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 ABSTRACT One of the widely used methods to accelerate a numerical solver is implementation of 

multithreading. The problem of thread allocation on-demand at runtime is latency, caused by periodical 

instantiation of threads. The article is devoted to parallelization of solver for 3D mathematical model of ore 

sintering, based on software threads reusing them during computation. Computational domain is equally shared 

among available threads. Each thread writes only to own data partition. A looped barrier is proposed for guaranteed 

synchronization of all threads after iteration. The method allows scaling performance without recompilation of the 

solver by using similar CPU with more cores. Measurement of solver performance with 220 nodes using different 

thread count confirms scalability around 95% for double and single precision arithmetics. Presented pictures of 

perspective view with three slices of temperature field show influence of heat loss from pallets walls. A cross 

section of temperature field in layer after 16 minutes of sintering is calculated with appearance of two high-

temperature regions inside. Comparison of temperature field with literature data gives good correspondence. The 

computer model takes into account important chemical reactions, such as, coke burning, carbonate dissolution, 

water vaporization, as well as mass-heat transfer inside the sinter layer and can be used in metallurgical plants to 

increase effectiveness of sintering. 
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I. INTRODUCTION 

ODAY ore sintering is actively used in metallurgical 

plants as preparation stage before getting liquid iron in 

furnace. At the stage, the main resources (ore, coke, and 

limestone) are fused with collected dust or fines (remaining 

after previous sintering) at temperature around 1500K. Then 

the product (sinter) is cooled and broken into pieces for 

smelting in furnace. The sintering helps plant to reduce waste 

and to save some number of resources. Also sinter has 

properties, which make furnace to work longer.  

So sintering is complex process with nonlinear 

dependencies. Thus, to precisely predict it a math model 

needs time-consuming calculation of a large number of 

numbers. In addition to minimize approximation errors of a 

numerical scheme and provide a sufficient accuracy for a 

complex mathematical model a numerical solver of partial 

differential equations (PDEs) needs a small spatial and time 

step. The small step and minimization of computation time 

leads to the necessity of a high-performance optimization 

based on existing computer technologies. That’s why 

acceleration of computing is an important problem. 

Historically the development of a central processing unit 

(CPU) goes in the course of increasing CPU cores number 

instead of CPU frequency, because the latter requires a 

nonlinear growing of electric power consumption. Multi-

core CPU gave an ability to scale up running performance 

with acceptable power consumption at the cost of increasing 

complexity of hardware and software implementation. 

Talking about hardware: nowadays a computer market 

has a lot of multi-core processors with an interesting 

technology, called the simultaneous multithreading (SMT), 

which in an appropriate situation allows a single core to 

simultaneously process two threads, increasing CPU 

performance like if it would have more cores than it has.  

In our time, operating systems (OSes) offer effective 

instruments for programmers to simplify parallelization of 

T 
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their applications. Such widely used instrument in a software 

development is multithreading. According to it an each 

thread uses an available core of CPU to complete a task. So 

to accelerate a program execution, one needs to accurately 

distribute the execution of time-consuming code across the 

threads. The OS job is to optimally associate physically 

available CPU cores with created software threads for a 

maximum load of the processor.  

Today, the multithreading is implemented in many free 

parallel software frameworks and standards, such as 

Boost.Thread or OpenMP, which are often used by scientists 

for a solving of partial differential equations [1, 2]. 

In this paper, performance benefits of the multithreading 

will be counted during a numerical solution of a 

mathematical model with PDEs. 

II. RELATED WORKS 

In the previous paper [3], the author considered a problem of 

heat and mass transfer in a two-dimensional statement. 

However, a three-dimensional statement better fits 

agglomeration process due to simultaneous movement of a 

sinter layer on an agglomeration machine and the air through 

the layer. Also a heat loss from pallet walls, which affects a 

temperature distribution in the sinter layer, should be taken 

into account. The usage of multicore architecture of present 

CPUs will speed up calculation of the mathematical model. 

