

VOLUME 20(2), 2021 211

Date of publication JUN-28, 2021, date of current version APR-25, 2021.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209

Online ISSN 2312-5381

DOI 10.47839/ijc.20.2.2168

Effective Distribution of Tasks in
Multiprocessor and Multi-Computers
Distributed Homogeneous Systems

SERHII ZYBIN1, VLADIMIR KHOROSHKO2, VOLODYMYR MAKSYMOVYCH3,
IVAN OPIRSKYY3

1Department of Computerized Systems Of Information Security, National Aviation University,

1, Liubomyra Huzara ave. Kyiv, 03058, Ukraine (e-mail: zysv@ukr.net)
2Department of Information Technology Security, National Aviation University,

1, Liubomyra Huzara ave. Kyiv, 03058, Ukraine (e-mail: professor_va@ukr.net)
3Department of Information Technology Security, Lviv Polytechnic National University,

12, S. Bandery str., Lviv, 79000, Ukraine (e-mail: volodymyr.maksymovych@gmail.com, ivan.r.opirskyi@lpnu.ua)

Corresponding author: Serhii Zybin (e-mail: zysv@ukr.net).

 ABSTRACT Nowadays, a promising is the direction associated with the use of a large number of processors to

solve the resource-intensive tasks. The enormous potential of multiprocessor and multicomputer systems can be

fully revealed only when we apply effective methods for organizing the distribution of tasks between processors

or computers. However, the problem of efficient distribution of tasks between processors and computers in similar

computing systems remains relevant. Two key factors are critical and have an impact on system performance. This

is load uniformity and interprocessor or intercomputer interactions. These conflicting factors must be taken into

account simultaneously in the distribution of tasks in multiprocessor computing systems. A uniform loading plays

a key role in achieving high parallel efficiency, especially in systems with a large number of processors or

computers. Efficiency means not only the ability to obtain the result of computations in a finite number of iterations

with the necessary accuracy, but also to obtain the result in the shortest possible time. The number of tasks intended

for execution on each processor or each computer should be determined so that the execution time is minimal.

This study offers a technique that takes into account the workload of computers and intercomputer interactions,

and allows one to minimize the execution time of tasks. The technique proposed by the authors allows the

comparison of different architectures of computers and computing modules. In this case, a parameter is used that

characterizes the behavior of various models with a fixed number of computers, as well as a parameter that is

necessary to compare the effectiveness of each computer architecture or computing module when a different

number of computers are used. The number of computers can be variable at a fixed workload. The mathematical

implementation of this method is based on the problem solution of the mathematical optimization or feasibility.

 KEYWORDS optimization; distribution; performance; computing module; multiprocessor; multicomputer;

neural network.

I. INTRODUCTION

ULTIPROCESSOR and multi-computer computing

systems are a powerful tool for solving problems of

large dimension [1, 2]. However, their application raises the

problem of efficient distribution of tasks between processors

and computers, the essence of which is that two conflicting

factors affect the system performance with the specified

distribution: load uniformity and interprocessor or

intercomputer interactions. Uniform loading plays a key role

in achieving high parallel efficiency, especially in systems

with a large number of processors or computers. The number

of tasks that are intended for each processor or computer

M

 Serhii Zybin et al. / International Journal of Computing, 20(2) 2021, 211-220

212 VOLUME 20(2), 2021

should be determined so that the execution time is minimal.

Task’s execution time for parallel distribution is defined as

the maximum total time that processors or computers need

to complete work. It follows that it is necessary to increase

the number of processors or computers to minimize the

execution time of tasks. However, as Amdahl’s law [3]

shows, system performance ceases to grow in proportion to

the increase in the number of processors or computers used.

It turns out that this effect is caused by saturation of

interprocessor or intercomputer interactions. Therefore, we

must simultaneously take these conflicting factors into

account when performing a job allocation in multiprocessor

computing systems.

It should be noted that at the present stage of computer

technology development, the construction of computer

modules based on processors is widely used. They are

subsequently combined into multiprocessor computing

systems [4–7].

The weak point of almost any computing system is the

speed of interaction with memory, because processors during

the job request data in memory. It can be fast memory

(cache) or Random Access Memory (RAM). The access to

RAM is carried out through the data bus due to which there

is a decrease in the performance of the computing system.

The main feature of the architecture modules is the

organization of memory in it both shared and local memory

of each processor. Access to shared memory is via a shared

bus, through which interaction between processors also takes

place. Processors are a shared resource.

Computing modules are a hardware and software unit of

the system that implements the main functions (for which the

module was created), as well as additional ones (in the

process of problem orientation). It provides a change in

connections with other modules [6] during reconfiguration

of a computer system and the mode of its functioning.

II. RELATED WORKS

Studies [8–10] in the field of efficient use of distributed

systems have been ongoing for a long time. They are mainly

aimed at solving resource management problems or are

focused on the problems of choosing [11] the architecture of

a multiprocessor system, or go towards the development of

parallel algorithms, resource monitoring and load balancing.

This is due to the fact that the efficiency of using distributed

systems, in this case, is determined by the possibility of

organizing parallel processing [12-14].

Efficiency of using a distributed network is provided due

to the maximum load of all resources in order to increase the

volume of transmitted traffic. We need to use a rational

choice of paths for traffic passing through the network in

order to achieve a balanced load of all network resources [15,

16].

Studies are known [17–22], which are devoted to solving

the increasing productivity problem. However, the problem

in these studies is solved under certain assumptions.

