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 ABSTRACT In the Long-Term Degradation Management (LTDM) project we approach component ageing 

problems with data-analysis methods. It includes literature review about related work. We have used several data 

sources: water chemistry data from the Halden reactor, simulator data from the HAMBO simulator, and data from 

a local coffee machine instrumented with sensors. K-means clustering is used in cluster analysis of nuclear power 

plant data. A method for detecting trends in selected clusters is developed. Prognosis models are developed and 

tested. In our analysis ARIMA models and gamma processes are used. Such tasks as classification and time-series 

prediction are focused on. Methodologies are tested in experiments. The realization of practical applications is 

made with the Jupyter Notebook programming tool and Python 3 programming language. Failure rates and drifts 

from normal operating states can be the first symptoms of an approaching fault. The problem is to find data sources 

with enough transients and events to create prognostic models. Prognosis models for predicting possible 

developing ageing features in nuclear power plant data utilizing machine learning methods or closely related 

methods are demonstrated. 
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I. INTRODUCTION 

S many Nuclear Power Plants (NPPs) are approaching 

the end of their licensed operational lifetime, 

maintenance is getting more and more important. It is also 

expensive to build new power plants, and many countries are 

giving up NPPs for several reasons. To maintain sufficient 

energy delivery, it is often necessary to keep the plants 

running beyond the initially planned operational lifetime. 

Monitoring ageing effects of critical and safety related 

components at the plant is essential for safe operation in the 

latest phase of operation. 

The Long-Term Degradation Management (LTDM) 

project is studying some of the ageing effects of critical and 

non-critical components at a plant with data analysis. It is not 

easy to get data from real NPPs containing ageing 

information over a long period. Therefore, data sources used 

here are from simulators, real NPPs, and other somewhat 

similar processes.  

Data storage of process data and other sensor 

measurements at NPPs can increase the available data to 

analyse as storage media becomes cheaper and storage 

volumes gets larger capacity. This facilitates data analysis 

with machine learning and big data technologies to extract 

new or previous hidden information from the data. Here we 

have use machine learning methods to extract health 

indicators from events and transient data which can be used 

as input parameters to predictive models. The prognostic 

models are used to estimate the future health condition of 

components. With a few exceptions, degradation of 

equipment is developing gradually and monotonically in one 

direction; towards a deteriorated state. Data can often be 

separated in one part, which corresponds to the physical 

model of the degradation, and a second part which are 

seasonal variations or noise, etc. Preparation of the data is 

usually necessary before applying them to the degradation 

A 
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models, like noise reduction, removal of outliers, feature 

extraction and normalisation of the data sets.  

We have investigated how and if the identification of 

failures and transient over time can be used as health 

indicators. Increased frequency of failures over time may 

finally lead to a poor performance or a broken component. 

The second step, after health indicators have been identified 

and quantified, is to develop the prognostic models that can 

tell us when a component needs to be repaired or fixed before 

it is broken. The use and application of various prognostic 

modelling tools have also been applied to process data. For 

both the classification of events and prognostic analysis 

methods from machine learning libraries have been used. 

II. CONDITION MONITORING OF COMPONENT AGEING 

The components in a nuclear power plant need to be reliable 

and safe. Both mechanical and electrical components need 

attention. It is important to eliminate disturbances and to 

ensure safe and secure operation. 

Most nuclear power plants have a comprehensive testing 

program where the most important functions of components 

are checked at fixed time intervals. Important aspects are the 

systems, equipment and their components monitoring, 

follow-up of statistical events, checking, testing and the 

necessary maintenance actions. It is important to anticipate 

possible events. When potential problems and needs for 

changes are observed beforehand, there is enough time to 

plan and carry out corrective actions without any safety risks 

or production stops. 

Condition Based Monitoring (CBM) is an approach used 

to try to resolve problems in this area. The prediction of the 

Remaining Useful Lifetime (RUL) is needed in planning the 

optimal cycle in various component replacement programs. 

For instance, life-time testing can be used. In accelerated 

life-time tests, component sustainability and lifetime is 

tested in controlled conditions. 

A common model in estimation of component lifetime is 

the bathtub curve [1]. Also, the Weibull distribution [2, 3] is 

used in the estimation of component lifetime. Mostly the 

ageing is a result of combinations of several mechanisms 

such as thermal ageing, electrical strain and effects, and 

mechanical stress [4]. Environmental causes are such as high 

and low temperatures as well as sudden temperature 

variations, humidity, chemical exposure, radiation, pressure 

changes, mechanical and biological impurities such as dust 

and microbes. 

Certain parts of nuclear power plants are more difficult 

to instrument than others. For instance, a reactor tank is a 

very demanding environment for measurements and sensors. 

