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Abstract: Lung cancer is the second most common form of cancer in both men 

and women. It is responsible for at least 25% of all cancer-related deaths in the 

United States alone. Accurate and early diagnosis of this form of cancer can 

increase the rate of survival. Computed tomography (CT) imaging is one of the 

most accurate techniques for diagnosing the disease. In order to improve the 

classification accuracy of pulmonary lesions indicating lung cancer, this paper 

presents an improved method for training a densely connected convolutional 

network (DenseNet). The optimized setting ensures that code prediction error 

and reconstruction error within hidden layers are simultaneously minimized. To 

achieve this and improve the classification accuracy of the DenseNet, we 

propose an improved predictive sparse decomposition (PSD) approach for 

extracting sparse features from the medical images. The sparse decomposition is 

achieved by using a linear combination of basis functions over the L2 norm. The 

effect of dropout and hidden layer expansion on the classification accuracy of the 

DenseNet is also investigated. CT scans of human lung samples are obtained 

from The Cancer Imaging Archive (TCIA) hosted by the University of Arkansas 

for Medical Sciences (UAMS).  The proposed method outperforms seven other 

neural network architectures and machine learning algorithms with a 

classification accuracy of 95%. 

Copyright © Research Institute for Intelligent Computer Systems, 2020.  

All rights reserved. 

 

 

1. INTRODUCTION 

The lung is a large organ, and this means that 

tumors can keep growing for a long time before being 

detected. Therefore, many tumors are detected when 

they have progressed significantly [1]. Lung 

computed tomography (CT) scans remain one of the 

most effective techniques for detecting lung tumors as 

a marker of lung cancer due to its non-invasive nature 

[2]. However, with advancements in computing 

techniques and artificial intelligence, it is possible to 

minimize the problem of lung cancer misdiagnosis 

due to inaccurate interpretation of lung CT images. 

This is because differences between cancerous and 

non-cancerous lesions are generally not easy to detect 

[2]. 

Convolutional neural networks (CNNs) have 

been used extensively for image classification and 

recognition over the years [3-8]. However, like other 

neural network structures, CNNs are also susceptible 

to problems of false classification due to inaccurate 

feature selection. An optimal sparse representation 

of image data matrices is a vital requirement for 

accurate approximation of the input matrix into the 

classifier. It is essential in denoising of matrices 

representing image data since it attempts to capture 

crucial details of the image matrix with the least 

possible number of features. Predictive sparse 

decomposition (PSD) is a technique that has greatly 

reduced the cost of calculating sparse 

representations [9]. The approach involves the 

simultaneous optimization of both a loss function 

(using a feedforward predictor) and the basis 

functions representing the image matrix (using a 

nonlinear regressor). The basic approach of sparse 

representation involves the use of sparse matrices to 
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represent image data. Therefore, using the 

feedforward predictor alone makes the 

representation process both time-consuming and 

computationally expensive [9]. Sparse representation 

aims to make prediction of the regressor as close as 

possible to the optimal set of coefficients 𝑅∗ 

represented by Eq. (1): 

 

Γ(Φ, 𝑅; 𝐹) =
1

2
‖Φ − 𝐹𝑅‖2

2 + 𝜔‖𝑅‖1 ,           (1)  

 

where Φ is the output signal, 𝑅 is the input sparse 

matrix, 𝐹 is the matrix of basis functions 

representing the input matrix, 𝜔 is sparse 

representation coefficient. Equation (1) represents 

the idea of Basis pursuit denoising. This approach 

attempts to minimize reconstruction error using 

sparsity and linear basis function sets. However, 

iteratively doing this makes the minimization 

algorithm computationally expensive. PSD adds a 

nonlinear regressor to Equation (1) for the 

optimization of  𝐹, which makes the optimization 

process faster and less expensive. Therefore, we 

propose an optimal approach to the selection of the 

sparse representation coefficient in order to improve 

the accuracy of the sparse representation of the 

output signal Φ.  