Interprocessor and intercomputer interactions are not taken

into account when these assumptions are used. The

efficiency of the system is achieved due to the uniform

loading of processors and computers. In this case, the

efficiency of the system is achieved due to the even load of

processors and machines: either an equal number of tasks are

distributed to all processors and machines in advance, or the

system is considered homogeneous. Thus, the efficiency of

the system is achieved by minimizing interprocessor,

intercomputer interactions.

Other studies [23-25] treated solution through the use of

unused computing capacity which resources are unlimited in

the volume memory and inexpensive. The method of

adaptive load balancing [25] of load balancing is used taking

into account the load factor of computers to minimize the

time of solving the problem and overhead.

A big problem in research and analysis of multiprocessor

systems is that research in this area is mostly classified. For

example, we can analyze some information about the

systems Elbrus-1, Elbrus-2 [29], however, there are no

scientific details in open sources about the principles of

optimal distribution of tasks in multiprocessor systems such

as Elbrus-16S, Elbrus-2S3 or Elbrus- 12C. Hence, we can

conclude that work on the optimal distribution of tasks in

such systems is relevant and in demand. For example, the

optimal distribution of tasks during a Brute Force attack on

containers that are protected by AES encryption (for

example, when using a satellite communication channel). In

the presence of a multimillion database with passwords, it is

possible to reduce the selection time by 1.5-2 times, which is

essential in the conditions of military or military operations.

Thus, a comprehensive solution to the problem of

minimizing the time to complete tasks is required. Such a

solution is proposed to be implemented by the method of

efficient distribution of tasks in a distributed computing

system, taking into account the workload of processors, as

well as interprocessor interactions.

III. MAIN GOAL OF THE ARTICLE AND STATEMENT OF

THE PROBLEM

The main goal of the study is to increase the efficiency of the

system by minimizing the execution time of tasks and

computations. To achieve this goal, a technique is proposed

for the efficient distribution of tasks in a distributed

computing system, taking into account the workload of

processors and computers, as well as interprocessor and

intercomputer interactions.

Therefore, it is necessary to solve the following tasks:

– choose an approach to solve the problem of efficient

distribution of tasks in a distributed computing system,

taking into account the workload of processors and

machines;

–make a selection criterion of optimization and

limitations;

– improve the communication optimization scheme and

conduct a comparative analysis of the research results.

Serhii Zybin et al. / International Journal of Computing, 20(2) 2021, 211-220

VOLUME 20(2), 2021 213

IV. MINIMIZING THE TOTAL TIME FOR COMPLETING
TASKS TAKING INTO ACCOUNT THE WORKLOAD OF
COMPUTERS AND INTERCOMPUTER INTERACTIONS

We define m indivisible (atomic) tasks and a distributed

system that consists of n computers or processors.

We introduce the following notation:

ijt – is the execution time of the i-th task on the j-th

computer (i=1, 2, …, m; j=1, 2, …, n);

klW – is the link weight between computers k and l (k, l

=1, 2, …, n). Link weight is a dimensionless quantity that

indicates the priority (rank) of connections between

machines, processors (PCs) or interprocessor interaction,

etc.;

pqa – is the number of links between tasks p and q

(p,q=1, 2, …, m);

iv – is the amount of memory needed to solve the i-th

task;

jV – is the amount of memory of the j-th computer or

available memory for the j-th processor, and
j iV v .

Without loss of generality, we assume that the number of

tasks is greater than or equal to the number of computers

m n . Otherwise, we introduce additional fictitious tasks

1, 2, ...,m m n+ + , assume 0ijt = for them at 1i m +

, and 0pqa = at 1p m + or 1q m + .

Moreover, the goal is to assign each of the m tasks to one

computer in such a way that the total time for completing

tasks taking into account the workload of computers and

intercomputer interactions is minimal. It is known that each

such assignment is the permutation ()1 2, , ..., mS S S , which

is composed of numbers ()1, 2, ..., n , (1, 2,...,)jS n ,

()1, 2, ...,j m= . Here it is implied that if m = n, then

i jS S at i j , i.e. each computer is assigned only one

task. If m n , then the case is possible i jS S= for i j

, i.e. multiple tasks can be assigned to one computer.

Currently, there are three approaches to solving the

problem: graph-theoretical, heuristic, and mathematical

programming method [18, 19].

The graph-theoretical method is based on the geometric

representation of the objective function and optimal

solutions. Graphs are considered as models of

communication networks of multiprocessor and

multicomputer systems in the construction, analysis and

optimization of such systems. A lot of restrictions, in this

case, are implemented using edges, the lengths of which

describe the restrictions between pairs of objects and can be

represented in two forms: connectivity and minimum

distance.

The advantages of the graph-theoretical method are its

visibility and simplicity of the solution algorithm.

Heuristic methods for solving problems mean special

methods for solving problems, which are usually contrasted

with formal methods of solving, based on exact

mathematical models [20].

There is no consensus on the number of existing heuristic

methods. The basic heuristic methods are:

− a method of dividing the problem into subtasks, using

which a complex, non-standard problem is divided into

several standard, simple and trivial problems with a known

solution;

− a method for introducing auxiliary elements, using

which auxiliary elements are introduced in order to eliminate

the uncertainty of the relationship between known data and

unknown variables that should be found;

− a modeling method, using which the original problem

is replaced by its model.

The heuristic method for solving problems can be

considered a universal method for finding a solution to a

problem. The advantage of using heuristic methods is the

reduction of the time for solving a problem in comparison

with the method of exhaustive search of alternatives [20, 21].

