

286 VOLUME 20(2), 2021

Date of publication JUN-28, 2021, date of current version MAY-28, 2021.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209

Online ISSN 2312-5381

DOI 10.47839/ijc.20.2.2177

Multithreaded Acceleration of 3D
Mathematical Model for Ore Sintering

KYRYLO S. KRASNIKOV
Department of Systems Software, Dniprovskyi State Technical University, Kamianske, Ukraine,

(e-mail: kir_kras@ukr.net) http://www.scitensor.com/lab/metallurgy/sintering

Corresponding author: Kyrylo S. Krasnikov (e-mail: kir_kras@ukr.net).

 ABSTRACT One of the widely used methods to accelerate a numerical solver is implementation of

multithreading. The problem of thread allocation on-demand at runtime is latency, caused by periodical

instantiation of threads. The article is devoted to parallelization of solver for 3D mathematical model of ore

sintering, based on software threads reusing them during computation. Computational domain is equally shared

among available threads. Each thread writes only to own data partition. A looped barrier is proposed for guaranteed

synchronization of all threads after iteration. The method allows scaling performance without recompilation of the

solver by using similar CPU with more cores. Measurement of solver performance with 220 nodes using different

thread count confirms scalability around 95% for double and single precision arithmetics. Presented pictures of

perspective view with three slices of temperature field show influence of heat loss from pallets walls. A cross

section of temperature field in layer after 16 minutes of sintering is calculated with appearance of two high-

temperature regions inside. Comparison of temperature field with literature data gives good correspondence. The

computer model takes into account important chemical reactions, such as, coke burning, carbonate dissolution,

water vaporization, as well as mass-heat transfer inside the sinter layer and can be used in metallurgical plants to

increase effectiveness of sintering.

 KEYWORDS multithreading; numeric solver; 3D model; ore sintering.

I. INTRODUCTION

ODAY ore sintering is actively used in metallurgical

plants as preparation stage before getting liquid iron in

furnace. At the stage, the main resources (ore, coke, and

limestone) are fused with collected dust or fines (remaining

after previous sintering) at temperature around 1500K. Then

the product (sinter) is cooled and broken into pieces for

smelting in furnace. The sintering helps plant to reduce waste

and to save some number of resources. Also sinter has

properties, which make furnace to work longer.

So sintering is complex process with nonlinear

dependencies. Thus, to precisely predict it a math model

needs time-consuming calculation of a large number of

numbers. In addition to minimize approximation errors of a

numerical scheme and provide a sufficient accuracy for a

complex mathematical model a numerical solver of partial

differential equations (PDEs) needs a small spatial and time

step. The small step and minimization of computation time

leads to the necessity of a high-performance optimization

based on existing computer technologies. That’s why

acceleration of computing is an important problem.

Historically the development of a central processing unit

(CPU) goes in the course of increasing CPU cores number

instead of CPU frequency, because the latter requires a

nonlinear growing of electric power consumption. Multi-

core CPU gave an ability to scale up running performance

with acceptable power consumption at the cost of increasing

complexity of hardware and software implementation.

Talking about hardware: nowadays a computer market

has a lot of multi-core processors with an interesting

technology, called the simultaneous multithreading (SMT),

which in an appropriate situation allows a single core to

simultaneously process two threads, increasing CPU

performance like if it would have more cores than it has.

In our time, operating systems (OSes) offer effective

instruments for programmers to simplify parallelization of

T

Kyrylo S. Krasnikov et al. / International Journal of Computing, 20(2) 2021, 286-292

VOLUME 20(2), 2021 287

their applications. Such widely used instrument in a software

development is multithreading. According to it an each

thread uses an available core of CPU to complete a task. So

to accelerate a program execution, one needs to accurately

distribute the execution of time-consuming code across the

threads. The OS job is to optimally associate physically

available CPU cores with created software threads for a

maximum load of the processor.

Today, the multithreading is implemented in many free

parallel software frameworks and standards, such as

Boost.Thread or OpenMP, which are often used by scientists

for a solving of partial differential equations [1, 2].

In this paper, performance benefits of the multithreading

will be counted during a numerical solution of a

mathematical model with PDEs.

II. RELATED WORKS

In the previous paper [3], the author considered a problem of

heat and mass transfer in a two-dimensional statement.