Convolutional neural network (CNN) is a deep, 

feedforward neural network that is used extensively 

in visual image analysis [10]. The idea of 

convolution is based on the fact that feature maps 

representing images are usually stacked on top of 

each other. Therefore, each 2D grid in the stack is 

convolved with the grid next to it to represent the 

image. Each 2D grid is represented by an n×m 

matrix or feature map. The convolution between any 

two functions a and b measures the overlap between 

the functions when they are both shifted by a factor 

𝜆 and then flipped [11].  

A CNN uses cross-correlation to process input 

matrix and kernels, and then adds a bias in order to 

generate an output. Therefore, cross-correlation and 

the convolution process can be used 

interchangeably. This paper aims to present an 

improved method of sparse representation of the 

input data matrix for lung cancer prediction 

implemented with a recently proposed CNN 

architecture called densely connected convolutional 

network (DenseNet). The dataset is obtained from 

The Cancer Imaging Archive (TCIA) hosted by the 

University of Arkansas for Medical Sciences 

(UAMS). Objectives of the research include:  

– Demonstration of the capability of DenseNet to 

accurately classify noisy and sparse datasets. 

– Use of unsupervised improved PSD method to 

improve the performance of the DenseNet.  

– Comparison of the performance of the proposed 

improved PSD/DenseNet approach with other 

CNN architectures and machine learning 

algorithms. 

 

2. RELATED WORKS 

CNNs are particularly suited to image 

recognition and classification tasks. The DenseNet is 

an instance of a convolutional neural network which 

consists of densely connected layers. In this kind of 

CNN, features from all the preceding layers are fed 

into subsequent layers within the network [33]. This 

results in a network architecture that enables the 

integrity of the information fed into it to be 

preserved as it moves through successive layers 

from input to output. In recent years, there have been 

several applications of these neural networks in 

areas such as medicine, security, science, and 

engineering. In [12], an autoencoder CNN was used 

to detect stomach tumors in double contrast X-ray 

images. The CNN involved stages of convolution 

and deconvolution using 1-dimensional 3 × 3 feature 

maps with rectified linear units (ReLU) as the 

activation function. The training images involved 

those with no tumors, as well as those with benign 

and malignant tumors. The performance of this 

proposed structure was compared to a previously 

proposed approach using just an autoencoder neural 

network. Performance indices were mean squared 

error (MSE) and area under the curve (AUC) based 

on Receiver Operating Characteristic (ROC) curves 

for evaluating CAD systems. The CNN 

outperformed the autoencoder neural network on 

both MSE and AUC.  

In [13], a deep CNN with 16 convolutional layers 

was employed to identify the accurate fetal facial 

standard plane in order to detect malformation in the 

early stages of pregnancy. The input to the deep 

CNN was a 224 × 224 RGB image. The deep CNN 

used five stages of max-pooling for dimensionality 

reduction. The proposed deep CNN was compared 

to 18 other CNN models and outperformed them 

with accuracy of up to 97%.  

In [14], a CNN was used for pathology detection 

in chest radiographs. A 433-image dataset was 

employed with performance comparison to GIST, 

and bag-of-visual words approach. CNN was the 

best performer with an accuracy of up to 0.94 using 

AUC metric. In [15], CNN was used for the 

classification of breast cancer based on histology 

images. The deep learning approach was compared 

with two other coding models (namely bag of words 

and locality constrained linear coding). CNN 

outperformed the other two methods with an 

accuracy of 98.33% and 88.23% for binary and 

multi-class classification, respectively. Other 
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successful applications of CNNs in medical imaging 

can be seen in [16-25].  

From these results, it is clear that CNNs are very 

effective tools for accurate image classification. 

However, the speed of prediction and classification, 

and a large number of training parameters are 

challenges that are encountered in the use of CNNs. 

CNNs are also prone to problems of false 

classification due to inaccurate feature selection. 

This paper proposes the use of the improved 

predictive sparse decomposition (PSD) approach 

with DenseNet to remedy the above-mentioned 

problems. DenseNets have been successfully applied 

in medical image processing and classification [26-

28]. Other applications of neural networks in 

medical image processing can also be found in [30, 

31, 34]. 

 

3. PROPOSED METHODOLOGY 

The proposed approach involves including a 

nonlinear approximation of the basis function set. 