Heuristic methods increase the likelihood of obtaining a

solution to a problem, but this solution is not always the

optimal solution. Such a solution to a problem is often a

satisfactory solution. Also, heuristic methods are able to find

solutions in difficult situations. In addition, in terms of time

efficiency, they are not inferior to algorithmic approaches.

The basis of mathematical programming is the

mathematical apparatus for solving optimization problems,

in which the search for extreme values of the objective

function is carried out taking into account constraints [26].

The presence of constraints that are imposed on the values of

the objective function makes it impossible to use

mathematical analysis methods to solve mathematical

programming problems.

Mathematical programming is divided into types of

problems that are solved on linear, nonlinear and stochastic.

Many methods have been developed to solve mathematical

programming problems. A feature of solving problems by

methods of mathematical programming is their high demand

for computing power, because we have to execute large

volumes of computations. Accordingly, considerable

importance is attached to the efficiency, simplicity and ease

of implementation of methods on computer systems.

In this article, the problem is solved by the method of

mathematical programming.

It is obvious that any of the tasks of the i-th computer
iS

is described by the correspondence
ii S→ (i = 1, 2, ..., m).

Moreover, for any tasks, there is, firstly, time, which is equal

to
iiSt , and secondly, the time of the interlinks between tasks.

Suppose that this time when assigning task i to computer
iS

and task k to computer
kS is equal to the product of the

number of links
ika between tasks i and k by the weight of

the link
i kS SW between computers iS and kS , i.e.

 Serhii Zybin et al. / International Journal of Computing, 20(2) 2021, 211-220

214 VOLUME 20(2), 2021

i kik S Sa W . Thus, the task is reduced to obtaining the

permutation
1 2(, ,...,)mS S S composed of numbers (1, 2, ...,

n), which minimizes the total time

1 1 1

min
i i k

m m m

iS ik S S

i i k

t a W
= = =

+ →  . (1)

We introduce the variable
ij , which is equal to 1 if the

i-th task is assigned to the j-th computer, and which is zero

in the opposite case. Then expression (1) can be written in

the following form:

1 1 1 1 1 1

min
m n m n m n

ij ij ik jl ij kl

i j i j k l

t a W  
= = = = = =

+ →  . (2)

It follows from this expression if the tasks are

independent, i.e. 0ika = , then expression (2) – the

minimization task for all permutations transforms into the

assignment problem. In addition, vice versa, if all the time

values are the same, then we will solve the task of

minimizing the total time of interaction, i.e. second term of

expression (2).

Since each of the m tasks is assigned to only one of the

computers, the following condition must be fulfilled

1

1, 1,2,...,
n

ij

j

i m
=

= = , (3)

where

  0,1 ,ij i j   . (4)

On the other hand, the following condition must be met,

so that the computer memory is not overloaded

1

, 1,2,...,
m

ij i j

i

v V j n
=

 = . (5)

Thus, the statement of the problem is reduced to the task

of integer programming (2) (5) .

For further studies of problem (2), we write this

expression in expanded form

1 1 1 1 1

1 1 1 1

min

m n n m m

ij ij ik jj ij kj

i j j i k

m n m n

ik jl ij kl

i j k l
l j

t a W

a W

  

 

= = = = =

= = = =


+ +

+ →

 


. (6)

This representation of the expression clearly reflects the

essence of the problem, namely, the first two terms express

the load of computers, and the third term expresses

intercomputer interactions.

Assume that computers are equal in performance and

tasks are equal in computational volume. Then the following

expression is obvious
0 ,ijt t i j=  . In addition, we assume

that
0 ,klW W k l=  .

In this case, uniform workload can be obtained by

distributing the same number of tasks to each computer:

1

1

1 2

, 1, 2,..., ;

;

... .

m

ij j

i

n

j

j

n

m j n

m m

m
m m m

n


=

=


= =




=

  
 = = =     



 (7)

Thus, we conclude that the first two terms in the problem

(6) can be omitted taking into account conditions (7), i.e.

1 1 1 1

min
m n m n

ik ij kl

i j k l
l j

a  
= = = =



→ . (8)

As a result, we obtain the integer programming problem

(3) ÷ (5), (7) and (8), which minimizes intercomputer

interactions due to the uniform load of computers. The

condition (5) is essential. This problem, if the condition (5)

is not taken into account, fully corresponds to the integer

programming problem obtained in [27].

In the general, integer programming problems are NP-

complete problems. There are algorithms for solving certain

types of problems, which are characterized by polynomial

time consuming [26]. For many integer programming

problems, there are no convincing arguments in favor of the

existence of such decision algorithms, yet. Therefore, they

relate to NP-complete classes. In practice, often the solution

of such problems requires unacceptably much time and

computing resources [26]. For example the use of neural

networks [28] with feedback allows us to reduce the solution

time, for example the Hopfield network. It is clear that neural

networks in the general case do not guarantee globality of the

optimal solution to problem (2). However, in practice, it is

often required to find one or several local minima within a

certain time frame. In this case, the use of neural networks is

very effective. Based on this consideration, in order to ensure

the practicality of the optimization approach to the clustering

problem, a neural network implementation of task (2). In

order to synthesize a neural network for solving the

optimization problem, we synthesize a triple of the form

{𝑁,𝑊, 𝑇}, where N is the set of neurons in the network, W is

Serhii Zybin et al. / International Journal of Computing, 20(2) 2021, 211-220

VOLUME 20(2), 2021 215

the matrix of synaptic connections and T is the vector of

external displacements. In the general case, the task of

synthesizing a network is to determine all the components of

this triple – the type and number of neurons, the structure of

the matrix of connections and the value of its elements, the

value of external displacements. We assume that the type and

the dynamics model of neural-like elements is determined.

