

VOLUME 20(2), 2021 165

Date of publication Jun-28, 2021, date of current version Aug-08, 2020.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209

Online ISSN 2312-5381

DOI 10.47839/ijc.20.2.2163

Genetic-Based Task Scheduling
Algorithm with Dynamic Virtual Machine

Generation in Cloud Computing

AHMED A. A. GAD-ELRAB1,2, TAMER A.A. ALZOHAIRY2, KAMAL R. RASLAN2,
FAROUK A. EMARA2

1King Abdulaziz University, Jeddah, Saudi Arabia (e-mail: asaadgad@azhar.edu.eg) (www.kau.edu.sa)
2Department of Mathematics and Computer Science, Faculty of Science, Al-Azhar, University – Cairo, Egypt

(e-mail: asaadgad@azhar.edu.eg, tamer@azhar.edu.eg, kamal_raslan@yahoo.com, aly_emara86@azhar.edu.eg) (www.azhar.edu.eg)

Corresponding author: Ahmed A. A. Gad-Elrab (e-mail: asaadgad@azhar.edu.eg).

 ABSTRACT Recently, cloud computing has become the most common platform in the computing world.

scheduling is one of the most important mechanism for managing cloud resources. Scheduling mechanism is a

mechanism for scheduling user tasks among datacenters, host and virtual machines (VMs) and is an NP

completeness problem. Most of existing mechanisms are heuristic and meta-heuristic methods, developed to

address a part of scheduling problem and did not consider the dynamic creation of VMs by taking into account the

required resources for a user task and the capabilities of a set of available hosts. To deal with this dynamic behavior,

this paper introduces a new mechanism that uses a genetic algorithm (GA) for establishing a flexible scheduling

mechanism that can adapt the dynamic number of VMs based on the required resources by user tasks and the

available resources of hosts. Simulation results show that the proposed algorithm can distribute any number of

user tasks on the available resources and it achieves better performance than existing algorithms in terms of

response time, makespan, FlowTime, throughput, and resource utilization.

 KEYWORDS task scheduling; makespan; virtualization; virtual machine; dynamic creation.

I. INTRODUCTION

LOUD computing (CC) is defined as the collection of

computing and communication resources over the

distributed datacenters and is shared by different users [1].

Datacenters in many physical servers are linked with high

speed networks and ready for computing services by

responding to specific requests and supporting multiple

virtual machines (VMs) by dedicating to different tasks for

each. The VMs run a task and when the task is completed or

allocated to another task, it shuts down [2, 3].

In cloud computing, virtualization of resources is one of

its characteristics, which is a backbone of cloud computing.

It is another key technology and it allows creating a large

number of less powered servers for a small number of high-

powered servers while maximizing resource utilization

efficiency and reducing the overall cost in power, space and

other infrastructure by improving physical resource sharing

[4]. Virtualization depends on less physical and more logical

view of resources by isolating the storage and computing

services away from the details of implementation. If there is

any failure in a physical server for a certain reason, this

server can be dropped from the pool of available resources.

In this case, selecting other physical servers for deploying

VMs until the failure is corrected and established (this

process called migration). This dynamic migration process

improves the service availability which will be attractive for

many users. Uninterrupted service is one of the advantages

of using cloud computing [5] that is needed to manage

physical and virtual resources. Scheduling physical and

virtual resources plays a vital role in resources management

of cloud computing. Formally, scheduling tasks on VMs or

scheduling VMs on physical resources to achieve the

objective of a provider or a user such as load balancing,

C

 Ahmed A. A. Gad-Elrab et al. / International Journal of Computing, 20(2) 2021, 165-174

166 VOLUME 20(2), 2021

resource utilization, energy efficiency, migration of tasks,

Quality of Service (QoS) or another objective is important

[6]. Datacenter broker is one of the main components in

cloud computing environment which is the backbone of

scheduling process [7]. The first process in scheduling is

discovering and filtering of resources where datacenter

broker discovers all available resources in the network and

collects the related information status to them. The second

process is resource selection, where required resource is

selected using certain parameters of resources and a task.

The final process is the task submission, where the selected

resource receives the submitted task.

Generally, there are two main approaches which are

introduced for performing scheduling in cloud computing.

The first approach is task scheduling on VMs, which

determines the efficient VM for executing the task. The

second approach is scheduling VMs on physical resources

which is finding the optimal allocation of VMs on the

physical servers available in the datacenters. The simplest

and trivial algorithm to scheduling resources is the First-

Come-First-Serviced, FCFS (instead called, First-In-First-

Out, FIFO). This algorithm depends on the arrival time of

requesting a resource. It does not consider the execution time

of a task or a resource utilization and selects the resources

randomly. Also, a task may wait for a very long time to be

submitted to a virtual machine. This means that the

starvation problem can occur, which is one of the big

problems for task scheduling in cloud computing. Round

Robin (RR) is another method in cloud computing, which

depends on VM that will execute its tasks based on a time

interval called quantum. RR can solve starvation problem,

but it does not consider the objective of a user or a cloud

vendor, for example, minimizing the execution time or the

load on resource and it selects the resources randomly [8].

In recent years, a lot of studies have been appeared to

schedule tasks on VMs [9-16]. The main goal of these

algorithms is searching for the solution that minimizes the

execution cost and makespan by using intelligent approaches

such as Genetic algorithm (GA), chaotic social spider

algorithm (CSSA), ant colony optimization (ACO), fuzzy

theory, Simulated Annealing (SA), particle swarm

optimization (PSO) or hybrid algorithm. Nevertheless, they

did not consider some important parameters such as time

complexity of the algorithm and some tasks may be assigned

to VM that does not have the minimum execution time for

them. Other studies have appeared to schedule VMs on

physical resources [17-19]. The main objective of these

algorithms is searching for the solution that minimizes the

wastage rescues, maximizes rescue utilization and achieves

load balancing.

Disadvantages of these algorithms are: (1) the VMs is

created based on the total available power processing in the

hosts of the cloud (like processing cores, processing speed

and memory) and (2) they did not take into account the

required resources for user tasks.