It is an environment with high temperatures and pressures, 

and radiation as well. 

III. RELATED WORK 

Parts of this work with a little different focus have been 

presented in [5]. There we have focused more on data 

structure analysis, fault detection and identification, and also 

on classification and visualization. In this article we 

concentrate more on prognosis besides clustering and 

classification. The review concentrates on related 

methodologies that we have used in our study, but in some 

extent, it goes into a little broader scope. Some of those 

methods we have explored quite in detail, but we do not 

present the experimental outcomes in this article.  

Related topics in literature are found for instance in 

studies [6-9]. A model is made for the increase in the air filter 

pressure difference during the ageing of a filter [10]. The 

model sums up cumulative, sporadic aerosol emission, 

periodic changes during different seasons of the year and 

error term. The main changing variable during different 

seasons of the year is the air humidity. The goal is to estimate 

the Remaining Useful Lifetime (RUL), which is an important 

measure in Condition Based Maintenance (CBM). 

Prediction of condenser fouling using machine learning 

and visualization techniques is presented and analyzed in 

[11]. Remaining Useful Life (RUL) of choke valves has been 

estimated in [12]. Predictions based on the gamma process 

are carried out in this application in oil and gas industry. 

We have collected some literature works about machine 

learning methods to classify events in nuclear power plants 

component degradation management. Condition-based 

maintenance (CBM) recommends maintenance decisions 

based on information collected in condition monitoring [13]. 

There are two important aspects in a maintenance program: 

diagnostics and prognostics. There are more literature works 

on diagnostics than on prognostics [13]. Prognostic 

methodologies have entered the literature later. We have also 

collected literature works about long-term degradation and 

prognosis of nuclear power plant equipment in long-term 

operation 

Equipment reliability and maintenance affect the key 

elements of competitiveness and security [14]. A proactive 

maintenance approach helps in eliminating failures of 

equipment. Early diagnostics and component replacements 

are needed in planning better maintenance programs. CBM 

is a decision-making strategy based on real-time diagnosis of 

failures and prognosis of future equipment health [15]. 

Nuclear component degradation is identified by time-

frequency ridge pattern in [16]. 

In [17] a probabilistic neural network (PNN) has been 

used in classification of severe accident progression 

scenarios, where the initiating event can be a loss of coolant 

accident (LOCA), total loss of feedwater (TLOSFW), station 

blackout (SBO) or steam generator tube rupture (SGTR). 

Also, a fuzzy neural network (FNN) is used in this study. 

Machine learning algorithms have been used in data 

classification in nuclear power plants, e.g., in [18] and [19]. 

Machine learning is used in prediction [20] and fault 

detection [21] and identification. 

Maintenance-based prognostics of nuclear power plant 

equipment for long-term operation has been studied in [6]. 

Failure times of critical equipment can be predicted taking 

into account potential maintenance actions. Degradation 

level is defined against the observations for components 

whose lifetime can be predicted according to following the 

decreasing tendency of heat transfer coefficient taking into 
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account flush and cleaning [6]. 

In Japan a maintenance strategy and effective ageing 

management program has been developed in Tokyo electric 

power company (TEPCO) including long-term maintenance 

plans [7]. In Korea a long-term asset management strategy 

for refurbishment and replacement of nuclear power plants 

has been constructed [8]. Systematic monitoring and 

proactive measures against ageing mechanism can reduce 

unplanned loss due to failure of large components. Long-

term degradation profiling in time series for complex 

physical systems has been studied in [9]. 

Nondestructive examination (NDE) in detecting material 

degradation precursors before cracking occurs has been 

investigated in [22]. The diagnostic-prognostic process for 

estimating remaining useful lifetime of industrial 

components has been defined in [23] and a taxonomy of 

models is presented including data-driven and physical 

models. Methods for the life expectancy models have been 

examined. 

A survey of applying gamma process in maintenance [24] 

shows that the method is mainly applied to maintenance 

decision problems of single components rather than for 

complete systems. Using ARIMA-based prediction method 

in prognostics of machine health condition has been 

examined in [25]. A neural network approach has been used 

in residual life predictions by using vibration-based 

degradation signals in [26]. Self-organizing map (SOM) and 

back propagation neural network methods are introduced for 

residual life predictions for ball bearings in [27]. Minimum 

quantization error (MQE) indicator is derived from SOM. 

Disposition curves for irradiation-assisted stress 

corrosion cracking based on international data collection 

have been presented in [28]. Simulated stress can be caused, 

e.g., by varying high temperatures or neutron fluence (dose). 

Measures and constants need to be selected. The screening 

can be done from the point of view of fracture, fatigue 

damage or corrosion mechanical damage [29]. 