Therefore, the problem of network synthesis is reduced to

determining the structure of the network, the matrix of

connections W and vectors of displacements T, satisfying the

target use of the sentized network.

An integral quality of such networks is the ability to

determine the state with a minimum level of network energy.

In solving problems using neural networks with feedback,

the main difficulty consists in constructing the energy

function of the network.

Before proceeding to the construction of the energy

function of the network, we introduce the following notation:

, ;

, .

ij ii jj

ijkl

ik jl

t a W if i k and j l
b

a W if i k or j l

+ = =
= 

 

We represent the task (2) in a more compact form

1 1 1 1

min
m n m n

ijkl ij kl

i j k l

b  
= = = =

→ . (9)

Now we begin to design the energy function of the

network.

In accordance with [29], the energy function that is being

developed should be built in such a way that it provides both

optimization and compliance with constraints. This step in

the process of building an optimized network is to design the

energy function of the network. Let’s construct this function

in the form of a sum, where its individual terms are convex

functions that take minimum values for the state of the

network. These functions satisfy the considered constraints

on the state of the network and minimize the objective

function.

Based on this, the component that provides optimization

(9) is described as follows:

1

1

1 1 1 12

m n m n

ijkl ij kl

i j k l

G b y y


= = = =

= −  . (10)

The component that ensures compliance with constraints

(3) ÷ (5) is described as follows:

()
2

32
2

1 1 1 1

2

254

1 1 1 1

1 1
2 2

,
2 2

m n m n

ij ij ij

i j i j

m n n m

ij ij i j

i j j i

G y y y

y m f y v V





= = = =

= = = =

 
= − + − + 

 

   
+ − + −   

  

  

  

(11)

where

1 2 3 4 5, , , ,     – are positive constants (by analogy

with the traveling salesman problem, an analogue of feasible

routes);

ijy – is the output signal of the ij-th neuron of the neural

network, which corresponds to the variable
ij ;

()f t t t= − – is the function that has the property

2() 2 ()f t tf t= .

The first term in the expression (11) corresponds to the

constraint that each row of the matrix Y contains exactly one

unit; the second term corresponds to the binary variables
ijy

; the third term corresponds to the restriction that the matrix

Y contains exactly m units; and finally, the last term

corresponds to constraint (5). Thus, we conclude that when

conditions (3) ÷ (5) are satisfied, the component
2G assumes

its minimum value equal to zero.

We perform the summation (10) and (11), after some

transformations, we obtain the following form of the energy

function of the neural network:

1
1 2

1 1 1 1

2

1 1 1 1

3

1 1 1 1

4

1 1 1 1

3
2

1 1 1 1

2
4

1 1

2

2

2

2

2

2

m n m n

ijkl ij kl

i j k l

m n m n

ik ij kl

i j k l

m n m n

ik jl ij kl

i j k l

m n m n

ij kl

i j k l

m n m n

ij ij

i j i j

m n

ij

i j

G G b y y

y y

y y

y y

y y

m y m







 









= = = =

= = = =

= = = =

= = = =

= = = =

= =

+ = − +

+ −

− +

+ −

− + −

− +









 

 24

5

1 1 1

2

,
n m m

ij i j ij i j

j i i

m

y v V f y v V




= = =

+ +

   
+ − −   

   
  

 (12)

where,
ij – is the Kronecker symbol.

 Serhii Zybin et al. / International Journal of Computing, 20(2) 2021, 211-220

216 VOLUME 20(2), 2021

In expression (12), terms that are independent of the state

of the neural network
ijy , can be excluded.

The canonical form of the energy function corresponding

to problem (9) is written in the following form:

1 1 1 1 1 1

1
,

2

m n m n m n

C ijkl ij kl ij ij

i j k l i j

G W y y T y
= = = = = =

= − +  (13)

where

ijklW – is the synaptic weight between the input of the ij-

th neuron and the output of the kl-th;

ijT – is the threshold of the ij-th neuron.

We compare expressions (12) and (13). We equate the

coefficients of their linear and quadratic components. We

find the parameters of the neural network

1 2 3 4

3
2 4 5

;

,
2

ijkl ijkl ik ik jl

ij

W b

T m

      


  

= − + −



= − + − +


where

i, k = 1, 2, …, m;

j, l = 1, 2, …, n.

Now we calculate the parameters of the neural network

that solves problems (3), (4), (7) and (8).

We write problem (8) as follows

 ()
1 1 1 1

1 min
m n m n

ik jl ij kl

i j k l

a   
= = = =

− → . (14)

Then the energy function of the network for the tasks (3),

(4), (7) and (14) takes the following form

()

()

1

1 1 1 1

2

2

1 1

2

3 4

1 1 1 1

2

5

1 1

1
2

1
2

1
2 2

.
2

m n m n

ik jl ij kl

i j k l

m n

ij

i j

m n m n

ij ij ij

i j i j

n m

ij j

j i

G a y y

y

y y y m

y m






 



= = = =

= =

= = = =

= =

= − − +

 
+ − + 

 

 
+ − + − + 

 

 
+ − 

 



 

 

 

(15)

Let us compare this expression with (13) and find the

parameters of neural networks

()1 2 3 4 5

3
2 4 5

1

, (16)
2

ijkl ik jl ik ik jl jl

ij j

W a

T m m

         


  

 = − − + − −



= − + − −


where

1 2 3 4 5, , , ,     – are positive constants (by analogy

with the traveling salesman problem, an analogue of feasible

routes) ;

i, k = 1, 2, …, m; j, l = 1, 2, …, n.