The author of the paper [4] discusses about the 

researcher’s need for a high performance computing, since it 

is an instrument to get a new knowledge and a good solution 

to their scientific problems. Also majority of researchers 

don’t know computer science well and doesn’t have enough 

time to implement their mathematical models. So they search 

for a released high performance programs. The author gives 

interesting examples of parallelization and concurrency. 

The authors of the paper [5] successfully parallelized 

different variants of iterative Conjugate Gradient methods 

for solving finite-difference implicit problem using an 

OpenMP API with 228 threads and Intel Xeon Phi with 57 

cores. A good refining of a numeric grid significantly 

increases effectiveness of the OpenMP implementation. 

Another paper [6] is devoted to parallelization of wave 

equation computation using MATLAB/ Octave, OpenMP 

and CUDA parallel implementation of mathematical model. 

The author of the paper concludes about good fitting of CPU 

implementation to a small problem and GPU based solution 

– to large and very large data processing.  

In the thesis [7], the author tests two CPU architectures 

from the same manufacturer using OpenMPI. At the page 79, 

he shows a table with maximum of 12.11 speedup of tiled 

Jacobi solver using 15 threads comparing to single thread 

performance.  

Paper [8] considers parallelization of vector and matrix 

multiplication using processor with two cores and four 

threads. The authors present results about a small difference 

in run-times of two and four threads. A four cored CPU could 

give a faster result for the latter case.  

In the thesis [9], the author tries to get benefits from 

hyperthreading technology to maximize load of CPU cores. 

Regrettably he does not have a big effect with it. Also the 

other authors [10] recommend turning hyperthreading off to 

avoid performance gaps. 

The article [11] is devoted to parallelized solution of 

shallow water equations using memory access patterns. The 

performance comparison using 28-64 threads shows 1.3-1.4x 

gain of speed. 

In the paper [12], the authors use multithreading to 

achieve 2-3x performance speedup using CPU, and 4-7x – 

by using GPU for a mathematical model of heat and mass 

transfer during polymer flooding. 

Other authors [13] present a numerical scheme for 

solving 2D Sine-Gordon equations and its parallelization 

using OpenMP and FORTRAN. The results given by cluster, 

which has two CPUs and 24 cores with SMT, show almost 

constant speedup using 30 threads or lower. However, every 

addition of 6 threads over mentioned 30 ones gives 

significantly smaller profit (30x speedup using 48 threads). 

The authors of the paper [14] use optimized thread 

parallelism of GPU with CUDA framework for the fluid flow 

problem. The comparison with CPU performance shows a 

large advantage of GPU with 136x gain using single 

precision arithmetic. Nowadays, a GPU performs a lot 

slower when it uses double precision arithmetic, but 

nevertheless it is becomes faster than a CPU using double 

precision arithmetic.  

The authors of the paper [15] present a multithreading 

library for C++11, which depends on Eigen and ThreadPool 

libraries and has following features: easy-to-use C++ code 

constructs; scalability dependency on CPU cores number. 

The authors consider an influence of hyperthreading on the 

resulting figures and state about parallelization benefits from 

using only large data to process. 

The article [16] is devoted to a method of multithreading 

optimization using OpenMP applied for two problems: wave 

equation and linearized Einstein equations. The presented 

pictures show good speedup scaling. 

The authors of the paper [17] present an interesting 

pyramidal three-level parallel framework for cluster, in 

which master processor sends messages to defined constant 

number of processors – submasters. Each submaster has a list 

of slave CPUs, sends data to them and waits for data changes 

from slaves to form a message for master. The framework 

shows mostly linear performance gain with CPU count 

ranging from 1 to 40 for the implementation of an ant colony 

algorithm. 

In the paper [18], it is considered a parallelized numeric 

simulation of the water flow in an open channel based on the 

Saint-Venant PDEs and single precision arithmetic. The 

authors reveal certain GPU performance advantage over 

CPU. 