This paper proposes a new algorithm for solving the

scheduling problem in cloud computing to schedule VMs

which are created dynamically on the cloud based on the

available resources of hosts and the required resources for

each task by using modified genetic algorithm (GA).

II. RELATED WORK

While task scheduling algorithms are focused on the

performance efficiency, VM scheduling algorithms are

focused on the resource utilization efficiency of a cloud.

Meta-heuristic and Heuristic techniques were developed for

solving scheduling problem in cloud computing, which is an

NP-completeness problem. In [20], the First In First Out

(FIFO) algorithm for resources scheduling depends on the

arrival time of the requesting resource task (first task arrived

will be submit first). Also, Longest Job First (LJF) and

Shortest Job First (SJF) are scheduling algorithms. SJF

algorithm sorts tasks based on the number of instructions of

each task in ascending order and submits the task to a

resource based on the shortest order (the first task in the order

will be submitted first), on the other hand, in the Longest Job

First (LJF) algorithm, the last task in the order will be

submitted first. The main problem of SJF, LJF and FIFO

algorithms is that they do not consider the objective of a user

or a cloud vendor, so these algorithms are useless, for

example, minimizing execution time or load on a resource in

the cloud homogeneous environment (the same number of

instructions of each task and the same processing power of

VM). Also, in SJF, LJF and FCFS algorithms the resources

are selected randomly, and the task may wait for a very long

time to be submitted to a virtual machine. This means that

the starvation problem can occur, which is one of the big

problems of task scheduling in cloud computing. Another

algorithm in cloud computing is called Round Robin (RR)

which depends on VM that will execute its tasks by using a

time interval called quantum. This algorithm solves

starvation problem, but it does not consider the objective of

a user or a cloud vendor [8]. Fang et al. [21] proposed a

scheduling task approach based on load balancing in cloud

computing where the VM is described according to the

needed resources for executing a task. Next it sorts the hosts

in ascending order based on their processing power. Then

VM selects a host that can provide the required resources and

the load is lightest. Finally, if a task has been completed, the

VM will be destroyed. Disadvantage of this work is creating

VM for each task which is over head time. Also, if the

resources that are needed to deploy VM in host are not

available, then the VM waits for the second scheduling,

which does not make it possible to achieve the objective of a

user. Sindhu and Mukherjee [9] introduced two scheduling

methods to schedule tasks, Shortest Cloudlet Fastest

Processing Element (SCFP) and Longest Cloudlet Fastest

Processing Element (LCFP). In LCFP, the task that has a

large number of instructions is mapped to VM that has high

computation power for minimizing the makespan. In SCFP,

the task that has a small number of instructions is mapped to

Ahmed A. A. Gad-Elrab et al. / International Journal of Computing, 20(2) 2021, 165-174

VOLUME 20(2), 2021 167

VM that has high computations power for reducing

FlowTime (completion time summation of a set of tasks).

LCFP can minimize makespan but some tasks will be

assigned to VM that does not have the minimum execution

time for them, while SCFP can minimize FlowTime but

maximizes makespan and decreases resource utilization.

Also, LCFP may face starvation problem. Alworafi et al.

[16] introduced Hybrid-SJF-LJF (HSLJF) algorithm which

combines LJF and SJF algorithms. HSLJF sorts the tasks in

ascending order, then selects one task based on SJF and

another task based on LSF. Finally, the selected task is

submitted to select VM that has minimum completion time.

The main problem of HSLJF is its useless in the cloud

homogeneous environment and the characteristics of VM

(like processing speed, processing cores and memory) do not

depend on the required resources for each task of a user.

Applying an optimization technique may help to find the

solution to task scheduling problem in cloud computing.

Many of intelligent approaches were developed to obtain

optimal solution. Zhao et al. [10] proposed an optimized

algorithm by using GA for scheduling independent tasks to

minimize the execution time. It can minimize makespan and

dead line time, but some tasks will be assigned to VM that

does not have the minimum time for executing them. Also,

the characteristics of VM do not depend on the required

resources for each task of a user. Jena [12] used nested

Particle Swarm Optimization for optimizing processing time

and energy. The disadvantage of this algorithm is a time

complexity. Also, the characteristics of VM do not depend

on the required resources for each task of a user. Arul Xavier

and Annadurai [14] proposed algorithm called chaotic social

spider algorithm inspired (CCSA) which uses social spider

for solving the problem of task scheduling. The objective of

CCSA is minimizing makespan with effective load

balancing. The disadvantage of CCSA is that VM is not

selected according to the resources that are needed by a task

and a time delay for each searching agent (SA) for sending

and receiving data to others. In addition, each SA is a

computing agent which consumes computing capability of

cloud computing. Also, time complexity of algorithm is

ignored. Nasr et al. [22] introduced efficient technique by

converting the problem of scheduling task into an instance of

the Traveling Salesman Problem (TSP), then applied one of

TSP solution strategies to solve the problem. The

disadvantage of this technique is that VM is not selected

according to the resources that are needed by a task.

Most of current techniques can solve a part of the

scheduling problem efficiently, but they are unable to solve

all aspects of the problem. For example, they can minimize

makespan, but some tasks will be assigned to VM that does

not have the minimum execution time for them. Also, they

cannot determine the idle number of VMs on idle hosts and

idle cores of VMs or hosts, which will decrease resource

utilization. In addition, some of them did not consider certain

important parameters as time complexity of the algorithm.