V. DEVELOPMENT OF EFFICIENT DISTRIBUTION OF
TASKS IN A DISTRIBUTED COMPUTING SYSTEM

Expression (8) shows that intercomputer communication

solves the problem of minimizing task execution time and

data calculation.

Since the first priority is the question of intercomputer

connections, which determine the cost of time for

information transmission, the solution to this problem is

possible through the use of neural networks [28]. The use of

neural networks also confirmed by [26, 27].

As we said in Section 4, as a result, we got an integer

programming problem (3) – (5), (7) and (8), which

minimizes intercomputer interactions due to the uniform

workload of computers. The solution time can be reduced by

using neural networks [28] with feedback.

In the case when several tasks can be assigned to one

computer, then when modeling a neural network in addition

to the settings using expressions (15) – (16), we need to

consider separately the case when m> n. In this case, we need

to determine the rate of generation of messages that are

transmitted between computers (average frequency of

information transfer). At m = n, this parameter depends only

on the time of formation of the information parcel by the

computer.

Based on the research [5-8,10,11], can be formulated the

following consequences.

Consequence # 1. In the model, the number of tasks is

much larger than the number of computers. The number of

tasks for each computer is equal to
m

n
, the number of tasks

external to the computer is equal to
m

m
n

− . If similarity

between tasks is assumed, then the probability that the task i

will send a message to the address of the task j is equal to

()
1

1m −
 for all j = i. As a result, we get the following

expression

()

()

11

1 1
k

m nm
t m t

n m n m
 

− 
= − = 

− − 

Serhii Zybin et al. / International Journal of Computing, 20(2) 2021, 211-220

VOLUME 20(2), 2021 217

where

k – is the parameter by which conflict situations for

collective resources are evaluated – the rate of generation of

messages that are transmitted between computers and is

determined as the average frequency of information transfer

1

n
k

i i



=

 , i = 1, 2, …, n;

t – time of formation of the information message by the

computer.

In addition, if we assume that m is much greater than 𝑛,

then
1

k

n
t

n


−
= .

Consequence # 2. The task of integer programming for

a certain time can be realized using neural networks. In this

case, the number of computers can be variable 𝑛 ∈ [𝑛1, 𝑛2]
in order to increase the reliability of the system. The

parameters of the neural network that solves problems (3),

(4), (7) and (8) are determined from (15). We will consider

the performance of a computing system depending on the

method of organizing the interactions between the central

processors and the memory, as well as the number of

processors in this interaction organization scheme. To

simplify the application, we introduce the following

constraints:

− the duration of the processing and access to shared

resources are subject to the exponential law;

− the processor accesses the shared memory without

delay as soon as the shared bus and memory are freed;

− if it is not possible to establish a connection, the

processor goes into a standby state and remains in it until the

desired resource is released;

− the memory and bus are freed immediately after

accessing them, and the processor goes into an active state.

Let present a structural diagram of the organization of

connections between central processors and memory. The

main feature of scheme # 1 (in fig. 1) for organizing

communications is the presence of concentrated memory

(organization of cache memory coherency with writeback

(MESI protocol [31]) and local memory of each processor.

The access to shared memory is via a shared bus.

· · ·

SB

SM

CPU1 CM1

LM1

LB1

CPUn CMn

LMn

LBn

Figure 1. The scheme # 1 for organizing communications:

LM – local memory; CM – concentrated memory; SM –

shared memory; LB – local bus; SB – shared bus

Shared memory can be divided into local modules for

each processor (in fig. 2). It is assumed that local memory is

divided into areas of the processor’s own memory and shared

memory. Moreover, each processor is connected to its own

memory via a local bus.

· · ·

SB

CPU1 CM1

LB1

SM1 CPUn CMn

LMn

LBn

SMn

LM1

Figure 2. The scheme # 2 for organizing communications:

LM – local memory; CM – concentrated memory; SM –

shared memory; LB – local bus; SB – shared bus

We will improve the previous scheme. To do this, we will

use a multi-port memory module or a multi-level interface

for the common part of the local memory of each processor

(in fig. 3). Multiport memory eliminates conflicts, but this is

achieved by complicating memory. Shared memory modules

are directly accessible to external processors via a shared

bus.

· · ·

SB

CPU1 CM1

LB1

SM1 CPUn CMn

LMn

LBn

SMn

LM1

Figure 3. The scheme # 3 for organizing communications:

LM – local memory; CM – concentrated memory; SM –

shared memory; LB – local bus; SB – shared bus

VI. RESULTS OF THE STUDY, TAKING INTO ACCOUNT
THE WORKLOAD OF PROCESSORS AND
INTERPROCESSOR INTERACTIONS

When analyzing the schemes presented above, we will use

the simulated performance of the computing module (Table

1, Table 2, and Table 3) as a function of the load of processor

links for a dual-processor computing module. This is due to

the fact that this scheme is a next step for multiprocessor

computing systems of a higher rank.