This approximation is added to Eq. (1) in order to 

improve the overall sparse representation approach. 

In particular, we assume a linear combination of 

basis functions over the L2 norm with an interval 

[0,1]. The linear combination is given as: 

 
ℒ𝑝𝜂 = ∏ 𝛿𝑗𝛽𝑗𝑗𝜖𝑧𝑖

,            (2) 

 

where ℒ𝑝 represents selected basis functions, 𝜂 

represents the resulting feature map, 𝛿𝑗 are basis 

function coefficients, and 𝛽𝑗 are the orthonormal 

basis functions. 

The purpose of this proposed PSD approach is to 

provide an effective means of extracting features 

from images that would enable the neural network to 

accurately interpret key markers, hence, identifying 

lung cancer effectively. The method of sparse 

decomposition reduces the computational time 

required to interpret images by reducing the number 

of distinguishable features necessary to make an 

accurate classification. To get the best linear (L2) 

approximation of the basis function set, we obtain 

the orthonormal representation of the basis function 

coefficients as: 

 

‖𝜂 − ℒ𝑝‖
2

2
= ∏ 𝛿𝑗

2.     (3) 

 

The best possible subset of n basis functions out 

of a pool size of N is obtained using the following 

relation: 

 

𝑏𝑛
2(𝜂) = ∏ {𝑁

𝑛=1 ‖𝜂 − ℒ𝑝‖
2

2
}.     (4) 

 

Equation (4) also represents the summation of 

basis function coefficients (𝛿𝑗). The nonlinear 

representation of the selected basis functions is 

obtained using a nonlinear approximation operator 

according to: 

 
𝜃𝑗𝜂 = ℒ𝑝𝑗

𝜂,     (5) 

 

where 𝜃𝑗 represents the nonlinear approximation 

operator describing the subset of selected basis 

functions. Equation (5) is incorporated into the PSD 

minimization function as follows: 

 

min
𝜎,𝛾

∑ (‖𝑥𝑗 − ∑ 𝜎𝑘
𝑗
𝛾𝑘

𝑛
𝑘=1 ‖

2
+𝑚

𝑗=1 𝜃𝑗𝜂).          (6) 

 

From Equation (6), we replace the L1 sparsity 

term in the original PSD with the nonlinear L2 

approximation operator. The novelty of this research 

lies in the improvement of the conventional PSD 

approach (represented by the first term of Equation 

(6). This involves including a nonlinear 

approximation of the basis function set. The purpose 

of this approach is to use the nonlinear method 

described in Equation (6) to improve the accuracy of 

the resulting sparse matrix, which is the input to the 

DenseNet. This will consequently also enhance the 

accuracy of the DenseNet classification. The 

denoising process of the resulting nonlinear 

approximation model is done according to the L1 

approach detailed in [29]. Thus, using the 

augmented Lagrangian function of the L1 norm: 

 
ℒ(Α, Β, Γ) = ‖𝐷(Α)‖1 + 𝜙‖Β‖1 − 〈Γ, Α + Β − 𝑆〉 +

𝜌

2‖Α+Β−𝑆‖2,      (7) 

 

where Γ and 𝜌 are the local variable and positive-

valued penalty parameters respectively. 𝑆 is the 

given signal to be denoised, and decomposed into 

two matrices Α and Β. 𝜙 is an average weighting 

factor which balances sparsities of 𝐷(Α) and Β.  

Based on the penalty parameter, an iterative 

approach is used according to: 

 
Α𝑘, Β𝑘  𝜖 𝑚𝑖𝑛|ℒ(Α, Β, 𝑋𝑘−1)|,     (8) 

 

where 𝑋𝑘 = 𝑋𝑘−1 − 𝜌(Α𝑘 + Β𝑘 − 𝑆) 

This approach is referred to as sparse noise 

denoising using the alternating direction method of 

multipliers (ADMM).  

