edu.co/. 

Configuration: The k-mers counter tools were 

configured to run serially (1 thread) and in parallel 

(4 threads) on CPU. For the kernels, indexed 

processing spaces were configured as follows: 

global space: two-dimensional space with a number 

of rows equal to the reads that make up the set and a 

number of columns equal to twice the number of m-

mers per k-mer; local space: one-dimensional space 

(1 row) with a number of columns equal to those 

assigned to the global space. Both the kernels and 

the processes in the k-mers counting tools were 

evaluated for typical lengths of k-mers (k = 51, k = 

81) and m-mers (m = 5, m = 7). 

For further information on the evaluation 

(modifications of reference tools, data set, specific 

commands, among others), please refer to: 

https://github.com/BioinfUD/K-mersCL/blob/ 

master/README.md. 

 

4. RESULTS 

A processing model was obtained that efficiently 

parallelizes the search of super k-mers (based on 

either minimizers or signatures seeds) on many-core 

architectures using two new algorithms of 

parallelization that maximize the operational 

intensity and a structure of data that substantially 

reduces the memory requirement for the 

representation of the output data (identification of 

super k-mers). The model was implemented through 

two OpenCL kernels, one for minimizer and one for 

signatures. Figs. 6 and 7 show the results of the 

evaluation made to the kernels in terms of execution 

times; the execution times of the kernels are 

represented with a bar that has two levels: the lower 

level corresponds exclusively to the processing time 

on the GPU and the upper level includes the transfer 

times between the host and the GPU in both 

directions). 

The memory requirement for the search process 

of super k-mers in series or in parallel with few 

threads (on CPU) is very low considering that it is 

not necessary to load the entire data set into 

memory. The data is divided into small batches that 

are sequentially loaded and processed. The search 

for super k-mers on many-core platforms is the 

opposite case as it is necessary to transfer to the 

memory of the GPU and to process as much data as 

possible in a single call to the kernel due to the high 

cost of data transfer between the host and the GPU 

in both directions. Figs. 8 and 9 show the results of 

the evaluation; the memory requirements for the 

processes of the reference tools are shown as 

information and not with comparative purposes due 

to the reasons outlined above.  
 

 

Figure 6 – Execution time. Kernels vs. references tools 

on the CECAD - HPC (RS: Read size; T: Threads; 

Kernels times: Processing | Processing + Data 

Transfer) 
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Figure 7 – Execution time. Kernels vs references tools 

on the desktop computer (RS: Read size; T: Threads; 

Kernels times: Processing | Processing + Data 

Transfer) 

 

 
 

Figure 8 – Memory. Kernels and references tools on 

the CECAD - HPC (RS: Read size; T: Threads) 

 

 

Figure 9 – Memory. Kernels and references tools on 

the desktop computer (RS: Read size; T: Threads) 

 

5. DISCUSSION 

The execution times of the kernels (including 

data transfer times) were shorter than the times of 

similar processes running serially (1 thread) on CPU 

in both reference tools and for both computational 

environments (for minimizer, the kernel was 19.33 

times faster on average; for signature, the kernel was 

1.78 times faster on average). When the reference 

tools run in parallel (4 threads) on CPU, the 

minimizer kernel is faster on both computers (6.19 

times faster on average), while the signature kernel 

is slower (on average, the reference tool was 1.6 

times faster). The relation of execution times 

between the kernels and the similar processes in the 

reference tools remained practically constant for 

both computing environments.  

The memory requirement for both kernels 

depends on the input data (roughly linear relation) 

but not on the output data. The transient data and the 

output data do not influence the memory 

requirement; this means that efficient representation 

and proper use of the hierarchical memory structure 

of the GPU are performed. The memory requirement 

for both cores is predictable, so an efficient 

distribution of workload between the host and the 

GPUs is possible. 

 

6. CONCLUSIONS 

Through two new massive parallelization 

algorithms, focused on maximizing the operational 

intensity through efficient access to the hierarchical 

memory structure of the parallel device, and a new 

data structure for representing the super k-mers of a 

read in an indexed and compact way, it was possible 

to obtain a processing model that efficiently solves 

the search for super k-mers over many-core 

architectures. 