III.TASK SCHEDULING PROBLEM IN CLOUD
COMPUTING

A. PROBLEM DESCRIPTION

Cloud computing environment is a heterogeneous

environment where the tasks of users are different in a

number of instructions, input data, output data, etc. So, the

required resources for each user task are different. Also,

these tasks may be dependent or independent, the number of

available hosts in datacenter are different, and each host has

multiple core processors and the total available processing

power of each host (like processing cores, processing speed

and memory) are not the same. Virtualization is a backbone

of cloud computing system, where tasks of users distributed

on VMs are deployed on hosts. The characteristics of VMs

(like processing cores, processing speed and memory) are

different. VMs are deployed on hosts based on the total

available processing power of each host. So, we are facing

the problem of distributing tasks on VMs and deploying

VMs on hosts, such that the number of VMs and the

characteristics of VMs should depend on the required

resources for the tasks of the users and the required resources

of VMs that can be provided by hosts. Creating VMs based

on the required resources for the tasks of the users may not

only be deployed on hosts (required resources of VMs cannot

be provided by hosts) or may be deployed with idle number

of cores in hosts (wastage resources). Also, creating VMs

based on the available resources in hosts may generate

several VMs that are more than the number of tasks, this

means that there is an idle number of VMs or a few VMs

cores and it is more than the number of required cores for the

tasks of the users. In addition, the system performance is

optimized or the time consumption for processing tasks of

users is minimized (objective of users). Furthermore,

maximum time consumption for executing all tasks is

minimized (objective of cloud vendor).

As a result, there are two scheduling approaches to using

cloud computing. The first approach is scheduling the tasks

of users to VMs and the second approach is scheduling VMs

to host resources. To achieve the objective of a user, the

characteristics of VMs are based on the required resources

for each user task, but the VM may require resources which

cannot be provided by the hosts. On other hand, to achieve

the objective of a vendor, the characteristics of VMs are

based on available processing power in the hosts but tasks

may need resources that cannot be provided by the VMs. In

two cases, there are idle resources of VMs or host.

B. PROBLEM FORMULATION

In cloud computing system there is a set of clients (users),

U ={u1,u2,.......,un} and each user, ui has a set of tasks,

Ti ={ti1,ti2,...,tim}, where {1,2,.....m} are the identifiers of tasks

called the id of a task which is unique for each task. Assume

that there is a set of objectives for

usersOU = {ou1,ou2,...,oun}. Also, there is a set of

distributed datacenters D={D1,D2,....Dl} and each datacenter,

Dj has a set of physical resources PRj={Rj1,Rj2,...,Rjy} where

{1,2,.....y} are the identifiers of physical resources and each

 Ahmed A. A. Gad-Elrab et al. / International Journal of Computing, 20(2) 2021, 165-174

168 VOLUME 20(2), 2021

identifier (id) is unique for each physical resource. For each

physical resource Rjk in PRj, there is a set of virtual machines,

VMjk = {𝑣𝑚1
𝑗𝑘

, 𝑣𝑚2
𝑗𝑘

,....., 𝑣𝑚𝑧
𝑗𝑘

} will be deployed to obtain

the objectives of a user or the objectives of a cloud vendor,

where {1,2,.....z} are the identifiers of VMs and each

identifier is unique for each vm.

Many parameters need to be considered to achieve the

objectives of a user (e.g., completion time, cost, and response

time) or the objective of a cloud vendor (e.g., resource

utilization, fault tolerance, and power consumption). For a

task, tis of a user ui, assume that the arrival time, the started

execution time on 𝑣𝑚𝑥
𝑗𝑘

, and the waiting time (i.e, the

interval time elapsed between the starting execution time and

the arrived time) are denoted as 𝑎𝑡𝑖𝑠, 𝑠𝑡𝑖𝑠,𝑥
𝑗𝑘

 and 𝑤𝑡𝑖𝑠

respectively. The waiting time wtis is calculated as follows:

𝑤𝑡𝑖𝑠 = 𝑠𝑡𝑖𝑠,𝑥
𝑗𝑘

− 𝑎𝑡𝑖𝑠, (1)

where 1 ≤ i≤ n, 1 ≤ s ≤ m, 1 ≤ j ≤ l, 1 ≤ k ≤ y, 1 ≤ x ≤ z.

Assume that the execution time of task tis, which is the

expected interval time elapsed to execute task on virtual

machines 𝑣𝑚𝑥
𝑗𝑘

 is represented by 𝑒𝑥𝑡𝑖𝑠,𝑥
𝑗𝑘

. And assume that

the completion time of task tis, which is the expected time for

task finished execution is represented by 𝑐𝑡𝑖𝑠,𝑥
𝑗𝑘

. If the tasks

of users are independent, then the completion time of a task

𝑐𝑡𝑖𝑠,𝑥
𝑗𝑘

 is calculated as follows:

𝑐𝑡𝑖𝑠,𝑥
𝑗𝑘

= st𝑖𝑠 + 𝑒𝑥𝑡𝑖𝑠,𝑥
𝑗𝑘

, (2)

where 1 ≤ i ≤ n, 1 ≤ s ≤ m, 1 ≤ j ≤ l, 1 ≤ k ≤ y, 1 ≤ x ≤ z. If the

scheduling is non-preemptive and tasks of users are

dependent, then 𝑐𝑡𝑖𝑠,𝑥
𝑗𝑘

 is calculated as follows:

𝑐𝑡𝑖𝑠,𝑥
𝑗𝑘

= st𝑖𝑠 + 𝑒𝑥𝑡𝑖𝑠,𝑥
𝑗𝑘

 + ∑ 𝑒𝑥𝑡𝑖𝑎,𝑥
𝑗𝑘

m

a=1

 (3)

∀ 1 ≤ i ≤ n, 1 ≤ s≤ m, 1 ≤ j ≤ l, 1 ≤ k ≤ y, 1 ≤ x ≤

z s ≠ a

where

𝑒𝑥𝑡𝑖𝑠,𝑥
𝑗𝑘

=
l𝑖𝑠

P𝑥
𝑗𝑘. (4)

∀ 1 ≤ i ≤ n, 1 ≤ s≤ m, 1 ≤ j ≤ l, 1 ≤ k ≤ y, 1 ≤ x ≤ z, and lis

is the total number of instructions of task tis and pjkx is the

total processing power of 𝑣𝑚𝑥
𝑗𝑘

, which is deployed on a host

k in datacenter j and 𝑒𝑥𝑡𝑖𝑎,𝑥
𝑗𝑘

 is the execution time of related

tasks to task tis. Assume that makespan is denoted as mk,

which is the completion time of the last task of all users and

is calculated as follows:

𝑚𝑘 = 𝑚𝑎𝑥 (𝑐𝑡𝑖𝑠,𝑥
𝑗𝑘

). (5)

The main objective of the proposed solution is to

minimize makespan Eq. (6):

𝑚𝑖𝑛𝑖𝑚𝑧𝑒 (𝑚𝑘), (6)

in such a way that

∑ 𝑁𝐶𝑉𝑀𝑘𝑥 ∗ 𝑃𝑆𝑉𝑀𝑘𝑥 ≤ 𝑁𝐶𝐻𝑘 ∗ 𝑃𝑆𝐻𝑘

 𝑧

 𝑥=1

 (7)

∑ 𝑀𝑉𝑀𝑘𝑥 ≤ 𝑀𝐻k
 z
 x=1 , (8)

where 1 ≤ k ≤ y. The first condition in eq. (7) means that the

total processing capacity of all VMs, which are deployed on

host Hk is less than or equal to the total processing capacity

of it, where NCVMkx represents the number of cores of vmkx,

PSVMkx is the processing speed of each core of vmkx, which is

measured and denoted by the number of Million Instructions

Per Second (MIPS), NCHk represents the number of cores of

host Hk, and PSHk is the processing speed of each core host

Hk, which is also measured and denoted by the number of

Million Instructions Per Second (MIPS). While the second

condition in eq. (8) means that the total memory size

requested by all VMs, which are deployed on a host Hk is less

than or equal to the memory size of a host Hk, where MVMkx

represents the memory size of vmkx and MHk represents the

memory size of a host Hk.

IV. THE PROPOSED TASK SCHEDULING ALGORITHM

A. BASIC IDEA

Efficient task scheduling in the cloud environment for

multiple tasks which are submitted by a user is one of the

most challenging problems. The main process in task

scheduling is the generation of virtual machines (VMs). To

make the best task scheduling in cloud environment, it is

necessary to take into account the required resources for

tasks and the available resources of cloud hosts in the

generation process of VMs. In addition, the resource

scheduling must satisfy the objectives of users and cloud

vendors and improve the overall performance of the cloud

computing environment. To solve these problems and satisfy

these objectives, an adaptive task scheduling algorithm

called Genetic-Based Task Scheduling with Dynamic Virtual

Machine Generation Algorithm (GTSwDVG) is proposed.

The basic idea of GTSwDVG is based on: (1) sending the

information about all available resources of each host

(available number of core, speed of core, available memory

and network bandwidth) in each each datacenter and the

properties of available VMs in each host to a datacenter

broker; (2) sending the information about the tasks of users

(required resources) to a datacenter broker; (3) using genetic

algorithm (GA) by a datacenter broker to distribute tasks on

hosts, dynamically; and (4) generating VMs adaptively to

execute tasks on these hosts based on the required resources

Ahmed A. A. Gad-Elrab et al. / International Journal of Computing, 20(2) 2021, 165-174

VOLUME 20(2), 2021 169

and the available resources of hosts. Based on these issues,

GTSwDVG can get the best distribution of tasks on the

available hosts with suitable properties of VMs to execute

these tasks. In addition, GTSwDVG can create and destroy

VMs, dynamically based on the resulted distribution of GA

for task scheduling.

B. THE PROPOSED ALGORITHM

For task scheduling, GTSwDVG uses genetic algorithm (GA)

for distributing tasks and generating VMs dynamically on

available hosts of datacenters by using three tuples: (1) a

tuple for representing the IDs of tasks, (2) a tuple for

representing the IDs of hosts, and (3) a tuple for representing

the IDs of VMs. Therefore, GTSwDVG proposed a matrix

structure for representing the chromosome of GA, which

combines the three different tuples. By using this matrix

structure, the flow chart of GA processes is shown in Fig. 1.

Figure 1. Flowchart of genetic algorithm

In the next subsections, these processes will be described

in details.

B.1 INITIALIZATION PROCESS

Genetic algorithm begins with the initialization of

population. The initial population is the set of all individuals

that are used in the GA to represent the possible solution to

the scheduling problem. Every individual is represented as a

chromosome, which is one such solution. Every

chromosome consists of a set of genes. Gene is one element

position of a chromosome. The value of gene is taken for a

particular chromosome called Allele. The proposed solution

represents the chromosome by 3 x m matrix, where m is the

number of tasks. And the first row represents id of a task, the

second row represents id of a host, and the third row is a

random number that is less than m and represents the

identifier of VMs as shown in Fig. 2. After that the proposed

solution determines the properties of VMs based on required

resources for executing tasks and resources provided by

hosts.

As shown in Fig. 2, tasks having ids 0, 4 will be executed

on vm having id 1, while task having id 1 will be executed

on vm having id 2. VMs having ids 1,2 will be deployed on

host having id 1, so the properties of vm having id 1 should

be based on the required resources by tasks that have ids 0,4

and the properties of vm having id 2 are based on the task

having id 1. Also the properties of VMs that have ids 1,2

should take into account resources that can be provided by

host having id 1.

Figure 2. Chromosome representation

B.2 EVALUATION PROCESS

Each chromosome is evaluated by a fitness function

(scheduling objective). Fitness function measures the fitness

value of a chromosome. The fitness value determines the

performance of an individual in the population. The Fitness

function of the proposed solution is to minimize the

makespan Eq. (6).

B.3 SELECTION PROCESS

This process selects individuals from the population for

mating. There are various selection mechanisms to select the

best chromosomes such as selection based on rank, roulette

wheel, tournament selection, and Boltzmann strategy.

B.4 CROSSOVER PROCESS

Crossover operation can be applied by selecting two

individuals and using one of the two kinds of the crossover

operators, that are single point crossover and order crossover

operators. Crossover operation is applied on the second row

of the matrix (id of host). Then a random number is generated

for the third row (id of VM). After that the properties of VM

are determined based on the required resources for executing

tasks and the resources provided by hosts (see Fig. 3).