In this paper, together with the improved PSD, 

we implement an instance of DenseNet [32]. The 

DenseNet, which is a recently proposed neural 

network structure, has several advantages over 

traditional convolutional neural networks. Some of 

these include enhanced propagation of learned intra-

layer features throughout the neural network, 



Ibomoiye Domor Mienye, Yanxia Sun, Zenghui Wang / International Journal of Computing, 19(4) 2020, 533-541 

 

 536 

reduction of the number of network training 

parameters, maintenance of learning gradient 

throughout the learning process, and encouragement 

of feature reuse throughout the layers of the neural 

network [32]. These advantages are a result of the 

fact that unlike conventional CNNs, successive 

layers of DenseNets use the feature maps of all 

preceding layers as inputs to the next layer. Also, 

while CNNs have N connections for each of the N 

layers, DenseNets have 
𝑁(𝑁+1)

2
 direct connections 

between successive layers [32]. The DenseNet 

structure proposed in this paper is shown in Fig. 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 
 

Figure 1 – Proposed 5-layer DenseNet Classifier 

 

The feature maps for successive layers of the 

DenseNet are obtained according to the relation 

[16]: 

 
𝜎𝑛 = Γ𝑛([𝜎0, 𝜎1, … … . , 𝜎𝑛−1]),  (9) 

 

where 𝜎𝑛 is the feature map for the n-th layer, Γ𝑛 is 

the composite function representing normalization, 

pooling, convolution and rectified linear units 

(ReLU) for n layers of the DenseNet.  

From the proposed structure in Fig. 1, features 

from 120 images representing lung cancer patients 

are reduced to a 5 × 5 input convolution window 

(representing the input to the DenseNet). Eighty-five 

(85) images are used for training, while 35 are used 

for testing and validation. This feature map is passed 

to the next DenseNet layer (DN2) with convolution 

and max pooling. Max pooling reduces the feature 

map to a 3 × 3 window, and this process continues 

throughout the DenseNet. It should be noted that no 

convolution or max-pooling occurs between layers 2 

and 3 of the DenseNet. This is because care is taken 

to avoid eliminating essential attributes of the 

feature map, which can enhance the accuracy of the 

final classification process. The final classification 

neural network is a fully connected feedforward 

network with a linear activation function.  

The conventional mean square error (MSE) 

metric has a negative effect on the peak signal-to-

noise ratio (PSNR) and structural similarity (SSIM) 

indices of the final compressed image [30]. 

Therefore, to improve the output of the network, the 

loss function is modified to become [33]: 

 

ℒ𝑁 = √(𝑦𝑛 − 𝑦𝑔)2 + 𝜖2 ,     (10) 

 

where 𝑦𝑛 is the network output, 𝑦𝑔 is the ground 

truth output, 𝜖 is the error constant. To avoid 

degradation of the learning process as information 

progresses through the network, we use a cross-

entropy cost function. 

 

ℱ = −
1

𝑁𝑖
∑ [𝑖𝑑𝐼𝑛𝑖𝑛 + (1 − 𝑖𝑑)𝐼𝑛(1 −𝑖 𝑖𝑛)],    (11) 

 

where 𝑁𝑖 is the total number of inputs to the 

network, 𝑖𝑑 is the desired output, 𝑖𝑛 is the input to 

the next layer. To prevent overfitting of the training 

data, we use L2 regularization, which involves 

adding a regularization term to the cross-entropy 

cost function. 

 

ℱ = −
1

𝑁𝑖

∑ [𝑖𝑑𝐼𝑛𝑖𝑛 + (1 − 𝑖𝑑)𝐼𝑛(1 −𝑖 𝑖𝑛)] +
𝜎

2𝑁𝑖

∑ 𝑤𝑖
2

𝑖  , (12) 

 

where 𝑤𝑖  is the i-th weight in the network, 𝜎 is the 

regularization parameter. To address the vanishing 

gradient problem, we adopt the following expression 

for the cost/bias gradient [34]: 

 
𝜕𝐶

𝜕𝑏𝑖
= 𝛼′(𝜂1)𝑤2𝛼′(𝜂2)𝑤3𝛼′(𝜂3) … … . 𝛼′(𝜂𝑛)

𝜕𝐶

𝜕𝛽𝑛
, (13) 

 

where 𝛽𝑛 is the activation for neuron n, 𝜂𝑖 is the 

weighted input into neuron i, 𝛼′ is the conversion 

term which converts a change in the bias of neuron i 

into a corresponding change in its output activation. 