However, a three-dimensional statement better fits

agglomeration process due to simultaneous movement of a

sinter layer on an agglomeration machine and the air through

the layer. Also a heat loss from pallet walls, which affects a

temperature distribution in the sinter layer, should be taken

into account. The usage of multicore architecture of present

CPUs will speed up calculation of the mathematical model.

The author of the paper [4] discusses about the

researcher’s need for a high performance computing, since it

is an instrument to get a new knowledge and a good solution

to their scientific problems. Also majority of researchers

don’t know computer science well and doesn’t have enough

time to implement their mathematical models. So they search

for a released high performance programs. The author gives

interesting examples of parallelization and concurrency.

The authors of the paper [5] successfully parallelized

different variants of iterative Conjugate Gradient methods

for solving finite-difference implicit problem using an

OpenMP API with 228 threads and Intel Xeon Phi with 57

cores. A good refining of a numeric grid significantly

increases effectiveness of the OpenMP implementation.

Another paper [6] is devoted to parallelization of wave

equation computation using MATLAB/ Octave, OpenMP

and CUDA parallel implementation of mathematical model.

The author of the paper concludes about good fitting of CPU

implementation to a small problem and GPU based solution

– to large and very large data processing.

In the thesis [7], the author tests two CPU architectures

from the same manufacturer using OpenMPI. At the page 79,

he shows a table with maximum of 12.11 speedup of tiled

Jacobi solver using 15 threads comparing to single thread

performance.

Paper [8] considers parallelization of vector and matrix

multiplication using processor with two cores and four

threads. The authors present results about a small difference

in run-times of two and four threads. A four cored CPU could

give a faster result for the latter case.

In the thesis [9], the author tries to get benefits from

hyperthreading technology to maximize load of CPU cores.

Regrettably he does not have a big effect with it. Also the

other authors [10] recommend turning hyperthreading off to

avoid performance gaps.

The article [11] is devoted to parallelized solution of

shallow water equations using memory access patterns. The

performance comparison using 28-64 threads shows 1.3-1.4x

gain of speed.

In the paper [12], the authors use multithreading to

achieve 2-3x performance speedup using CPU, and 4-7x –

by using GPU for a mathematical model of heat and mass

transfer during polymer flooding.

Other authors [13] present a numerical scheme for

solving 2D Sine-Gordon equations and its parallelization

using OpenMP and FORTRAN. The results given by cluster,

which has two CPUs and 24 cores with SMT, show almost

constant speedup using 30 threads or lower. However, every

addition of 6 threads over mentioned 30 ones gives

significantly smaller profit (30x speedup using 48 threads).

The authors of the paper [14] use optimized thread

parallelism of GPU with CUDA framework for the fluid flow

problem. The comparison with CPU performance shows a

large advantage of GPU with 136x gain using single

precision arithmetic. Nowadays, a GPU performs a lot

slower when it uses double precision arithmetic, but

nevertheless it is becomes faster than a CPU using double

precision arithmetic.

The authors of the paper [15] present a multithreading

library for C++11, which depends on Eigen and ThreadPool

libraries and has following features: easy-to-use C++ code

constructs; scalability dependency on CPU cores number.

The authors consider an influence of hyperthreading on the

resulting figures and state about parallelization benefits from

using only large data to process.

The article [16] is devoted to a method of multithreading

optimization using OpenMP applied for two problems: wave

equation and linearized Einstein equations. The presented

pictures show good speedup scaling.

The authors of the paper [17] present an interesting

pyramidal three-level parallel framework for cluster, in

which master processor sends messages to defined constant

number of processors – submasters. Each submaster has a list

of slave CPUs, sends data to them and waits for data changes

from slaves to form a message for master. The framework

shows mostly linear performance gain with CPU count

ranging from 1 to 40 for the implementation of an ant colony

algorithm.

In the paper [18], it is considered a parallelized numeric

simulation of the water flow in an open channel based on the

Saint-Venant PDEs and single precision arithmetic. The

authors reveal certain GPU performance advantage over

CPU.

The authors of the paper [19] present object-oriented

C++ framework for implementing parallelization,

communication and synchronization patterns. In addition,

authors compare it with MPI (message passing library) when

solving of unsteady incompressible Navier-Stokes problem.

 Kyrylo S. Krasnikov et al. / International Journal of Computing, 20(2) 2021, 286-292

288 VOLUME 20(2), 2021

The presented framework approaches a golden center

between flexibility and performance of PDE solvers.