Figure 3. One point crossover operator

B.5 MUTATION PROCESS

After crossover, mutation process takes place to prevent the

population of individuals from changing into the same as one

other. It occurs during evolution according to mutation

probability. Mutation operation changes one or more gene

values in the individual from its initial state. Mutation

operation is applied on the second row of the matrix (id of

host). This can produce the entirely new id of host. With this

new host id, the genetic algorithm may be able to produce a

better solution than it was previously. Then a random

number is generated for the third row (id of VM). After that

the properties of VM are determined based on the required

resources for executing tasks and the resources provided by

hosts (see Fig. 4.)

 Ahmed A. A. Gad-Elrab et al. / International Journal of Computing, 20(2) 2021, 165-174

170 VOLUME 20(2), 2021

Figure 4. Mutation operator

V. SIMULATION

Evaluating the performance of cloud provisioning policies,

application workload models, and resources performance

models in a repeatable manner under varying system and

user configurations and requirements is difficult to achieve.

To overcome this challenge simulation tools are proposed.

Simulation tools are especially important for cloud

computing research because many clouds are also still in

development. CloudSim [23] models and simulates cloud

computing environments and supports multiple VMs within

a datacenter node.

In this section, the performance of the proposed

algorithm, GTSwDVG, is compared with four algorithms:

SJF, which uses the shortest job first criterion, LCFP [9],

which is based on the Longest Cloudlet Fastest Processing

Element (LCFP), HSLJF [16], which combines shortest job

first and longest job first criteria and CSSA [14], which uses

one of the strategies of bee families called the social spider

strategy.

In the reminder of this section, the simulation parameters,

performance criteria, and results will be presented and

discussed.

Table 1. Simulation Parameter

Number of datacenters 1

Number of cloud hosts 2

Host MIPS 1 100000

Number of CPUs per host 6

Host memory 16 GB

Host storage 1 TB

Host bandwidth 100 GB/s

Number of tasks 500,1000, 1500,2000

Number of Millions of instructions per task 1000-10000

Number of required cores per task 1-6

Number of Virtual machines 16, 32, 64

Number of CPUs per Virtual machine 1-6

Virtual machine MIPS 1000, 2000

Virtual machine size 10 GB

Virtual machine memory 0.5 GB

VM Policy Time Shared

A. SIMULATION PARAMETERS AND PERFORMANCE
CRITERIA

The parameters setting of simulation environment is

described in Table 1.

B. SIMULATION RESULTS AND ANALYSIS

The performance metrics such as response time, makespan,

FlowTime, throughput, resource utilization and trad-off

FlowTime and makespan compared with existing works are

used to analyze and evaluate the performance of the

proposed algorithm, GTSwDVG to obtain the objective of a

user or the objective of a cloud vendor. These metrics are

described in the next subsections.

B.1 RESPONSE TIME (RT)

Response time is the taken time by a task to start responding

(the time from the submission time of a task sb until the first

response is produced). Response time metric gives the total

time needed to receive the first response from a cloud

computing system and this metric should be minimized. The

response time (RT) of cloud computing system is calculated

as follows [16]:

𝑅𝑇 = 𝑚𝑖𝑛(𝑐𝑡𝑖𝑠,𝑥
𝑗𝑘

− 𝑠𝑏𝑖𝑠), (9)

where 1 ≤ i≤ n, 1 ≤ s ≤ m, 1 ≤ j ≤ l, 1 ≤ k ≤ y, 1 ≤ x ≤ z.

Figs. 5, 6, and 7 show the comparisons of the proposed

algorithm with SJF, LCFP [9], HSLJF [16] and CSSA [14]

algorithms for different sets of cloudlets and VMs. The

response time obtained by the proposed algorithm is less than

that of other algorithms. That is clear that the proposed

algorithm is better than other works and it can minimize the

response time, efficiently.

B.2 FLOWTIME (FT)

FlowTime (FT) is the total sum of completion time of all

tasks (also called schedule length) and is calculated as

follows:

𝐹𝑇 = ∑ 𝑐𝑡𝑖𝑠,𝑥
𝑗𝑘𝑛 𝑚

𝑖=1 𝑠=1 , (10)

where 1 ≤ j ≤ l, 1 ≤ k ≤ y, 1 ≤ x ≤ z. Minimize FlowTime

(minimizing the total completion time for all tasks) means

that all VMs have finished tasks execution earlier to achieve

the goal of the user, so this metric should be minimized.

Figs. 8, 9, and 10 show the comparisons of the proposed

algorithm with SJF, LCFP [9], HSLJF [16] and CSSA [14]

algorithms for different sets of cloudlets and VMs. The

FlowTime obtained by the proposed algorithm is less than

that of other algorithms. That is clear that the proposed

algorithm can minimize the FlowTime.

B.3 MAKESPAN

Makespan (mk) metric is calculated in Eq. (5). It is the

important parameter that measures the quality of the results

obtained by any scheduling algorithm for minimizing the

Ahmed A. A. Gad-Elrab et al. / International Journal of Computing, 20(2) 2021, 165-174

VOLUME 20(2), 2021 171

time consumed for finishing execution time of all tasks to

satisfy the objective of the user and objective of the cloud

vendors. So, makeSpan metric should be minimized. The

main objective of the work is to minimize makeSpan for fast

execution of tasks.