The authors of the paper [19] present object-oriented 

C++ framework for implementing parallelization, 

communication and synchronization patterns. In addition, 

authors compare it with MPI (message passing library) when 

solving of unsteady incompressible Navier-Stokes problem. 
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The presented framework approaches a golden center 

between flexibility and performance of PDE solvers. 

As demonstrated in [20], multithreading is successfully 

applied to accelerate solving of two-dimensional nonlinear 

Burgers’ equation using 8 CPU cores. The proposed method 

is surprisingly faster than single core by 20 times (one could 

theoretically expect only 8 times).  

The scalability of code performance on a processor 

cluster can decrease with growing of CPUs number as 

discovered in [21], which can be explained by time-

consuming synchronization between many CPUs. 

III. PURPOSE OF THE RESEARCH 

The aim of the article is to implement multithreading with 

thread reusing and synchronization. It is necessary to 

compare performance of single-threaded app with its 

multithreaded version during calculation of improved 3D 

mathematical model of sintering. The improved model takes 

into consideration a heat loss from the walls of the pallets, 

where sinter is located. Also, it is appreciated to model the 

process using three spatial dimensions and getting 

visualization of developed sintering on the cross sections of 

layer. 

IV. MATHEMATICAL MODEL 

A. DESCRIPTION 

A porous sinter layer, in which a temperature distribution is 

simulated, is 30 meters long and starts under the area of gas 

burners. The area has a width of 2 meters and a length of 4 

meters. The layer has a constant height of half a meter 

(Fig. 1). A computational domain for the mathematical 

model is rectangular. Z-axis is mirrored down to match the 

direction of air flow.  

 

 

Figure 1. The schematic view of a sintering machine for an agglomeration modeling 

 

The system of equations, that represents essential 

transfers in layer [3], is following:  
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where respectively MO2 and MH2Og oxygen and water vapor 

concentration in air inside layer, MFeO, MH2O, MCaCO3 and MC 

Fe oxide, water, calcium carbonate and carbon concentration 

in layer, Tgas and Ts – temperature of air and sinter inside 

layer, Qtob – heat transfer between sinter and air. 

Boundary conditions on the top surface of layer are 

known inlet temperature of air, concentration of oxygen and 

vapor. At the layer bottom – free passing fluxes – outflow 

boundary conditions. 
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B. ENHANCEMENT 

The mathematical model [3] is considered at 3-dimensional 

statement and is improved by adding a boundary condition, 

that corresponds to the Newton’s law of cooling and heat 

radiation from the walls of the pallets, because a temperature 

of the wall often can be greater than 800 oC [22]: 
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In the above formula: Ts and Tenv are temperatures of the 

sinter layer and surround atmosphere; h is an empirical 

coefficient of the heat outflow, which depends on surround 

convection; σ is Stefan-Boltzman constant; ε is emissivity of 

the wall.  

Mathematical models, like proposed above, have almost 

100% parallelizable numeric calculations and sequential 

parts of computation can’t notably influence solver’s 

performance when it implements multithreading. 

V. ACCELERATION OF THE SOLVER  

For a multithreading computation of the mathematical 

model, the computational domain is divided on equally sized 

data chunks along z-axis. There is a local z-index to access a 

particular number (i.e. temperature) inside a single data 

chunk. Each chunk is only processed by associated thread, 

so the calculation is spatially separated and is concurrently 

done, accelerating overall performance of the calculation. 

The equality of the chunks also provides a time minimization 

of the one thread waiting for the other threads. However 

some workload unbalancing can occur when the first thread 

or the last one needs to set up a boundary condition for the 

top or the bottom of layer at the beginning of the next 

timestep. 