As demonstrated in [20], multithreading is successfully

applied to accelerate solving of two-dimensional nonlinear

Burgers’ equation using 8 CPU cores. The proposed method

is surprisingly faster than single core by 20 times (one could

theoretically expect only 8 times).

The scalability of code performance on a processor

cluster can decrease with growing of CPUs number as

discovered in [21], which can be explained by time-

consuming synchronization between many CPUs.

III. PURPOSE OF THE RESEARCH

The aim of the article is to implement multithreading with

thread reusing and synchronization. It is necessary to

compare performance of single-threaded app with its

multithreaded version during calculation of improved 3D

mathematical model of sintering. The improved model takes

into consideration a heat loss from the walls of the pallets,

where sinter is located. Also, it is appreciated to model the

process using three spatial dimensions and getting

visualization of developed sintering on the cross sections of

layer.

IV. MATHEMATICAL MODEL

A. DESCRIPTION

A porous sinter layer, in which a temperature distribution is

simulated, is 30 meters long and starts under the area of gas

burners. The area has a width of 2 meters and a length of 4

meters. The layer has a constant height of half a meter

(Fig. 1). A computational domain for the mathematical

model is rectangular. Z-axis is mirrored down to match the

direction of air flow.

Figure 1. The schematic view of a sintering machine for an agglomeration modeling

The system of equations, that represents essential

transfers in layer [3], is following:

2O
2O2O

rz m
z

M
v

t

M
−=




+




, (1)

rFeO
FeO m
t

M
−=




 (2)

rC
C m

t

M
−=




 (3)

rkH2OriH2O

H2OgH2Og
mm

z

M
v

t

M
z −=




+




 (4)

riH2OrkH2O
H2O mm
t

M
−=




 (5)

rCaCO3
CaCO3 m
t

M
−=




 (6)

ob

gasgas

tz Q
z

T
v

t

T
−=




+




 (7)

−++=−



gFeOgCtobs

s QQQTa
t

T

 krplkH2OiH2OdCaCO3 QQQQQ +−+−−

(8)

)(sgasob TThQt −= (9)

where respectively MO2 and MH2Og oxygen and water vapor

concentration in air inside layer, MFeO, MH2O, MCaCO3 and MC

Fe oxide, water, calcium carbonate and carbon concentration

in layer, Tgas and Ts – temperature of air and sinter inside

layer, Qtob – heat transfer between sinter and air.

Boundary conditions on the top surface of layer are

known inlet temperature of air, concentration of oxygen and

vapor. At the layer bottom – free passing fluxes – outflow

boundary conditions.

Kyrylo S. Krasnikov et al. / International Journal of Computing, 20(2) 2021, 286-292

VOLUME 20(2), 2021 289

B. ENHANCEMENT

The mathematical model [3] is considered at 3-dimensional

statement and is improved by adding a boundary condition,

that corresponds to the Newton’s law of cooling and heat

radiation from the walls of the pallets, because a temperature

of the wall often can be greater than 800 oC [22]:

 ()4

s

4

envsenv
s)(TTTTh

y

T

wall

−+−=



 . (10)

In the above formula: Ts and Tenv are temperatures of the

sinter layer and surround atmosphere; h is an empirical

coefficient of the heat outflow, which depends on surround

convection; σ is Stefan-Boltzman constant; ε is emissivity of

the wall.

Mathematical models, like proposed above, have almost

100% parallelizable numeric calculations and sequential

parts of computation can’t notably influence solver’s

performance when it implements multithreading.

V. ACCELERATION OF THE SOLVER

For a multithreading computation of the mathematical

model, the computational domain is divided on equally sized

data chunks along z-axis. There is a local z-index to access a

particular number (i.e. temperature) inside a single data

chunk. Each chunk is only processed by associated thread,

so the calculation is spatially separated and is concurrently

done, accelerating overall performance of the calculation.

The equality of the chunks also provides a time minimization

of the one thread waiting for the other threads. However

some workload unbalancing can occur when the first thread

or the last one needs to set up a boundary condition for the

top or the bottom of layer at the beginning of the next

timestep.

The axis of time is divided by timesteps, so all time-

variable fields (i.e. temperature field) on the next timestep

are computed on the basis of the previous ones. To avoid data

races it is needed the guarantee that all the threads have

finished a calculation for the current timestep. The guarantee

is satisfied by a synchronization of all the threads with a help

of a barrier with a loop for the waiting. The looping is meant

to be very short because of a small waiting time of the

threads, mentioned above. It’s worth noting that order of the

threads, in which barrier is reached, does not matter in this

case. Let max is maximum number of the threads passed

barrier. Let current is count of threads currently reached

barrier. And let iteration is monotonically incremented index

of current timestep then algorithm of the barrier is follow:

1) Add 1 to the current and compare it with the max.