IV. DATA SOURCES AND ANALYSIS TOOLS 

In the next two chapters we present the data sources used in 

the experiments, the analysis tool that is used for realization 

of our case examples, and the methodology that our 

experiments are based on. The methodology consists of a 

selected variety of advanced data-analysis and machine-

learning technologies complemented with other statistical 

methodologies. 

Data sources used in the experiments of this article are 

the following: water chemistry data from experimental 

nuclear power plant reactor in Halden Norway, simulated 

ageing data from HAMBO simulator of Halden Reactor 

Project, which is using the simulator model from Forsmark 

nuclear power plant in Sweden, and local coffee machine 

data from an instrumented espresso machine in Institute for 

Energy Technology in Norway. All datasets in our 

experiments are normalized. 

The first data source used in the experiments is water 

chemistry data from the Halden reactor. We have named it 

corrosion data. The corrosion data contain 23 variables, 

which are mostly concentrations of ions. The data is in two 

sets. In the first set there are ions including weak acids 

CHOO- and CH3COO-. In the other set there are metals. In 

the experiment in this article we use both datasets. We have 

corrosion data from a two year period and a seven year 

period. In this article we analyze the data including 

measurements from a two year period. 

The second data source used in the experiments is from 

the nuclear power plant model in the HAMBO simulator of 

Halden Reactor Project. The model is Forsmark 3 in Sweden. 

We have four different data sets: an air leak in the condenser, 

normal data, condenser transient data, and a seven year 

period ageing data including a pump failure. In the 

experiments in this article, we have used a seven year period 

ageing data including a pump failure. We have simulated 

ageing data with noise and without noise. There are less than 

one hundred different variables in this simulator data. 

The third data source is local coffee machine data from 

Institute for Energy Technology in Halden. A set of sensors 

have been installed into an old functioning instrumented 

expresso machine. The data includes physical and electrical 

measurements from different parts of the machine including 

heater, pumps, valves, etc. Water and steam flow process has 

one input for water and five outputs for water or steam: two 

for coffee, one for tea, and two for steam. Data is stored with 

0.1 seconds interval, and so the number of measurement 

samples is much larger than in our other data sources. For 

instance, one of the combined datasets in the analysis 

includes about six million measurement samples. In this 

particular dataset there are about 35 measurements. 

More features and characteristics of the datasets used in 

the experiments are described in Chapter 6 in the context of 

analysing the case examples. 

The analysis in this article has been done with the Jupyter 

Notebook programming tool with Python 3 programming 

language. A Spark/Hadoop cluster using several computers 

was tested out to estimate advantages in parallel computing 

in time-consuming tasks. Beta-version of Zeppelin 

Notebook with Python 3 programming language was tried 

out as well. 

V. METHODOLOGY 

In this chapter we present some basic ideas behind statistical 

learning, and how they are utilized in our research work. The 

used methods are shortly presented and discussed. Examples 

of using the methods in the research of ageing of nuclear 

power plant components are presented later in this and the 

next chapters. The topic is focused on long term degradation 

management. One important goal is to use machine learning 

methods in classifying events at nuclear power plants. 

There is a comprehensive set of methodologies available 

in statistical learning [30] that can be utilized in the 

classification of data. The basic elements of supervised 

learning, linear methods for regression, linear methods for 

classification, and model assessment and selection are to be 

studied first. Also, neural methods and unsupervised 
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learning should be mentioned as they certainly belong to the 

group of useful and interesting topics. One taxonomy of 

machine learning is presented in Table 1 [31]. 

K-means clustering [32] is a method for finding clusters 

and cluster centers in a set of unlabeled data. It can be used 

also for classification of labeled data. Cluster analysis is a 

kind of segmentation. It relates to grouping and segmenting 

a collection of objects into subsets or clusters. Within each 

cluster the objects are closely related. Sometimes the goal is 

also to arrange the clusters into natural hierarchy. 

Hierarchical clustering measures dissimilarity between 

groups of observations. K-means clustering algorithm is a 

top-down procedure. We have used unsupervised clustering, 

as opposed to supervised classification where the training set 

is labeled with cluster numbers. 

Normalizing the data helps in getting a suitable fit that 

can produce reliable prediction results. Sometimes it is also 

necessary to shuffle the data before dividing it into training 

set and test set. For handling empty values in data or outliers 

several possible methods have been used. 

Table 1. Machine learning taxonomy. Q-learning is a 

model-free reinforcement algorithm and TD learning 

means temporal difference learning. 