The axis of time is divided by timesteps, so all time-

variable fields (i.e. temperature field) on the next timestep 

are computed on the basis of the previous ones. To avoid data 

races it is needed the guarantee that all the threads have 

finished a calculation for the current timestep. The guarantee 

is satisfied by a synchronization of all the threads with a help 

of a barrier with a loop for the waiting. The looping is meant 

to be very short because of a small waiting time of the 

threads, mentioned above. It’s worth noting that order of the 

threads, in which barrier is reached, does not matter in this 

case. Let max is maximum number of the threads passed 

barrier. Let current is count of threads currently reached 

barrier. And let iteration is monotonically incremented index 

of current timestep then algorithm of the barrier is follow: 

1) Add 1 to the current and compare it with the max.  

2) If the result of the comparison is not equal then start a 

loop which exits when iteration changes with going to 1. 

Else go to 3. 

3) Assign 1 to current and add 1 to the iteration. Also, 

the latter releases other threads from the loop at 2. 

The iteration variable of the barrier can be used for a 

debugging purpose. 

Saving computation results to hard disk can be 

performance bottleneck, so output to disk is done by another 

thread. 

A. IMPLEMENTATION DETAILS 

Standard C++ library (namespace std::*) has excellent 

support among integrated development environments 

accelerating a realization of mathematical model. Also it 

provides cross-platform definitions and patterns, which are 

useful especially for multithreading programming. Thus, one 

can avoid usage of unsafe C++ pointers or unnecessary 

implementation popular algorithms (finding maximum, 

minimum and other). There are classes and structures, which 

replace raw C++ arrays for numbers (scalar fields) and chars 

(strings). They help to minimize memory leaks.  

Computation of mathematical model is long-running task 

with repeated iterations. Series of iterations can be 

performed by single thread. So, during mathematical 

computation any threads are not created, which can hurt 

performance. Threads for computation are spawned at the 

beginning and exited when model time reaches a predefined 

end. Moreover each thread can be assigned to particular CPU 

core to minimize context switches by operational system.  

Let’s consider a start of computation on CPU with four 

cores and let z_max be a number of z-chunks. Spawned 

threads receive individual constants z_start and z_end, which 

are used for looping own z-chunks of data. Then algorithm 

of thread spawning will be following: 
     ____________ 

Algorithm: main thread spawns other four ones____ ______ 
1. t_index = 0, part = z_max / 4 

2. while t_index < 4 do 

3.   z_start = (index * part + 1) 

4.   z_end = (index * part + 1 + part) 

5.   Spawn a thread, which computes part of 

data between z = z_start and z < z_end 

(next algorithm) 

6.   Detach spawned thread (joining to the 

main thread is not used in this case) 

7.   t_index ++ 

8. end while  

9. Loop for saving computation results 

incoming from spawned threads  

 

Let time_layer be an index of current tick on the time axis 

and saves_per_second be a frequency of outputting results to 

a hard disk. Threads are synchronized after each computation 

of new fields: 
     ____________ 

Algorithm: time loop in computational thread  ____ 
1. time_layer = 0, save_interval = 

saves_per_second / model_time_step 

2. while time_layer < end do 

3.   Compute new fields using z_start and 

z_end 

4.   Waiting all threads using 

synchronization barrier, mentioned at the 

previous paragraph 

5.   time_layer ++ 

6. if time_layer % save_interval == 0  
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7. Compute maximum, minimum and average 

value from numbers in computed fields  

8. Push results into thread safe queue to 

save them on the main thread 

9. end if 

10. end while  

11. Thread exit 

Values computed on different threads are combined on 

the main thread and saved together with computed field. 

VI. RESULTS 

Parameters (width, height and depth) of sintering layer are 

taken for real machine. Firstly, let’s analyze results of the 

mathematical model computing. There are three slices of 

temperature field on the Fig. 2: at 7.5m of length, at 1m of 

width, and 0.01m of height (z-axis heads from the top to the 

bottom of the sinter). The Fig. 2 shows the beginning of coke 

burning around the point of 2m along x-axis. The heat loss 

from the pallets wall smoothes the temperature field, which 

can be seen on the y-z slice at the point of 7.5m along x-axis. 