The output neurons of the DenseNet form a softmax 

layer. The sum of inputs for the softmax layer forms 

a probability distribution that sums up to 1.  

For each node i in layer j, the estimator of feature 

learning with respect to layer k is verified using 

maximum likelihood estimation [37]. This is done 

using aposteriori estimation with respect to the 

learning rate η. The aposteriori probability is 

described as: 

 

DN1 

DN2

 

 

  2 
DN3 

DN5 

Fully-connected NN with linear 

activation function 

DN4 

Input (convolution) (5×5) 

Convolution/maxpooling/ReLU  

  (3×3) 

 

        (3×3) 

Convolution/maxpooling/ReLU 

           
(2×2) 

           (2×2) 

                 

      Maxpooling 
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𝑃𝑎(Θ|𝜂) = 𝛾 ∑ ∑ 𝜎𝑛ℱ𝑛
𝑘=1

𝑚
𝑖=1 ,      (14) 

 

where ℱ is the cross-entropy cost function, 𝜎𝑛 is a 

feature map for the n-th layer of the DenseNet, 𝛾 is 

the normalization constant. Concerning the 

estimation parameter Θ, selected parameters are 

based on the size (𝛽𝑠) and shape (𝛽𝑠ℎ) of cancerous 

cells with respect to normal cells. A ratio greater 

than one will likely mean that the cells are 

unhealthy. Therefore, 

 
Θ = (𝛽𝑠,𝛽𝑠ℎ, 𝐼𝑛),       (15) 

 

where 𝐼𝑛 is the size of the image. The regularization 

of the classifier layer during the training of the 

DenseNet is ensured using the approach proposed in 

[38]. This is done by ensuring a uniform probability 

for each input label in the training stage by 

considering the probability of each basis function 

with regard to the input label y as: 

 

𝑝(𝑦|𝑥) =
𝑒𝜌𝑦

∑ 𝑒𝜌𝑖𝑌
𝑖=1

,          (16) 

 

where 𝜌𝑖 are the unnormalized logarithmic 

probabilities with respect to each label y. Therefore, 

a single loss coefficient 𝔏(𝑥, 𝑦) based on the cross-

entropy can be replaced by a loss pair 𝔏(𝑥, 𝑝), 𝔏(𝜃, 𝑝) 

according to: 

 

𝔏(𝑥, 𝑦) = − ∑ log 𝑝(𝑦)(1 − 𝑝)(𝑦) =𝑌
𝑦=1

(1 − 𝑒)𝔏(𝑥, 𝑝) + 𝑒𝔏(𝜃, 𝑝) ,           (17) 

 

where 𝑒 is an error coefficient. 

The procedure for the proposed improved PSD 

approach for image feature selection based on the L2 

norm is detailed in Algorithm 1. The DenseNet 

architecture has been optimized to minimize the 

tendency for misclassification as well as decaying 

gradient from output to input. The procedure for 

achieving this is outlined in Algorithm 2. 

 

Algorithm 1. Procedure for improved PSD using L2  

norm 

1. Start 

2. Initialize ℒ𝑝, 𝜂, 𝛿𝑗 , 𝛽𝑗 

3. Obtain L2 basis function set according 

to 

         Equation (4) 

4. Obtain nonlinear L2 operator according 

to  

         Equation (6) 

5. Include nonlinear L2 operator in original 

PSD  

         relation 

6. End 

 

 

Algorithm 2. Optimization of DenseNet architecture  

      using Probabilistic gradient descent 

1. Start 

2. Initialize network weights (𝑤𝑖) and 

biases (𝑏𝑖) 

3. Specify layers (number of neurons) in 

each level  

         of the DenseNet (DN1 – DN5) 

4. Train network using probabilistic 

gradient     

         descent 

5. Compute feature samples for training, 

validation  

         and testing 

6. Define cost function (𝐶) and updates 

7. Define training functions for feature 

samples and  

              determination of accuracy 

8. Train network 

9. End 

 
 

4. EXPERIMENTAL SETUP 

The implementation and training of the proposed 

DenseNet with improved PSD was carried out using 

Matlab with a selected sample size of 120 images 

from the TCIA database. The dataset comprises 

images of non-small cell lung cancer from 211 test 

subjects. It consists of computed tomography (CT) 

and positron emission tomography (PET) images. 