 Machine Learning  

   

Supervised Learning Unsupervised 

Learning 

Reinforcement 

Learning 

   

Classification / 

Regression / 
Estimation 

Clustering / 

Prediction 

Decision Making 

   

Neural Networks K means Q-learning 

Support vector 
machine 

Gaussian mixture 
model 

R-learning 

Bayesian networks Didrichlet process TD learning 

 Mixture model  

 

A method for detecting trends in selected clusters is 

developed and presented. K-means algorithm is used in 

clustering and polynomial fit in visualizing trends and 

predictions for selected variables. Data is normalized before 

clustering, and outliers and empty values are replaced by 

mean values when needed. The possible errors here were 

estimated to be small, almost negligible. Hierarchical 

clustering can also be combined with the trend method. Next 

the procedure of this method is presented in detail.  

A.  METHOD TO DETECT TRENDS IN A CLUSTER 

A method to detect trends in a single cluster is developed. 

First data is normalized and then clustered with K-means 

algorithm. The outliers or missing values are replaced with 

mean values of each variable if needed. After that the desired 

state is defined and selected. In the experiments with 

corrosion data the desired state is normal data. Normal data 

means here data including no higher concentration peaks in 

ions causing corrosion. With other words we mean clean data 

without pollution from maintenance actions. In this our 

experiment the desired state includes only minimal amount 

of corrosion products. 

The cluster index of the desired state is searched. Data is 

converted to a suitable form for each operation. When the 

desired cluster has been identified, new time points are 

produced for it in chronological order, and time series of 

selected variables are plotted separately. From these plots 

potential trends upwards or downwards can be notified. The 

same procedure can be repeated to any other cluster when 

needed. 

Next a polynomial fit is produced and then the trends are 

visualized according to the mathematical result. The 

polynomial fit can be linear (first order) or higher order fit. 

The fit curve can be followed over the last time point as far 

as we want to make a prediction, which is based on the 

mathematical trend calculated from the variable values so 

far. The first order polynomial (linear) fit is mostly used in 

the prediction. 

B.  TIME-SERIES PREDICTION 

Time series is a sequence where metric is recorded over 

regular time intervals [33]. Forecasting is next step where 

you want to predict which future values the series is going to 

take. ARIMA method (AutoRegressive Intgrated Moving 

Avarage) is a forecasting algorithm based on the idea that the 

information in the past values of the time series are alone 

used to predict the future values. 

ARIMA model is a class of statistical models for 

analyzing and forecasting time series data [34]. It is a model 

that uses the dependent relationship between an observation 

and some number of lagged observations. It uses 

differencing of raw observations in order to make the time 

series stationary. The model uses the dependency between an 

observation and a residual error from a moving average 

model applied to lagged observations.  

In our time-series prediction experiments ARIMA model 

[36], Gamma process [37], Gaussian process [38], Random 

forest [39] methods have been used. In addition, some simple 

prediction algorithms have been demonstrated. 

C.  DEGRADATION PROGNOSIS WITH PHYSICAL 
HEALTH INDICATORS 

Physical modeling can sometimes be used in combination 

with machine learning. As an example, machine learning can 

be used to pre-process input data before it is fed to a physics-

driven prognostic models. In our case we have used machine 

learning to identify transients and other events in process 

data which can be used as condition indicators in physical 

models. 

The mechanical degradation of machinery and 

equipment is often handled with time-based replacements of 

machine parts or other condition preserving maintenance, 

like lubrification. In cases where machine parts are relatively 

expensive, or unplanned halts in production represents a high 

safety risk, physical health monitoring (PHM) is needed in 

order to plan for maintenance, or to get spare parts in due 

time before any unplanned break-down of the equipment. 

Typical measurements being monitored are, e.g., vibration of 
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rotating machinery, the temperature in bearings or the 

change of conductivity in a conductor. These measurements 

are called physical health indicators. Sometimes the health 

indicators cannot be measured directly but are calculated 

from other measurements that each cannot individually be 

used effectively to measure the degradation. In some cases 

there are no measurements available, and the rate of 

degradation is determined from visual inspection and given 

a score from a predefined scale. 

For normal wear and tear, the degradation trend is 

monotonically increasing or decreasing, depending on what 

physical health indicator is being monitored. 

One of the physical modeling methods we have used is 

gamma processes [35]. In degradation phenomena, the health 

indicators, or condition indicators, makes small incremental 

changes over time. The incremental changes will be gamma 

distributed. It is a one-way process, and degradation trends 

are therefore always monotonically increasing or decreasing 

(with a few exceptions). 