Without the heat loss the field is isolated by the pallets wall 

and has a sharp edge as demonstrated on the figure. 

The Fig. 3 shows two high-temperature (about 1300˚C) 

regions diagonally connected by the path of sinter with about 

1100 ̊ C: the first one is a small around point (4m, 0m), where 

coke starts burning, and the second one is a large around 

point (10m, 0.4m), where fire mostly horizontally spreads to 

the neighborhoods. 

Comparison of Figure 2 with results in the paper [23] 

(Fig. 4) leads to conclusion about similar temperature field 

with no more 20% difference. On the both figures high-

temperature region begins under gas burners and develops to 

the bottom of layer diagonally. 

 

 

Figure 2. The three slices of temperature field (x=7,5m, y=1m, z=0.01m). Starting ignition area is clearly seen between 2 and 

4 meters. Without heat loss effect temperature field has sharp edge (at small frame above) 

 

 

Figure 3. The cross section of the developed temperature field at half a width of layer after 16 min of modeled sintering 

The set of experiments are conducted to measure 

performance of the multithreaded numeric solver. 

Calculations are done on the CPU with hyperthreading 

technology: i9-9900T (8 cores, 16 threads) with base clock 

rate 2,1 GHz. The amount of timesteps is 20 000 (200 

seconds of modeling time). For the each timestep the amount 

of nodes for the calculation is 1 048 576. The frequency of 

all CPU cores is fixed at 2,1 GHz. A profiler shows that after 
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start of the experiment more than 90% of running time the 

CPU spends for a computation of the fields, that is a good 

load. 

Rising of threads count from 1 to 8 (Fig. 4) gives 

acceleration of approximately 5 times with hyperthreading 

turned on, and almost 8 – without it, so the hyperthreading 

slows speed down on a small number of threads. Achieved 

speed up corresponds to other one in the paper [24] at Fig.C.1 

for 1-8 threads, where finite difference method also used. 

The computation using double precision arithmetic for 

numbers costs a small performance overhead, because the 

amount of nodes is sufficiently small for optimizations or for 

the CPU cache size.  
 

 

Figure 4. The scalability of the solver’s acceleration 

Also, effectiveness of proposed algorithm is confirmed 

in the experiments with different node counts (Fig. 5). The 

node count grows exponentially, and calculation time is not 

exactly corresponding to it, however, a general pattern exists. 
 

 
Figure 5. Dependency of computation time on node count 

using 8 threads (lower is better) 

Initial temperature change from 300 K to 500 K gives 

insignificant performance difference (smaller than 1%). 

VII. CONCLUSION 

Numerical experiments with single-threaded implementation 

demonstrate that the time needed to compute mathematical 

model with interconnected partial differential equations can 

be very large – from hours to days. Moreover, scientists need 

to conduct a lot of numerical experiments to determine 

rational parameters of process. Created computer model with 

multithreaded implementation significantly reduces 

calculation time of ore sintering (to around 23%) on CPU 

with 8 cores. 

Presented figures show successfully simulated heat 

distribution inside sinter layer influenced by set of important 

chemical and physical processes and heat loss from the 

walls. Two high-temperature regions are established after 16 

minute of model time. The further simulation gives very 

small changes of the temperature field. Thus, variables 

approaches state, where they don’t depend on time. 

Comparing calculated temperature field to the field on 

the figures in the paper [23], a good correspondence is stated. 

The presented mathematical model can be used to optimize 

ore sintering at the plants. Also, the evolution of the 

temperature field can be viewed at the website URL, 

provided at the beginning of the paper.  

The parallelization of the numeric solver by software 

threads has confirmed scalability over 95% utilizing 1-8 

CPU cores (Fig. 4-5) and has a good perspective to accelerate 

a calculation of other similar mathematical models. 

It will be useful to test this parallelization on a much 

higher number of cores in the future. Also, further research 

can include vectorization using SIMD instructions 

implemented in a majority of CPUs.  
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