Figs. 11, 12, and 13 show the makespan values of the

proposed GTSwDVG, SJF, LCFP [9], HSLJF [16] and CSSA

[14] algorithms for different sets of cloudlets and VMs. At

the most test cases, the proposed GTSwDVG finds the

solutions with lower makespan than all other Algorithms

except the HSLJF. This is because, in some test cases (1500

and 2000 tasks), HSLJF uses 64 VMs with core speed equal

to 2000MIPS and the result of makespan is better than of the

proposed GTSwDVG. However, there is problem, if there are

three tasks from three different users {t1, t2, t3} with a number

of instructions {300,2000,1000}, respectively. Let there be 3

VMs: vm1,vm2, and vm3 and one core for each where the core

speeds are {200,100,50}, respectively. In case of distributing

t1 on vm2, t2 on vm3, and t3 on vm1 the execution times are 3,

40, and 5, makespan is 40, and FlowTime is 48. While, in

case of distributing t1 on vm1, t2 on vm2, and t3 on vm3, the

execution times are 15, 20, and 20, the makespan is 20, and

FlowTime is 55. As a result, in the second case the makespan

is minimized, the FlowTime is maximized, and the execution

times of t1 and t3 are maximized. This means that if the

objective of the users is minimizing the execution time, there

is a problem to users 1 and 3. In addition, the result of

makespane using HSLJF for 64 VMs with core speed equals

2000MIPS is better than that of the proposed algorithm for

executing 1500 and 2000 tasks, while the FlowTime of the

proposed algorithm is better than when using HSLJF.

Figure 5. Comparison of response time

using 16 VMs

Figure 6. Comparison of response time

using 32 VMs

Figure 7. Comparison of response

time using 64 VMs

Figure 8. Comparison of FlowTime

using 16 VMs

Figure 9. Comparison of FlowTime

using 32 VMs

Figure 10. Comparison of FlowTime

using 64 VMs

Figure 11. Comparison of makespan

using 16 VMs

Figure 12. Comparison of makespan

using 32 VMs

Figure 13. Comparison of makespan

using 64 VMs

B.4 TRADE-OFF BETWEEN MAKESPAN AND
FLOWTIME

Trade-off between makespan and FlowTime metric is

denoted as TMF and is calculated as follows:

𝑇𝑀𝐹 =
𝐴

𝐵
 (11)

where

𝐴 = 𝑚𝑖𝑛(𝑚𝑘) ∗ 𝑚𝑖𝑛(𝐹𝑙𝑜𝑤𝑇𝑖𝑚𝑒) (12)

𝐵 = 𝑚𝑘 ∗ 𝐹𝑙𝑜𝑤𝑇𝑖𝑚𝑒, (13)

for each algorithm. It is the important parameter to measure

the user satisfaction and the objective of cloud vendors. This

 Ahmed A. A. Gad-Elrab et al. / International Journal of Computing, 20(2) 2021, 165-174

172 VOLUME 20(2), 2021

metric solves the problem, which was described above in

makespan metric. The better value of algorithm is closer to 1.

Figs. 14, 15, and 16 show the TMF of the proposed

algorithm, SJF, LCFP [9], HSLJF [16] and CSSA [14]

algorithms. It is clear that the proposed algorithm achieves

TMF values higher than other algorithms. This is because,

the proposed algorithm takes into account the tradeoff

among makespan and flowtime metrics.

B.5 THROUGHPUT (TH)

The throughput (TH) is the maximum rate of executing the

tasks in a time unit (i.e., is the total number of tasks, whose

execution has been finished successfully per a time unit) and

is calculated as follows [16].

𝑇𝐻 =
𝑚

𝑚𝑘
, (14)

where m is the number of tasks and it should be maximized

for giving the improved performance of the system. The best

scheduling algorithm should maximize the throughput of the

system. It is used to measure the performance of scheduling

algorithm. Figs. 17, 18, and 19 show the throughput of the

proposed algorithm, SJF, LCFP [9], HSLJF [16] and CSSA

[14] algorithms. It is clear that the proposed algorithm is

better than other algorithms.

Figure 14. Comparison of trade of

makespan and FlowTime using 16

VMs

Figure 15. Comparison of trade of

makespan and FlowTime using 32

VMs

Figure 16. Comparison of trade of

makespan and FlowTime using 64

VMs

Figure 17. Comparison of throughput

using 16 VMs

Figure 18. Comparison of

throughput using 32 VMs

Figure 19. Comparison of throughput

using VMs

B.6 RESOURCE UTILIZATION (RU)

Resource utilization (RU) is one of the objectives of cloud

providers. The scheduling technique should improve the

system performance and takes resource utilization into

consideration. Resource utilization is calculated as follows

[16]:

𝑅𝑈 =
∑ 𝑚𝑘𝑘

𝑦
𝑘=1

𝑦∗ (𝑀𝑎𝑥(𝑚𝑘𝑘))
, (15)

where 1≤ k ≤y and y is the number of hosts and mkk is the

makespan of all tasks that are executed on host k.

The cloud service providers want to earn maximum profit

by reducing the amount of resources in use.

Fig. 20, 21, and 22 show that the proposed algorithm can

achieve resource utilization up to 95%. This means that the

proposed algorithm can improve the system performance

without loss of efficient resource utilization.

Ahmed A. A. Gad-Elrab et al. / International Journal of Computing, 20(2) 2021, 165-174

VOLUME 20(2), 2021 173

Figure 20. Comparison of resource

utilization using 16 VMs.

Figure 21. Comparison of resource

utilization using 32 VMs.

Figure 22. Comparison of resource

utilization using 64 VMs

VI. CONCLUSION

In this paper, a new efficient scheduling mechanism was

developed for solving the scheduling problem in cloud

computing environment. The proposed algorithm is

extended to add possibility dynamic number and

characteristic of VMs. The number of VMs is related to the

number of the user tasks and the properties of VMs based on

the resources that are required for the user tasks and

resources provided by hosts. The new algorithm is based on

Genetic Algorithm (GA). The results obtained by the

proposed algorithm have shown that it achieves better

performance in terms of response time, makespan,

FlowTime, throughput, and trade-off FlowTime without loss

of efficient resource utilization than some of the existing

algorithms. In future work, the task priorities and types

(dependent) in our optimization model will be considered. In

addition, the proposed model will be implemented in a real

cloud environment. Also, the performance of proposed

algorithm will be compared with more advanced variants of

GA, for example, island models, other strategies of bee

families, or other models that use not only mutation and

crossover of chromosomes but additional operation of

chromosomes inversion.