Gamma processes are often used to estimate remaining 

useful life of components undergoing degradation because 

the method requires the estimated function to include the 

last, and most up-to-date, measurement and requires a 

monotonic behavior of the data. Measurements or 

computation of the degradation process may not always be 

monotonic. Therefore, the data needs to be pre-processed 

with, e.g., machine learning or averaging algorithms before 

being used in the prognostic models. The mathematical 

expression and equation for the gamma process used in our 

experiments is [5]: 

 

𝑓𝑌(𝑡)(y) =
𝑢𝑣(𝑡)

Γ(𝑣(𝑡))
𝑦𝑣(𝑡)−1𝑒−𝑢𝑦,            (1) 

 

where u is a constant scale parameter, v(t) is a monotonically 

increasing, positive defined, right-continuous, real-valued 

function with initial condition v(0)=0 and Γ is the gamma 

function. The expectation value is 𝐸(𝑌(𝑡)) = 𝑣(𝑡)/𝑢. 

VI. RESULTS 

In [5] we have presented case examples about using Principal 

Component Analysis (PCA) in differentiating failure data 

from normal data, and in separating operational stages in 

process data. In the latter example K-means clustering is 

combined with PCA. The data sources in these examples are 

from Loviisa nuclear power plant in Finland and from 

HAMBO simulator of Halden Project using Forsmark 

nuclear power plant (in Sweden) model. It was necessary to 

add noise to the simulator data to visualize the data densities 

in the transient scenario. 

In [5] we showed with the case examples how to detect 

anomalies, structures and possible developing ageing 

features in nuclear power plant data with machine-learning 

methods. In this article we concentrate more in prognosis. 

PCA is powerful tool in data structure detection, but the 

difficulty is to connect the possible faults to certain 

components. PCA loadings somewhat help in this issue. 

PCA method is efficient especially with big datasets. 

In the next subsections we present experiments to 

demonstrate how our proposed methodology works in 

practical examples. Three case examples include prognostics 

models to achieve certain goals in predicting near future 

behaviour. 

A.  TRACEING CORROSION 

The goal in the first experiment is to trace or observe 

corrosion in nuclear power plant water chemistry data. We 

have developed a method using well-known algorithms and 

programmed a procedure, performing also all the required 

operations on data to carry out this task.  

In the first case example we present here a method to find 

trends in a single cluster. The data is from water chemistry 

analysis from the Halden reactor as explained in Chapter 2. 

In the primary circuit and the secondary circuit of Halden 

reactor the water is purified, and the concentration of all 

minerals and other pollutants is much smaller than in 

ordinary water. The concentration of Cl- and SO4
2- ions is the 

main cause for corrosion and cracking. 

Mostly an increase of concentration of these particles 

occurs after manual maintenance operations, and the 

pollutants probably come from the cooling water of pumps. 

Regular cleaning operation is carried out after an increase of 

pollutants. These effects are seen in the data as peaks (up and 

down) in all detected concentrations. 

The concentrations of the metals in the water are kind of 

corrosion products and they have strict connection to the 

corrosion effect. The most important metals in this context 

are in the importance order Fe, Cr, Ni and Cu. The iron 

concentration is measured with two different methods. These 

concentrations tend to increase after certain maintenance 

actions. Fe, Cr and Ni all come out from the same material – 

steel, and therefore it would be logical that they would 

somewhat correlate.  

In Fig. 1 the normal data cluster (light-green colour dots) 

is in the down-left corner. The other clusters represent 

concentration peaks for both variables after maintenance 

actions (dots in dark blue and blue colours) and the delays 

before returning to normal stage (dots in purple and yellow 

colour). In the clusters nearest to the normal data smaller 

maintenance peaks can be included. All values in Fig. 1 are 

normalized. As the water is purified, the amounts of 

concentration are mostly relatively small. 

The concentration unit in the original data is ppb (part-

per-billion meaning American billion 109). With iron (Fe) 

ions the value range is between 0…10 including the 

maintenance peaks. With sulfate ions (SO4
2-) the normal 

value range is between 0…20, and the highest values in the 

maintenance peaks around 50. 
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Figure 1. Scatter plot of iron and sulfate concentrations 

clustered into five clusters with K-means algorithm (upper 

plot) and polynomial fits of several orders for normal 

cluster iron concentration (lower plot) in two years 

corrosion data. 

The scatter plot of iron concentration and sulfate 

concentration is clustered into five clusters with K-means 

algorithm, see Fig. 1 (upper plot). The labeled normal data 

cluster is identified from the whole dataset and the samples 

are picked up in chronological order and plotted into a time 

series plot. A linear fit and other low order polynomial fits 

are calculated to the time series to find out possible trends in 

this part of data, see Fig. 1 (lower plot). Especially the linear 

fit can be used in short term prediction of the becoming data 

points in near future. From the calculated trends we cannot 

make any strong conclusions about corrosion. We made 

similar experiments with a seven year period corrosion data, 

but no significant difference was noticed compared to a two 

year period data examined here. The reason why we present 

results experimented with a two year period data is that a 

seven year period data included more values that could be 

considered outliers at least in sense of visualizing the results. 