2) If the result of the comparison is not equal then start a

loop which exits when iteration changes with going to 1.

Else go to 3.

3) Assign 1 to current and add 1 to the iteration. Also,

the latter releases other threads from the loop at 2.

The iteration variable of the barrier can be used for a

debugging purpose.

Saving computation results to hard disk can be

performance bottleneck, so output to disk is done by another

thread.

A. IMPLEMENTATION DETAILS

Standard C++ library (namespace std::*) has excellent

support among integrated development environments

accelerating a realization of mathematical model. Also it

provides cross-platform definitions and patterns, which are

useful especially for multithreading programming. Thus, one

can avoid usage of unsafe C++ pointers or unnecessary

implementation popular algorithms (finding maximum,

minimum and other). There are classes and structures, which

replace raw C++ arrays for numbers (scalar fields) and chars

(strings). They help to minimize memory leaks.

Computation of mathematical model is long-running task

with repeated iterations. Series of iterations can be

performed by single thread. So, during mathematical

computation any threads are not created, which can hurt

performance. Threads for computation are spawned at the

beginning and exited when model time reaches a predefined

end. Moreover each thread can be assigned to particular CPU

core to minimize context switches by operational system.

Let’s consider a start of computation on CPU with four

cores and let z_max be a number of z-chunks. Spawned

threads receive individual constants z_start and z_end, which

are used for looping own z-chunks of data. Then algorithm

of thread spawning will be following:

Algorithm: main thread spawns other four ones____ ______
1. t_index = 0, part = z_max / 4

2. while t_index < 4 do

3. z_start = (index * part + 1)

4. z_end = (index * part + 1 + part)

5. Spawn a thread, which computes part of

data between z = z_start and z < z_end

(next algorithm)

6. Detach spawned thread (joining to the

main thread is not used in this case)

7. t_index ++

8. end while

9. Loop for saving computation results

incoming from spawned threads

Let time_layer be an index of current tick on the time axis

and saves_per_second be a frequency of outputting results to

a hard disk. Threads are synchronized after each computation

of new fields:

Algorithm: time loop in computational thread ____
1. time_layer = 0, save_interval =

saves_per_second / model_time_step

2. while time_layer < end do

3. Compute new fields using z_start and

z_end

4. Waiting all threads using

synchronization barrier, mentioned at the

previous paragraph

5. time_layer ++

6. if time_layer % save_interval == 0

 Kyrylo S. Krasnikov et al. / International Journal of Computing, 20(2) 2021, 286-292

290 VOLUME 20(2), 2021

7. Compute maximum, minimum and average

value from numbers in computed fields

8. Push results into thread safe queue to

save them on the main thread

9. end if

10. end while

11. Thread exit

Values computed on different threads are combined on

the main thread and saved together with computed field.

VI. RESULTS

Parameters (width, height and depth) of sintering layer are

taken for real machine. Firstly, let’s analyze results of the

mathematical model computing. There are three slices of

temperature field on the Fig. 2: at 7.5m of length, at 1m of

width, and 0.01m of height (z-axis heads from the top to the

bottom of the sinter). The Fig. 2 shows the beginning of coke

burning around the point of 2m along x-axis. The heat loss

from the pallets wall smoothes the temperature field, which

can be seen on the y-z slice at the point of 7.5m along x-axis.

Without the heat loss the field is isolated by the pallets wall

and has a sharp edge as demonstrated on the figure.

The Fig. 3 shows two high-temperature (about 1300˚C)

regions diagonally connected by the path of sinter with about

1100 ̊ C: the first one is a small around point (4m, 0m), where

coke starts burning, and the second one is a large around

point (10m, 0.4m), where fire mostly horizontally spreads to

the neighborhoods.

Comparison of Figure 2 with results in the paper [23]

(Fig. 4) leads to conclusion about similar temperature field

with no more 20% difference. On the both figures high-

temperature region begins under gas burners and develops to

the bottom of layer diagonally.