References
[1] W. T. Tsai, X. Sun, and J. Balasooriya, “Service oriented cloud

computing architecture,” Proceedings of the Seventh International

Conference on Information Technology: New Generations, Las Vegas,

NV, USA, April 12-14, 2010, pp. 684-689,
https://doi.org/10.1109/ITNG.2010.214.

[2] B. Furht, A. Escalante, Handbook of cloud computing, Springer, 2010,

655 p. https://doi.org/10.1007/978-1-4419-6524-0.

[3] D. Sullivan, “The definitive guide to cloud computing,” Real Time
Nexus, pp. 4-11, 2010.

[4] G. Soni and M. Kalra, “A novel approach for load balancing in cloud

data center,” Proceedings of the International Advance Computing
Conference (IACC), Gurgaon, India, Feb 21-22, 2014, pp. 807-812,

https://doi.org/10.1109/IAdCC.2014.6779427.

[5] Y. Jadeja and K. Modi. “Cloud computing – concepts, architecture and
challenges,” Proceedings of the International Conference on

Computing, Electronics and Electrical Technologies (ICCEET),

Kumaracoil, India, March 21-22, 2012, pp. 877-880,
https://doi.org/10.1109/ICCEET.2012.6203873.

[6] S. H. H. Madni, M. S. Abd Latiff, Y. Coulibaly, and S. M.

Abdulhamid, “Resource scheduling for infrastructure as a service

(IAAS) in cloud computing: Challenges and opportunities,” Journal
of Network and Computer Applications, vol. 68, pp. 173-200, 2016,

https://doi.org/10.1016/j.jnca.2016.04.016.

[7] B. A. Hridita, M. Irfan, and M. S. Islam, “Task allocation for mobile
cloud computing: State-of-the art and open challenges,” Proceedings

of the 5th International Conference on Informatics, Electronics and

Vision (ICIEV), Dhaka, Bangladesh, May 13-14, 2016, pp. 752–757,

https://doi.org/10.1109/ICIEV.2016.7760102.

[8] H. Shoja, H. Nahid, and R. Azizi, “A comparative survey on load

balancing algorithms in cloud computing,” Proceedings of the Fifth

International Conference on Computing, Communications and
Networking Technologies (ICCCNT), Hefei, China, July1-13, 2014,

pp. 1–5, https://doi.org/10.1109/ICCCNT.2014.6963138.

[9] S. Sindhu and S. Mukherjee, “Efficient task scheduling algorithms for

cloud computing environment,” Proceedings of the International
Conference on High Performance Architecture and Grid Computing,

Chandigarh, India, July 19-20, 2011, pp. 79–83,

https://doi.org/10.1007/978-3-642-22577-2_11.

[10] C. Zhao, S. Zhang, Q. Liu, J. Xie, and J. Hu, “Independent tasks

scheduling based on genetic algorithm in cloud computing,”

Proceedings of the 5th International Conference on Wireless
Communications, Networking and Mobile Computing, Beijing, China,

September 24-26, 2009, pp.1–4,

https://doi.org/10.1109/WICOM.2009.5301850.

[11] M. Kalra and S. Singh, “A review of metaheuristic scheduling

techniques in cloud computing,” Egyptian Informatics Journal, vol.

16, issue 3, pp. 275–295, 2015,
https://doi.org/10.1016/j.eij.2015.07.001.

[12] R.K. Jena, “Multi objective task scheduling in cloud environment

using nested PSO framework,” Proceedings of the 3rd International
Conference on Recent Trends in Computing 2015 (ICRTC-2015),

2015, pp. 1219–1227, https://doi.org/10.1016/j.procs.2015.07.419.

[13] M. A. Tawfeek, A. El-Sisi, A. E. Keshk, and F. A. Torkey, “Cloud

task scheduling based on ant colony optimization,” Proceedings of the
8th International Conference on Computer Engineering Systems

(ICCES), Cairo, Egypt, November 26-28, 2013, pp. 64–69,
https://doi.org/10.1109/ICCES.2013.6707172.

[14] V. M. Arul Xavier and S. Annadurai, “Chaotic social spider algorithm

for load balance aware task scheduling in cloud computing,” Cluster

Computing, vol. 22, issue 1, pp. 287-297, 2018,
https://doi.org/10.1007/s10586-018-1823-x.

[15] K. Naik, G. Meera Gandhi, S. H. Patil, “Multiobjective virtual

machine selection for task scheduling in cloud computing,” in: N. K.
Verma, A. K. Ghosh (Eds), Computational Intelligence: Theories,

Applications and Future Directions, Springer Singapore, Singapore,

2019, pp. 319-331, https://doi.org/10.1007/978-981-13-1132-1_25.

[16] M. A. Alworafi, A. Dhari, S. A. ElBooz, A. A. Nasr, A. Arpitha, S.

Mallappa, “An enhanced task scheduling in cloud computing based on

hybrid approach,” in: P. Nagabhushan, D. S. Guru, B. H. Shekar, Y.
H. Sharath Kumar (Eds), Data Analytics and Learning, Springer

Singapore, Singapore, 2019, pp. 11–25, https://doi.org/10.1007/978-

981-13-2514-4_2.

[17] J. Gu, J. Hu, T. Zhao, G. Sun, “A new resource scheduling strategy

based on genetic algorithm in cloud computing environment,” Journal

of Computers, vol. 7, issue 1, pp. 42–52, 2012,
https://doi.org/10.4304/jcp.7.1.42-52.

[18] M. A. Tawfeek, A. B. El-Sisi, A. E. Keshk, and F. A. Torkey, “Virtual

machine placement based on ant colony optimization for minimizing

resource wastage,” Proceedings of the International Conference on
Advanced Machine Learning Technologies and Applications, Cairo,

Egypt, March 28-30, 2014, pp. 153–164, https://doi.org/10.1007/978-

3-319-13461-1_16.