Eighty images were from cancer patients, while 40 

images were CT scans from patients without lung 

cancer. For the cancer images, 60 were used for 

training, while 20 were used for testing. For the non-

cancer images, 25 were used for training, while 15 

were used for testing in order to validate the 

network. The decision to split the dataset this way is 

so that approximately 70% of the whole dataset will 

be used for training while 30% for testing and 

validation of the model. 

The proposed PSD approach is to improve the 

capability of the DenseNet to accurately classify 

salient features in the image that identify lung 

cancer.  The improved capability of the L2 norm 

enables fast and accurate specification of the sparse 

matrix, which is used to train the DenseNet. To 

initialize the training of the DenseNet, we begin with 

a learning rate of 0.05 and regularization parameter 

𝜎=0.1. One approach that was taken to improve 

classification accuracy further was to artificially 

expand the training data by displacing the training 

image by one pixel (up or down, left or right). 

Rectified linear units (ReLU) have been used to 

activate neurons in various layers of the DenseNet 

instead of the sigmoid activation function due to 

their generally recognized improved performance 

[4, 5]. 
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5. RESULTS AND DISCUSSION 

The performance of the DenseNet trained using 

sparse images obtained from the proposed PSD 

method is compared to that of seven other well-

known neural network architectures and machine 

learning algorithms, including a deeply supervised 

neural network proposed in [35], deep residual 

learning neural network (ResNet) [36], a 

conventional CNN, and DenseNet without proposed 

PSD. Performance metrics are classification 

accuracy, AUC, and mean of the network 

cost/activation gradient. The results are summarized 

in Table I. From the results obtained, it can be seen 

that the classification accuracy of the proposed 

method is better than the other seven methods. 

 

Table 1. Performance comparison of the proposed 

method with conventional CNN, ResNet, DCNN, 

KNN, SVM, BPNN, and DenseNet over 100 training 

cycles 

NN 

Architecture 

AUC Classific

ation 

accuracy 

(%) 

Mean (±std 

dev) 
𝛛𝐂

𝛛𝛃𝐧
 

Comp. 

time 

(ms) 

Conventional 

CNN 

0.70 88 66.52(±0.21) 208 

ResNet 0.84 92 74.12(±0.07) 176 

Deeply 

supervised NN 

0.79 83 69.19(±0.37) 150 

KNN 0.80 90 73.72(±0.11) 118 

SVM 0.79 92 75.16(±0.18) 160 

BPNN 0.72 87 70.93(±0.26) 190 

DenseNet 0.89 91 81.52(±0.10) 113 

DenseNet+Imp

roved PSD 

0.93 95 89.73(±0.02) 106 

 

Figure 2 shows a plot of validation error 

comparing the proposed enhanced DenseNet 

structure with conventional DenseNet and ResNet; 

50 training cycles (epochs) are considered. With 

each learning step of the neural network, the 

proposed DenseNet performs better than the other 

two structures, thus confirming the results obtained 

in Table 1. From the plot, we can see that the 

proposed method has the lowest validation error. 

This means that the DenseNet is more efficient and 

accurate concerning giving the correct classification 

of the image. For the computational time, the 

proposed DenseNet also gives classification results 

faster than the other seven methods.  

 

Figure 2 – Plot of validation error for ResNet, 

DenseNet, and proposed method over 50 training 

cycles 

 

The effect of adding an extra layer of neurons on 

the performance of the DenseNet in terms of 

classification accuracy and mean of the 

cost/activation gradient was also examined. In 

particular, 5, 10, and 30 neurons were added to the 

hidden DN2, DN3, and DN4 layers of the DenseNet. 