B.  TIME-SERIES PREDICTION WITH ARIMA MODEL 

In the second experiment we make long-term forecasts for 

ageing related variables or variables that behave somewhat 

in a similar manner. We have tried out several advanced 

prognosis methods, and after comparison we present the 

most promising ones. The data sources in these presented 

experiments are ageing data from HAMBO simulator of 

Halden Reactor Project including gradually developing 

pump failure and from local experimental coffee machine as 

explained in Chapter 2. 

Times-series prediction has been experimented with 

several methodologies beginning with simple algorithms 

such as naïve forecast, simple average forecast, moving 

average forecast, etc. Also, polynomial fit including 

prediction has been tested. From a little more sophisticated 

methodologies ARIMA model (AutoRegressive Integrated 

Moving Average), Gamma process, Gaussian process and 

Random Forest algorithm have been used. Most reliable and 

promising results in time series prediction were got with 

ARIMA model. 

 

 

Figure 2. ARIMA model step-by-step prediction for a pump 

mass flow in simulated ageing data with comparison to the 

test set. 

ARIMA model performs well in one-step ahead 

predictions updating the history on every time step. 

Especially with larger amount of data this kind of prediction 

is very accurate. The characteristics of this kind of model is 

on-line prediction, which is always not suitable approach. 

It is possible to use ARIMA model also for predicting 

more time steps in one time. In this article ARIMA model is 

used in such off-line prediction. Effects of varying different 

parameters in the ARIMA model are also tested out. 

In Fig. 2 ARIMA model one-step ahead prediction of a 

pump mass flow in simulated ageing data is shown. In Fig. 3 

comparison of different solver methods in ARIMA model is 

seen. Root mean square error and CPU time are measured for 

the prediction in Fig. 2. In this experiment the training set 

includes 2059 samples and the test set 500 samples (19.5% 

of the data). 

The solver methods in the Fig. 3 are the Broyden–

Fletcher–Goldfarb–Shanno (BFGS) algorithm (bfgs), 

limited-memory BFGS (lbfgs), Newton’s method (newton), 

Tiger algebra solver (nm), conjugate gradient algorithm (cg), 

nonlinear conjugate gradient algorithm (ncg) and Powell’s 

conjugate direction method (powell). 
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Figure 3. Comparison of different common solver methods 

in ARIMA model prediction. The differences in the RMSE 

(root mean square error) values are small, but in CPU time 

used in the calculations remarkable variations can be 

noticed. 

In Fig. 4 a longer-term prediction for a pump mass flow 

in simulated ageing data is presented. Training set and test 

set are in the same figure with the prediction including ±10% 

confidence interval. The ARIMA model succeeded better in 

this task than Gamma process or Gaussian process. 

 

 

Figure 4. Longer ARIMA model prediction and comparison 

with test set for a pump mass flow in the simulated ageing 

data. The final value of the test set is well inside of the 

±10% confidence interval of the ARIMA model prediction. 

The division into training set and test set is the same as 

in the example in Fig. 2, so test set includes 19.5% of the 

data. The long forecast includes 500 time-steps. The mean 

value of the training set (normalized values) is 0.393 and the 

standard deviation of the same set is 0.027. The last point in 

the forecast is 0.323. The prediction error is about 2%. 

Similar longer ARIMA model prediction for a 

temperature in coffee machine data is presented in Fig. 5. 

Mean square error is calculated and displayed as well. In this 

figure the data is normalized as well. In this task the ARIMA 

model performed better and more reliable prediction than 

Random Forest (RF) method. Here the test set includes 

100000 samples (17% of the data). The long forecast 

includes 100000 time-steps. The prediction error is 

under 2%. 

 

 

Figure 5. ARIMA model prediction for the test set of the 

temperature before feedwater pump in the coffee-machine 

normalized data including calculated Mean Square Error 

(MSE) for the deviation between test set and forecast. The 

confidence interval here is ±10%. 

As there no prior, no comparison to baseline is done. 

There are multiple measures of accuracy of the model fit, 

such as ME, MAE, RMSE, MPE, MAPE, MASE, etc. All 

indicators are aggregations of two types of error: bias (wrong 

model, accurate fit) and variance (right model, inaccurate 

fit). In the metrics of solver methods RMSE is used. 

The chosen ARIMA model structure comes from a 

python library, see the first line in Fig. 6. In the same figure 

it is seen a python code of the basic lines of long ARIMA 

forecast. Somewhat similar structure is used in the other 

ARIMA model examples as well. In the solver comparison a 

little more complex code structure is needed. In Table 2 there 

are listed the ARIMA model parameter values used in our 

experiments. 