[19] S. K. Sonkar and M. U. Kharat, “A review on resource allocation and

vm scheduling techniques and a model for efficient resource

https://doi.org/10.1109/ITNG.2010.214
https://doi.org/10.1007/978-1-4419-6524-0
https://doi.org/10.1109/IAdCC.2014.6779427
https://doi.org/10.1109/ICCEET.2012.6203873
https://doi.org/10.1016/j.jnca.2016.04.016
https://doi.org/10.1109/ICIEV.2016.7760102
https://doi.org/10.1109/ICCCNT.2014.6963138
https://doi.org/10.1007/978-3-642-22577-2_11
https://doi.org/10.1109/WICOM.2009.5301850
https://doi.org/10.1016/j.eij.2015.07.001
https://doi.org/10.1016/j.procs.2015.07.419
https://doi.org/10.1109/ICCES.2013.6707172
https://doi.org/10.1007/s10586-018-1823-x
https://doi.org/10.1007/978-981-13-1132-1_25
https://doi.org/10.1007/978-981-13-2514-4_2
https://doi.org/10.1007/978-981-13-2514-4_2
https://doi.org/10.4304/jcp.7.1.42-52
https://doi.org/10.1007/978-3-319-13461-1_16
https://doi.org/10.1007/978-3-319-13461-1_16

 Ahmed A. A. Gad-Elrab et al. / International Journal of Computing, 20(2) 2021, 165-174

174 VOLUME 20(2), 2021

management in cloud computing environment,” Proceedings of the

International Conference on ICT in Business Industry Government

(ICTBIG), Indore, India, November 18-19, 2016, pp. 1–7,
https://doi.org/10.1109/ICTBIG.2016.7892646.

[20] B. Pavithra and R. Ranjana, “A comparative study on performance of

energy efficient load balancing techniques in cloud,” Proceedings of

the International Conference on Wireless Communications, Signal
Processing and Networking (WiSPNET), Chennai, India, March 23-

25, 2016, pp. 1192-1196,

https://doi.org/10.1109/WiSPNET.2016.7566325.

[21] Y. Fang, F. Wang, and J. Ge, “A task scheduling algorithm based on

load balancing in cloud computing,” in: F.-L. Wang, Z. Gong, X. Luo,

and J. Lei (Eds), Web Information Systems and Mining, Springer
Berlin Heidelberg, 2010, pp. 271–277, https://doi.org/10.1007/978-3-

642-16515-3_34.

[22] A. A. Nasr, N. A. El-Bahnasawy, G. Attiya, A. El-Sayed, “Using the
tsp solution strategy for cloudlet scheduling in cloud computing,”

Journal of Network and Systems Management, vol. 27, issue 2, pp.

366–387, 2019, https://doi.org/10.1007/s10922-018-9469-9.

[23] A. Beloglazov, C. A. F. De Rose, R. Buyya, R. N. Calheiros, R.

Ranjan, “Cloudsim: a toolkit for modeling and simulation of cloud

computing environments and evaluation of resource provisioning
algorithms,” Software: Practice and Experience, vol. 41, issue 1, pp.

23–50, 2011, https://doi.org/10.1002/spe.995.

ASAAD AHMED (AHMED A.A. GAD-
ELRAB) is an Assoc. Prof. and he
received his BS. Degree in Computer
Science, from Faculty of Science,
Alexandria University, Egypt in 1999. He
received his MS. Degree in Computer
Science from Faculty of Science, Cairo
University, Egypt in 2008. He received his
Ph.D. from Graduate School of
Information Science, Nara Institute of
Science and Technology (NAIST), a na-

tional corporation university located in NARA, Japan in 2012. He is
an associate professor of computer science at the Department of
Mathematics, Faculty of Science, Al-Azhar University, Cairo,
Egypt. Currently, he is a Consultant for Vice President of
Development, King Abdul-Aziz University (KAU), Jeddah, Saudi
Arabia. His research interests include cloud computing, mobile
computing, Internet of Things applications, smart home, data
science, sensor networks, dynamic distributed systems, big data,
and mobile crowd sensing.

TAMER A. ALZOHAIRY received the B.
Sc. Degree in computer science from
faculty of Science, Ain Shams University,
Cairo, Egypt in 1989. M.Sc degree in
Computer science from Math. Dept.,
Faculty of Science, Al-Menoufia
University, Egypt, in 1997 and Ph.D in
Computer Science from Math. Dept.
Faculty of Science, Suez Canal
University, Egypt in 2003. He is working
currently as an Associate Professor in

Computer science Dept., Science college, Al Azhar University,
Cairo, Egypt. Main work is on neural networks, deep learning,
pattern recognition and image processing.

KAMAL R RASLAN received the M.Sc.
and Ph.D. degrees from the Faculty of
Science, Menoufia University and Al-
Azhar University, Egypt, in 1996 and
1999, respectively. He is currently full
Professor of Mathematics with the
Faculty of Science, Al-Azhar University,
Egypt. He has authored/coauthored over
114 scientific papers in International
Journals. His research interests include
Numerical Analysis, Finite Difference

Methods, Finite Element Methods, Approximation Theory, and
Computational Mathematic.

ALI FAROUK EMARA (FAROUK A.
EMARA) received B.S. Degree in pure
math and Computer Science, from the
Department of Mathematics, Faculty of
Science, Al-Azhar University – Cairo,
Egypt in 2008. He received the master’s
degree in quality of service management
in mobile cloud computing from the
Department of Mathematics, Faculty of
Science, Al-Azhar University – Cairo,
Egypt, in 2016. He is active in research,

cloud computing and mobile cloud computing. In 2016 he has
started to study at the Department of Mathematics, Faculty of
Science, Al-Azhar University – Cairo, Egypt PhD degree with topic
of efficient schemes for data and resources management in mobile
cloud computing.

https://doi.org/10.1109/ICTBIG.2016.7892646
https://doi.org/10.1109/WiSPNET.2016.7566325
https://doi.org/10.1007/978-3-642-16515-3_34
https://doi.org/10.1007/978-3-642-16515-3_34
https://doi.org/10.1007/s10922-018-9469-9
https://doi.org/10.1002/spe.995