The implementation of the model through two 

kernels OpenCL and its evaluation made it possible 

to demonstrate that both the execution time 

(including data transfer times host -- GPU -- host) 

and the memory requirement are adequate to use the 

model in the development of heterogeneous 

solutions of simultaneous execution (distributed 

work-load). The execution times of the kernels in the 

majority of times were lower than the times used by 

the current methods executed on CPU; this means 

that the model is a good option of simultaneous 

(multi-core / many-core) co-processing to accelerate 

the current methods executed on CPU. The memory 

requirement of the kernels was totally predictable 

and slightly high since it depends exclusively on the 

input data and not on the transient or output data, so 

the model facilitates the efficient distribution of 

workload between the CPU (current methods) and 

the GPUs (methods proposed in this paper). 

 

7. ACKNOWLEDGEMENTS 

CIDC (Centro de Investigaciones y Desarrollo 

Científico), CECAD (Centro de Cómputo de Alto 



N. E. Vera-Parra, D. A. López-Sarmiento, C. A. Rojas-Quintero / International Journal of Computing, 19(4) 2020, 525-532 

 

 531 

Desempeño), GICOGE (Grupo Internacional de 

Investigación en Informática, Comunicaciones y 

Gestión del Conocimiento) - Universidad Distrital 

Francisco José de Caldas. 

 

8. FUNDING 

This work has been supported by the CIDC 

(Centro de Investigaciones y Desarrollo Científico 

de la Universidad Distrital Francisco José de 

Caldas).  

 

9. REFERENCES 

[1] H. Li, A. Ramachandran, and D. Chen, “GPU 

acceleration of advanced k-mer counting for 

computational genomics,” Proceedings of the 

2018 IEEE 29th International Conference on 

Application-specific Systems, Architectures and 

Processors (ASAP), 2018, pp. 183-186. 

[2] T. Richert, “Management of distributed 

dynamic data with algorithmic skeletons,” 

Parallel Computing, 2000, pp. 375-382. 

https://www.worldscientific.com/doi/abs/10.11

42/9781848160170_0044 

[3] F. Wrede and S. Ernsting, “Simultaneous CPU–

GPU execution of data parallel algorithmic 

skeletons,” International Journal of Parallel 

Programming, vol. 46, no. 1, pp. 42–61, Apr. 

2017. 

[4] M. Roberts, W. Hayes, B. R. Hunt, S. M. 

Mount, and J. A. Yorke, “Reducing storage 

requirements for biological sequence 

comparison,” Bioinformatics, vol. 20, no. 18, 

pp. 3363–3369, 2004. 

[5] G. Marçais, D. Pellow, D. Bork, Y. Orenstein, 

R. Shamir, and C. Kingsford, “Improving the 

performance of minimizers and winnowing 

schemes,” Bioinformatics, vol. 33, no. 14, pp. 

i110–i117, Dec. 2017. 

[6] S. Altschul, “Gapped BLAST and PSI-BLAST: 

a new generation of protein database search 

programs,” Nucleic Acids Research, vol. 25, 

no. 17, pp. 3389–3402, Jan. 1997. 

[7] N. Pérez, M. Gutierrez, and N. Vera, 

“Computational performance assessment of k-

mer counting algorithms,” Journal of 

Computational Biology, vol. 23, no. 4, pp. 248–

255, 2016. 

[8] M. Kokot, M. Długosz, and S. Deorowicz, 

“KMC 3: counting and manipulating k-mer 

statistics,” Bioinformatics, vol. 33, no. 17, pp. 

2759–2761, Apr. 2017. 

[9] Y. Li, et al. MSPKmerCounter: a fast and 

memory efficient approach for k-mer 

counting. arXiv preprint arXiv:1505.06550, 

2015. 

[10] Y. Li, P. Kamousi, F. Han, S. Yang, X. Yan, 

and S. Suri, “Memory efficient minimum 

substring partitioning,” Proceedings of the 

VLDB Endowment, vol. 6, no. 3, pp. 169–180, 

Jan. 2013. 

[11] R. Chikhi, A. Limasset, and P. Medvedev, 

“Compacting de Bruijn graphs from sequencing 

data quickly and in low memory,” 

Bioinformatics, vol. 32, no. 12, pp. i201–i208, 

2016. 