As a result of comparing the scheme # 1 and scheme # 2,

we can conclude that, at low loads, the scheme # 1 has higher

performance than the scheme # 2. This is because at low

loads, the average latency is very small and does not create

additional conflicts. In the scheme # 2, each access to the

field of external main memory is interrupted by a processor,

the probability of activity of which with its own local

memory is very high at low loads. The break point is

observed at a load value of 0.5. The scheme # 2 becomes

more efficient for higher loads.

 Serhii Zybin et al. / International Journal of Computing, 20(2) 2021, 211-220

218 VOLUME 20(2), 2021

Table 1. The performance of a dual processor system

The value of

processor load

connections

The dual processor system performance

Scheme # 1 Scheme # 2 Scheme # 3

0.0 1.00 1.00 1.00

0.2 0.65 0.63 0.7

0.4 0.48 0.48 0.54

0.6 0.35 0.36 0.44

0.8 0.29 0.30 0.37

1.0 0.24 0.26 0.31

Table 2. The five-processor system performance

The value of

processor load

connections

The five-processor system performance

Scheme # 1 Scheme # 2 Scheme # 3

0.0 1.00 1.00 1.00

0.2 0.46 0.58 0.65

0.4 0.25 0.39 0.42

0.6 0.16 0.29 0.31

0.8 0.13 0.23 0.24

1.0 0.10 0.19 0.20

Table 3. The eight-processor system performance

The value of

processor load

connections

The eight-processor system performance

Scheme # 1 Scheme # 2 Scheme # 3

0.0 1.00 1.00 1.00

0.2 0.25 0.49 0.51

0.4 0.12 0.25 0.25

0.6 0.09 0.17 0.17

0.8 0.07 0.12 0.12

1.0 0.05 0.10 0.10

Low loads in the computing module, however, can be

considered as the most significant. Therefore, a well-

designed scheme should function in this area if the goal is to

reduce the complexity of distributing tasks between

processors by reducing communication costs.

A comparative analysis of the data shows the presence of

certain patterns that allow us to draw general conclusions.

An increase in the number of processors allows us to ensure

that the differences between the schemes become

insignificant even for very low loads. For a five- and eight-

processor computing module, scheme 3 does not provide

such a big advantage over other scheme as in the dual-

processor version.

The technique, which is proposed by the authors, makes

it possible to compare different architectures of computers

and computing modules. In this case, a parameter is used that

characterizes the behavior of various models and a parameter

that is necessary to compare the effectiveness of each

architecture. A parameter that characterizes the behavior of

various models is used for a fixed number of computers. The

parameter that is necessary to compare the efficiency of each

computer architecture or computing module is used when

using a different number of computers. The number of

computers can be variable at a fixed workload.

Thus, in solving the problems of air traffic control, the

application of the proposed method made it possible to

reduce the delay time in the processing of incoming

information between an airplane and ground (“board-to-

ground”) by half, which is very important for ensuring flight

safety. This methodology is applied at the banks with remote

objects. It avoids deadlock situations that arise during

operation due to the increase of information flows. Similar

situations arise in connection with the transfer of a large

amount of information to the central (main) office. Similar

situations arise in connection with the transfer of a large

amount of information to the central office. Also, the

proposed technique has proven itself well in managing

complex technological processes that are associated with the

processing of statistical information in logistics and making

decisions. The mathematical implementation of the method

relies on solving the problem of mathematical optimization

or feasibility. The practical implementation of the proposed

methodology has found application in the field of air traffic

control; namely, it is used at the international airport

“Borispol”, Ukraine, the enterprise “Ukraviarukh” and the

state bank “Privatbank”.

VII. CONCLUSIONS

This technique allows to optimize task assignments in a

distributed system. The technique takes into account the

workload of computers and intercomputer interactions

(links) and allows one to minimize the time to complete

tasks. Parameters
k and t allow one to compare different

architectures of computers and computing modules. At the

same time, the parameter
k characterizes the behavior of

various models with a fixed number of computers. The

parameter t is necessary to compare the effectiveness of

each architecture of a computer or computing module when

using a different number of computers, which can be

variable, with a fixed workload. The mathematical

implementation of the method is based on the solution of the

integer programming problem. It is proposed to use neural

networks in order to reduce the time for solving tasks.

The application of the optimal task distribution technique

allows real-time processing of large amounts of information.

At the same time, there is the possibility of automatic

parallelization of tasks between computers in the local

network. In addition, this technique can be used in systems

with remote access.

In the authors’ opinion, studies of methods for optimal

distribution of tasks require further continuation, because

they can be found widely used in processing information in

various technological processes.

References
[1] D. A. Patterson, J. L. Hennesy, Computer Organization and Design:

The Hardware/Software Interface: ARM Edition, Morgan Kaufmann,
2017, 1074 p.

[2] M. Wolf, Computers as Components: Principles of Embedded

Computing System Design, 3rd Ed., Morgan Kaufmann, Elsevier,
2012, XXIII, 500 p.

[3] F. Gebali, Algorithms and Parallel Computing, John Wiley & Sons,

2011, https://doi.org/10.1002/9780470932025.

[4] H. El-Rewini, M. Abd-El-Barr, Advanced Computer Architecture and
Parallel Processing, John Wiley & Sons, 2005, 287 p.

https://doi.org/10.1002/0471478385.

https://doi.org/10.1002/9780470932025
https://doi.org/10.1002/0471478385

Serhii Zybin et al. / International Journal of Computing, 20(2) 2021, 211-220

VOLUME 20(2), 2021 219

[5] J.-L. Baer, Microprocessor Architecture from Simple Pipelines to
Chip Multiprocessors, Cambridge University Press, New York, 2010,

384 p. https://doi.org/10.1017/CBO9780511811258.