The purpose of this comparison is to establish the 

performance of the DenseNet with L2 regularization 

as well as dropout. As a strategy to improve 

accuracy, we also considered the effect of dropout 

by temporarily removing half of the hidden neurons 

in DN2-DN4 of the DenseNet. The resulting 

network weights and biases were then updated, and 

then the dropout neurons were restored. This process 

is also repeated on a different set of hidden neurons 

within the DenseNet. The results for hidden layer 

expansion and dropout are summarized in Table 2 

and Table 3, respectively. 

 

Table 2. Effect of adding a layer of 5, 10, and 30 

hidden neurons to DN2, DN3, and DN4 of the 

proposed DenseNet 

DN2 DN3 DN4 Classification 

accuracy (%) 

Mean (±std 

dev) 
𝛛𝐂

𝛛𝛃𝐧
 

5 10 30 92 88.68(±0.13) 

5 30 10 96 89.22(±0.16) 

10 5 30 90 78.51(±0.06) 

10 30 5 93 79.25±0.06) 

30 5 10 78 69.85(±0.20) 

30 10 5 81 67.35(±0.15) 

 

Table 3. Effect of dropout on hidden layers DN2, DN3, 

and DN4 of the proposed DenseNet 

Dropout Classification 

accuracy (%) 

Mean (±std 

dev) 
𝛛𝐂

𝛛𝛃𝐧
 

DN2 92 55.83(±0.13) 

DN3 93 79.89(±0.10) 

DN4 93 81.16(±0.08) 
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From Table 2 and Table 3, it can be seen that 

compared to the classification accuracy obtained 

using L2 regularization, the techniques of dropout 

and network expansion of hidden layers do not 

achieve superior performance. In particular, we 

observe that in both cases of dropout and network 

expansion, the performance of the proposed 

DenseNet degrades significantly in terms of both 

classification accuracy and cost/activation gradient 

when modifications are made to DN2. This is likely 

because this layer is the closest to the input layer. As 

a result, the effect of the vanishing gradient problem 

commonly associated with deep neural networks 

[34]. Therefore, overall performance improves when 

modifications (in terms of both dropout and network 

expansion) are done farther away from the input 

layer. The cost/activation gradient 
𝜕𝐶

𝜕𝛽𝑛
 is considered 

here because it provides evidence of degrading 

network performance as information flows from 

input to output. The higher the mean value, the less 

significant the degradation would be from input to 

output.  
 

6. CONCLUSIONS 

From the results obtained, the DenseNet trained 

using sparse images obtained from unsupervised 

improved PSD technique has outperformed seven 

other well-known methods. The improved L2 

sparsity approach ensures that features are selected 

more efficiently to constitute the reduced feature 

map. Also, the optimized DenseNet performance 

using the L2 regularization approach has enabled a 

more efficient selection of network weights and 

biases in successive layers of the DenseNet.  

The classification accuracy of the proposed 

DenseNet is up to 95% compared to the ResNet of 

92% and conventional DenseNet of 91%. The 

reduced parameter set of the DenseNet also ensures 

that it classifies images faster than the other 

structures. The effects of both dropout and hidden 

layer expansion on the performance of the DenseNet 

have also been investigated. While there is no 

specific rule-of-thumb regarding how many neurons 

to add (or remove) and at what stage, it has been 

observed that making significant changes to the 

layer close to the input layer of the DenseNet can 

significantly degrade its performance. In particular, 

using the classification accuracy and cost/activation 

gradient indices, we have observed a classification 

accuracy decline of 3% and 20% respectively for 

dropout and hidden layer expansion. 

This paper has presented a novel approach to 

implementing the PSD for feature selection in digital 

images. A nonlinear operator was also proposed for 

selecting the basis function set for the L2 linear 

operator. The L2 regularization approach for 

DenseNet as optimization also yielded better 

performance compared to both dropout and hidden 

layer expansion approaches. From the results 

obtained, it can be seen that the combination of the 

improved PSD approach for sparse images with the 

enhanced capability of the DenseNet gave better 

performance compared to other methods. To further 

improve classification accuracy, future research will 

focus on using a larger size of training data to 

mitigate the vanishing gradient problem in deep 

neural networks.  
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