[12] C. Marchet, M. Kerbiriou, and A. Limasset, 

“Indexing De Bruijn graphs with minimizers,” 

Nov. 2019. https://www.biorxiv.org/content/ 

10.1101/546309v2 

[13] J. Luo, J. Wang, W. Li, Z. Zhang, F. X. Wu, M. 

Li, & Y. Pan, “EPGA2: memory-efficient de 

novo assembler,” Bioinformatics, vol. 31, no. 

24, pp. 3988-3990, 2015. 

[14] S. Deorowicz, “FQSqueezer: k-mer-based 

compression of sequencing data,” Scientific 

Reports, vol. 10, 578, 2020. 

https://doi.org/10.1038/s41598-020-57452-6 

[15] S. Deorowicz, A. Debudaj-Grabysz, and S. 

Grabowski, “Disk-based k-mer counting on a 

PC,” BMC Bioinformatics, vol. 14, no. 1, 2013. 

[16] M. Erbert, S. Rechner, and M. Müller-

Hannemann, “Gerbil: a fast and memory-

efficient k-mer counter with GPU-support,” 

Algorithms for Molecular Biology, vol. 12, no. 

1, 2017. 

[17] Y. Ono, K. Asai, and M. Hamada, “PBSIM: 

PacBio reads simulator—toward accurate 

genome assembly,” Bioinformatics, vol. 29, no. 

1, pp. 119–121, Apr. 2012. 

[18] A. Rhoads and K. F. Au, “PacBio Sequencing 

and Its Applications,” Genomics, Proteomics & 

Bioinformatics, vol. 13, no. 5, pp. 278–289, 

2015. 

[19] V. Alessandrini, “Atomic types and 

operations,” Shared Memory Application 

Programming, pp. 167–190, 2016. 

[20] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: 

A parallel programming standard for 

heterogeneous computing systems,” Computing 

in Science & Engineering, vol. 12, no. 3, pp. 

66–73, 2010. 

[21] N. Vera, C. Rojas and J. Pérez, OpenCL 

Práctico, first ed., Editorial UD, Bogotá, 2019, 

314 p. 

[22] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. 

Ivanov, and A. Fasih, “PyCUDA and 

PyOpenCL: A scripting-based approach to 

GPU run-time code generation,” Parallel 

Computing, vol. 38, no. 3, pp. 157–174, 2012. 

[23] A. Klöckner, N. Pinto, B. Catanzaro, Y. Lee, P. 

Ivanov, and A. Fasih, “GPU scripting and code 



N. E. Vera-Parra, D. A. López-Sarmiento, C. A. Rojas-Quintero / International Journal of Computing, 19(4) 2020, 525-532 

 

 532 

generation with PyCUDA,” GPU Computing 

Gems Jade Edition, pp. 373–385, 2012. 

[24] G. Marçais, C. Kingsford, “A fast, lock-free 

approach for efficient parallel counting of 

occurrences of k-mers,” Bioinformatics, vol. 

27, no 6, pp. 764-770, 2011. 

[25] S. Deorowicz, A. Debudaj-Grabysz, S. 

Grabowsky, “Disk-based k-mer counting on a 

PC,” BMC Bioinformatics, vol. 14, no. 1, p. 

160, 2013. 

 

 

 

Nelson Enrique Vera-Parra, 
Electronic Engineer from 
Surcolombiana University,          
Masters in Information Sciences 
and Communication from Uni-
versidad Distrital Francisco José 
de Caldas and PhD in Engineer- 

ing from the same university. Professor at the 
Faculty of Engineering of the Universidad Distrital 
Francisco José de Caldas. 
 

 

Danilo Alfonso López-
Sarmiento, Electronic Engineer 
from Pamplona University,        
Masters in Teleinformatic from 
Universidad Distrital Francisco 
José de Caldas and PhD in 
Engineering from the same  

university. Professor at the Faculty of Engineering of 
the Universidad Distrital Francisco José de Caldas. 
 

 

Cristian Alejandro Rojas-
Quintero, Systems Engineer 
and Magister in Software         
engineering from Universidad 
Distrital Francisco José de 
Caldas. Bioinformatics develop-
per for the agreement between 
the CECAD   (Center   for   High  

Performance Computing of the Universidad Distrital 
Francisco José de Caldas) and IGUN (Institute of 
Genetics at the Universidad Nacional de Colombia). 

 