[6] S.V. Zybin, V.O. Khoroshko, “Productivity and optimization of
specialized information processing systems that have a structure, is

configured by software,” Informatics and Mathematical Methods in

Simulation, vol. 9, no. 3, pp. 120–130, 2019,
https://doi.org/10.15276/imms.v9.no3.120. (In Ukrainian)

[7] M. Dubois, M. Annavaram, P. Stenström, Parallel Computer

Organization and Design, Cambridge: Cambridge University Press,
2012, 566 p.

[8] M. Iverson, F. Ozguner, “Dynamic, competitive scheduling of

multiple DAGs in a distributed heterogeneous environment,”

Proceedings of the Seventh IEEE Heterogeneous Computing
Workshop, Orlando, Florida USA, March 30, 1998, pp. 70–78.

[9] P. Marshall, K. Keahey, T. Freeman, “Improving utilization of

infrastructure clouds,” Proceedings of the IEEE / ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid’2011),

Newport Beach, CA, USA, May 23–26, 2011, pp. 205–214,

https://doi.org/10.1109/CCGrid.2011.56.

[10] J. H. Lala, Performance Evaluation of a Multiprocessor in a Real Time

Environment, Ph.D. Thesis, Massachusetts Institute of Technology,

Dept. of Aeronautics and Astronautics, 1976.
https://dspace.mit.edu/handle/1721.1/61020.

[11] H. El‐Rewini, M. Abd‐El‐Barr, Advanced Computer Architecture and

Parallel Processing, Wiley-Interscience, 2004, 272 p.
https://doi.org/10.1002/0471478385.ch3.

[12] E. De Coninck, T.Verbelen, “Distributed neural networks for internet

of things: The big-little approach,” Proceedings of the Second
International Summit on Internet of Things. IoT Infrastructures: IoT

360°, Rome. Italy. October 27-29, 2015, Revised Selected Papers, Part

II, pp. 484-492, https://doi.org/10.1007/978-3-319-47075-7_52.

[13] Fundamentals of Grid Computing Theory, Algorithms and
Technologies, Numerical Analysis and Scientific Computing, Edited

by Frédéric Magoulès, Chapman and Hall/CRC; 1 st edition, 2009,

322 p. https://doi.org/10.1201/9781439803684-c1.

[14] N. Kussul, L. Hluchy, A. Shelestov, S. Skakun, O. Kravchenko, M.

Ilin, Yu. Gripich, A. Lavrenyuk, “Data fusion grid segment,” Space

Science and Technology, vol. 15, no. 2, pp. 49–55, 2009,
https://doi.org/10.15407/knit2009.02.049.

[15] G. Capannini, F. Silvestri, and R. Baraglia, “K-model: A new

computational model for stream processors,” Proceedings of the 2010
IEEE 12 th International Conference on High Performance Computing

and Communications, HPCC’2010, 2010, pp. 239–246,

https://doi.org/10.1109/HPCC.2010.22.

[16] Proceedings of the 15-th International Workshop on Heterogeneous

Wireless Networks (HWISE-2019), Kunibiki Messe, Matsue, Japan,

March 27–29, 2019. URL:

http://voyager.ce.fit.ac.jp/conf/hwise/2019/.

[17] X. Lu, L. Chen, & Z. Li, “Performance evaluation and enhancement

of process-based parallel loop execution,” Int J Parallel Prog, vol. 45,

pp. 185–198, 2017, https://doi.org/10.1007/s10766-015-0394-1.

[18] H. Gao, A. Schmidt, A. Gupta, P. Luksch, “Load balancing for spatial

–grid-based parallel numeric simulations on clusters of SMPs,”

Proceeding of the 11th Euromicro Conference on Parallel,
Distributed and Network based Processing (PDP’2003), Genoa, Italy

February, 5–7, 2003, pp. 75–82.

[19] H. Gao, A. Schmidt, A. Gupta, P. Luksch, “A graph-matching based
intra-mode task assignment methodology for SMP clusters,”

Proceeding of the 7th World Multiconference on Systemics,

Cybernetics and Informatics (SCI’2003), Orlando, Florida, USA, July,
27–30, 2003, pp. 406 – 411.

[20] C. R. Kothari, Research Methodology: Methods and Techniques,

Second revised edition, New Age International, 2007, 414 p.

[21] C. Andre, R. Pinheiro, F. McNeill, Heuristics in Analytics: A Practical
Perspective of What Influences Our Analytical World, John Wiley &

Sons Inc, 2014, 256 p. https://doi.org/10.1002/9781118434260.

[22] G. Karypis, V. Kumar, “Unstructured tree search on SIMD parallel
computers,” IEEE Transactions on Parallel and Distributed Systems,

vol. 5, issue 10, pp. 1057–1072, 2004,

https://doi.org/10.1109/71.313122.

[23] M.A. Miroshnik, L.A. Klimenko, “Placement of subtasks in

distributed computing systems of cluster-metacomputing type,”

Information and Control Systems on Railway Transport, no. 4, pp. 71–

77, 2014. (in Russian)

[24] H. Shafiee, M. N. Moqadam, “Information resources management
(IRM): The key of accountability,” Jurnal Fikrah. Jilid 8, Special Issue

1, pp. 232–246, 2017.

[25] A. D. Kshemkalyani, M. Singhal, Distributed Computing Principles,
Algorithms, and Systems, Cambridge University Press, 2008, 754 p.

https://doi.org/10.1017/CBO9780511805318.