 

 

 

Figure 6. Python code example of the ARIMA model 

structure in long forecast. 

from statsmodels.tsa.arima_model import ARIMA 

# 

model1 = ARIMA(x1_train1, order=(5,1,0)) 

model1_fit = model1.fit() 

output1 = model1_fit.forecast() 

forec1 = model1_fit.forecast(steps=500)[0] 
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Table 2. ARIMA model parameters used in the 

experiments: order parameters p (lag order), d (degree 

of differencing), q (order of moving average), and two 

other parameters. Corresponding examples are seen in 

Figures 2-5. Symbol f is mass flow and T is temperature 

in the table. 

 order: p order: d order: q disp trend 

pump 

failure f 

step-by-step 

5 1 0 default default 

pump 

failure f 

solvers 

4 1 0 False default 

pump 

failure f 

long 

forecast 

5 1 0 default default 

espresso T 

long 

forecast 

5 1 0 default default 

C.  GAMMA PROCESS 

In the third experiment we apply gamma process in 

forecasting remaining useful lifetime (RUL) for a simulated 

pump. The pump mass-flow data visualized in Fig. 2 was 

also applied to a gamma process predictive algorithm. 

Continuously degrading processes with small incremental 

difference from previous measurement will usually be 

gamma distributed. Hence, gamma processes can be used to 

make prediction on monotonically increasing and decreasing 

functions. The pump mass-flow data has some noise that is 

eliminated by averaging the data over rather long-time 

sequences and thereby making the function monotonic 

increasing. The scaling of the parameters in this case is 

different than in Fig. 2. 

The gamma process determines the parameters for a 

power-law function fitted to the measurement data, see 

Fig. 7. The parameters for the power law function y= 𝑐𝑡𝑏 

was estimated to c = 0.5044 and b = 1.3744. Here t is the 

time and y is the condition indicator. It is a requirement that 

the physical constants c > 0 and b > 0. In this case, the gamma 

process is linear and stationary if b = 1, non-stationary 

concave and convex if b < 1 and b > 1, respectively When  

b = 2 the form of the degradation curve is parabolic and if  

b = ½. The form of the degradation is like a square root 

function.  

The point in time the estimated function crosses the 

failure threshold marks the estimated end of life (EoL) for 

the pump. The failure threshold used in this case is estimated, 

since there were no prior data about when the pump will fail. 

The time span from the last calculation to the EoL is the 

component’s remaining useful life (RUL). RUL is then the 

remaining time before the component needs maintenance or 

will stop working properly. A 95% confidence interval is 

added on both sides of the predictive function from EoL. 

 

Figure 7. Gamma process forecast for the condition 

indicator in simulated pump failure data. The yellow colour 

line is the measurement data and the green colour line is the 

predicted function with 95% confidence level added in gray 

colour from EoL. 

VII. DISCUSSION 

The focus in this article is on prognosis of ageing related 

phenomena, and somewhat also clustering and classification 

of data. One aim is also to visualize possible developing 

ageing features in nuclear power plant data by using machine 

learning algorithms, and some closely related methods. After 

introducing the problem domain, some component ageing 

issues are shortly discussed and literature about related work 

is examined. In this chapter we do some analysis and 

comparison of our work and related studies. 

One of the very basic themes in this work is Condition-

Based Monitoring (CBM) and Remaining Useful Lifetime 

(RUL). In earlier work done in the Halden Project and at IFE 

the RUL concept is discussed also in [10] and in [12]. 

Principal Component Analysis (PCA) has been the main 

method for dimensionality reduction in [5] and it was used 

in data structure exploration as well.  

In [6] heat-transfer coefficient variable is used to help 

estimate the component lifetime. It is a roughly 

monotonically decreasing function, and therefore the 

challenge is mostly in defining the threshold for a 

recommended component replacement or repair. Regular 

cleaning is slowing down this development process and need 

to be taken into account in calculations. We were planning 

to use a similar idea in our prognostic studies in future. Our 

gamma process example already approaches this research 

ideology. 

In [25] ARIMA model is used in prognosis of health 

condition. This idea relates to our health-index philosophy, 

and we have also used the ARIMA model successfully in our 

time-series predictions. 

Differences between used methodologies and their 

applicability and advantages in our purposes with data 

available were discussed in Chapter 6 about practical 

applications. K-means clustering functions well in our 
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experiments, and therefore there has not been a need to try 

other clustering methods such as Learning Vector 

Quantisation (LVQ) algorithm [30]. More testing of 

developments in new directions could be done though. 

Adaptive Nearest Neighbourhood method is proposed for 

challenges with high dimensionality. Association rule 

analysis could be useful for us as well. 