[26] W. L. Winston, Introduction to Mathematical Programming
Operations Research: Volume One, 4th Edition, Thomson

Brooks/Cole, 2003, 924 p.

[27] Y.S. Yvanchenko, V.A. Khoroshko, “Analysis of information

resource traffic,” Informational security, no. 1, pp. 63–68, 2013. (in
Russian)

[28] L. Li, K. Ota and M. Dong, “Deep learning for smart industry:

Efficient manufacture inspection system with fog computing,” IEEE

Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4665-4673,

2018, https://doi.org/10.1109/TII.2018.2842821.

[29] V. Dudykevych, I. Prokopyshyn, V. Chekurin, I. Opirskyy, Yu. Lakh,
T. Kret, Ye. Ivanchenko, I. Ivanchenko, “A multicriterial analysis of

the efficiency of conservative information security systems,” Eastern-

European Journal of Enterprise Technologies. Information and
Controlling System, vol. 3, no. 9(99), pp. 6-13, 2019,

https://doi.org/10.15587/1729-4061.2019.166349.

[30] L. Karpov, V. Feldman and A. Sheerai, “Universal engineering
console and its software for Elbrus-1 and Elbrus-2 multiprocessor

computer systems,” Proceedings of the 2017 Fourth International

Conference on Computer Technology in Russia and in the Former
Soviet Union (SORUCOM), Zelenograd, 2017, pp. 54-63,

https://doi.org/10.1109/SoRuCom.2017.00014.

[31] J. Gómez-Luna, E. Herruzo, & J. I. Benavides, José, “MESI Cache

Coherence Simulator for Teaching Purposes,” CLEI Electron. J., vol.

12, no. 1, 2009, https://doi.org/10.19153/cleiej.12.1.5.

SERHII V. ZYBIN was born in 1970 in
Mykolaiv, Ukraine. In 1994, he graduated
the Kyiv Polytechnic Institute. The
diploma specialty is a system engineer.
In 2003-2004 worked in the National
Aviation University in the position of
assistant. In 2004-2019 worked in the
State University of Telecommunications
in following positions: senior lecturer,
associate professor. From 2019 for this
time works in the National Aviation
University in the position of professor. In

2006, he received his Ph.D degree. The specialty is “Information
security systems”. In 2019, he received his doctor degree. The
specialty is “Information technologies”. Research interests:
information security systems, decision support systems,
cybersecurity, operating systems.

VOLODYMYR O. KHOROSHKO was
born in 1945 in Kharkiv, Ukraine. In 1968
he graduated from the Kyiv Institute of
Civil Aviation Engineers with a degree in
“Technical operation of aviation
electronic equipment.” In 1975 he
defended his Ph.D dissertation, and in
1992 he defended his dissertation for the
degree of Doctor of Technical Sciences
at the Institute of Modeling Problems in
Energy of the Academy of Sciences of
Ukraine (Kyiv). He works as a professor

at the Department of Information Technology Security of the
National Aviation University. Research interests: computer
systems and information security: technical systems of information
protection, which are complex systems with decision support
subsystems; intellectualization of modeling, management and
decision-making in the field of information security.

https://doi.org/10.1017/CBO9780511811258
https://doi.org/10.15276/imms.v9.no3.120
https://doi.org/10.1109/CCGrid.2011.56
https://doi.org/10.1002/0471478385.ch3
https://doi.org/10.1007/978-3-319-47075-7_52
https://doi.org/10.1201/9781439803684-c1
https://doi.org/10.15407/knit2009.02.049
https://doi.org/10.1109/HPCC.2010.22
https://doi.org/10.1007/s10766-015-0394-1
https://doi.org/10.1002/9781118434260
https://doi.org/10.1109/71.313122
https://doi.org/10.1017/CBO9780511805318
https://doi.org/10.1109/TII.2018.2842821
https://doi.org/10.15587/1729-4061.2019.166349
https://doi.org/10.1109/SoRuCom.2017.00014
https://doi.org/10.19153/cleiej.12.1.5

 Serhii Zybin et al. / International Journal of Computing, 20(2) 2021, 211-220

220 VOLUME 20(2), 2021

Volodymyr N. Maksymovych was born
in 1952 in Lviv, Ukraine. In 1975 he
graduated from the “Lviv Polytechnic
Institute”. Specialty after a diploma is
electrical engineering. In 1975-1993
worked in the Lviv Research
Radiotechnical Institute on positions:
engineer, senior engineer, leading
engineer, leading engineer-designer
from 1992 for this time works in the
National University “Lviv Polytechnic”, on
positions: assistant, associate professor,

professor, head of department of Information Technologies
Security. In 1993 received his Ph.D. on specialty “Devices and
methods of electric and magnetic values measuring”. In 2008
received doctor degree on specialty “Elements and devices of the
computing engineering and control systems”. Research of
interests: generators of pseudorandom numbers and bit

sequences, number-pulse functional converters, devices for
radiation parameters measuring.

Ivan R. Opirskyy: In 2008 he graduated
from the National University “Lviv
Polytechnic” and received a Master
degree in “security of information with
restricted access and automation of its
quitrents.” In 2012 he received his PhD.
on specialty “Information security
systems” at the National University “Lviv
Polytechnic”. In 2018 received the
degree of Doctor of Science in the
specialty “Information Security Systems”.
2019 is professor of information security

department the National University “Lviv Polytechnic”.