Self-Organizing Map (SOM) [40] method is sometimes 

described as constrained K-means clustering. Multi-

dimensional scaling and principal curves are often compared 

with SOM method, and could be tried out as well. 

In Sensors Journal somewhat similar topics are discussed 

in [41] and [42]. In [41] machine learning and deep learning 

techniques are used with large datasets for extracting 

relevant information and making predictions. In [42] 

machine learning methodology is utilized in automatic 

teaching of several different motion activities. 

In data grouping and classification common 

methodologies have been used. There exists a large variation 

of other potential options. For instance, neural networks 

offer interesting options to be used in our experiments in the 

future. Unsupervised learning and supervised learning in 

general deserve also more attention. 

Time-series prediction is one of the main focus areas in 

this article. In general, this field is widely studied and a well-

known area. We are working in developing more reliable and 

accurate prognostics models for component lifetime and 

remaining useful operation time. 

A computing procedure to select and analyse single 

clusters was developed. The procedure utilizes rather 

common methodologies such as K-means clustering and 

polynomial fit to reveal potential trends in some central parts 

of the data. In addition, the procedure includes all necessary 

data operations needed in our experiments. The method 

works well in principle, but with this data we did not manage 

to prove corrosion effects, because the notified variations 

were in too small scale to be significant. 

The health index is an important concept in our work. 

The dataset can be large, diverse and complex. The basic 

approach is to collect health indicators such as maintenance 

logs, technical reports, and measurements and to calculate 

the frequency of process condition states, transients and 

incidents from process data using machine learning 

techniques. A suitable combination of methodologies and 

tools comprise a plausible environment where, e.g., failures 

and transients can be detected and analysed. 

A methodology we have not yet used for the ageing data 

is Kalman filters. Kalman filters is a common and popular 

method used for predictive modelling. Kalman filters require 

a model apriori. This filter takes into account, the 

measurement noise, process noise and minimizes the 

prediction error upon continuous cycles of prediction and 

filtering. 

There can be some stabilizing problems using Kalman 

filter, like the covariance matrix of the Kalman filter can run 

into non-positive semi-definiteness over time and detecting 

outliers is more complicated. This filter is able to take into 

account the variance of the initial estimate of the state and 

the variance of the model error. It provides information about 

the quality of the estimation by providing the variance of the 

prediction error. The Kalman filter is well suited for online 

digital processing but requires some computational power. 

The Jupyter programming tool and Python programming 

language have been used in the experiments. This tool 

proved to be rather convenient and practical in our 

experiments. Larger review of applicable methods and tools 

is a part of our project plan as well as identification of 

applicable events. Safety critical components present a focus 

area. We also experimented with Zeppelin Notebook 

environment, which is also a promising tool for data analysis. 

We have also tested a cluster environment in parallel 

computing in time consuming tasks. 

In our application examples well-known data-analysis 

methods are mostly used, and the merit of the work comes 

more from utilizing a carefully selected set of methods to this 

new application area in our problem domain, and the 

emphasis of the work has not been in developing new 

methodologies or algorithms. In addition, we have developed 

a procedure to detect trends in clusters by combining cluster 

analysis, polynomial algorithms and computed necessary 

data operations as mentioned earlier. 

There has been some gap between our analysis and long-

term degradation, which is due to lack of appropriate data. 

Simulated ageing data has been one important step to fill this 

gap. By analyzing and visualizing anomalies, we approach 

this goal. Validation of used methodology will become 

easier, when we get data including faults and the fault history 

of the whole lifetime of a certain component. 

We are heading to get more data to investigate ageing 

related issues in a later phase of the project. We are waiting 

for more comprehensive water chemistry data, data from 

pump failures, steam generator vibrations and crack 

development in a reactor tank. We have already analyzed 

simulated data of slowly developing ageing issues of pumps 

and generators measured as increasing vibrations to increase 

our capability to conduct similar analysis of real data. 

Before we can give more solid recommendations about 

component ageing issue, we need more data and especially 

data with quality characteristics with respect to observed 

phenomena. We have already been able to show, e.g., how 

to differentiate anomalies in data with different classification 

methods. 

VIII. CONCLUSION 

We presented the problem domain, discussed about ageing, 

and reviewed related literature. We showed the most suitable 

data sources available, development tools used in our work 

and chose the methodologies. The methodologies were 

tested in experiments, where we demonstrated, e.g., 

prognosis models based on classification. We applied and 

presented prediction models and got promising results. The 

main contributions of our work are in structure visualization, 

anomaly detection, classification-based prognosis models, as 

well as other prediction models and their results. We also 
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presented a new approach to visualization of corrosion data 

connected to the method detecting possible trends showing 

potential marks for corrosion. 
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