Figure 2. The three slices of temperature field (x=7,5m, y=1m, z=0.01m). Starting ignition area is clearly seen between 2 and

4 meters. Without heat loss effect temperature field has sharp edge (at small frame above)

Figure 3. The cross section of the developed temperature field at half a width of layer after 16 min of modeled sintering

The set of experiments are conducted to measure

performance of the multithreaded numeric solver.

Calculations are done on the CPU with hyperthreading

technology: i9-9900T (8 cores, 16 threads) with base clock

rate 2,1 GHz. The amount of timesteps is 20 000 (200

seconds of modeling time). For the each timestep the amount

of nodes for the calculation is 1 048 576. The frequency of

all CPU cores is fixed at 2,1 GHz. A profiler shows that after

Kyrylo S. Krasnikov et al. / International Journal of Computing, 20(2) 2021, 286-292

VOLUME 20(2), 2021 291

start of the experiment more than 90% of running time the

CPU spends for a computation of the fields, that is a good

load.

Rising of threads count from 1 to 8 (Fig. 4) gives

acceleration of approximately 5 times with hyperthreading

turned on, and almost 8 – without it, so the hyperthreading

slows speed down on a small number of threads. Achieved

speed up corresponds to other one in the paper [24] at Fig.C.1

for 1-8 threads, where finite difference method also used.

The computation using double precision arithmetic for

numbers costs a small performance overhead, because the

amount of nodes is sufficiently small for optimizations or for

the CPU cache size.

Figure 4. The scalability of the solver’s acceleration

Also, effectiveness of proposed algorithm is confirmed

in the experiments with different node counts (Fig. 5). The

node count grows exponentially, and calculation time is not

exactly corresponding to it, however, a general pattern exists.

Figure 5. Dependency of computation time on node count

using 8 threads (lower is better)

Initial temperature change from 300 K to 500 K gives

insignificant performance difference (smaller than 1%).

VII. CONCLUSION

Numerical experiments with single-threaded implementation

demonstrate that the time needed to compute mathematical

model with interconnected partial differential equations can

be very large – from hours to days. Moreover, scientists need

to conduct a lot of numerical experiments to determine

rational parameters of process. Created computer model with

multithreaded implementation significantly reduces

calculation time of ore sintering (to around 23%) on CPU

with 8 cores.

Presented figures show successfully simulated heat

distribution inside sinter layer influenced by set of important

chemical and physical processes and heat loss from the

walls. Two high-temperature regions are established after 16

minute of model time. The further simulation gives very

small changes of the temperature field. Thus, variables

approaches state, where they don’t depend on time.

Comparing calculated temperature field to the field on

the figures in the paper [23], a good correspondence is stated.

The presented mathematical model can be used to optimize

ore sintering at the plants. Also, the evolution of the

temperature field can be viewed at the website URL,

provided at the beginning of the paper.

The parallelization of the numeric solver by software

threads has confirmed scalability over 95% utilizing 1-8

CPU cores (Fig. 4-5) and has a good perspective to accelerate

a calculation of other similar mathematical models.

It will be useful to test this parallelization on a much

higher number of cores in the future. Also, further research

can include vectorization using SIMD instructions

implemented in a majority of CPUs.

References
[1] Q. Wang, J. Liu, X. Cui, G. Fu, C. Gong and Z. Xing, “Accelerating

FDTD simulation of microwave pulse coupling into narrow slots on

the Intel MIC architecture,” Proceedings of IEEE Pacific RIM
Conference on Comunications, Computers, and Signal Processing,

Victoria, Canada, August 24-26, 2015, pp. 263-268,

https://doi.org/10.1109/PACRIM.2015.7334845.
[2] A. Valles, W. Zhang, Optimizing for Reacting Navier-Stokes

equations, in: J. Reinders, J. Jeffers (Eds.), High Performance

Parallelism Pearls: Multicore and Many-core Programming
Approaches, Morgan Kaufmann, Waltham, USA, 2015, pp. 69-85,

https://doi.org/10.1016/B978-0-12-802118-7.00004-2.

[3] K.S. Krasnikov, “Computation of heat and mass distribution in sinter
layer based on PDEs,” International Journal of Computing, vol. 17,

issue 4, pp. 226-233, 2018, https://doi.org/10.47839/ijc.17.4.1144.

[4] S. Almeida, “An Introduction to High Performance Computing,”
International Journal of Modern Physics A, vol. 28, issue 22, pp. 1-9,

2013, https://doi.org/10.1142/S0217751X13400216.

[5] L.F. Werneck, M.M. de Freitas, H.G. da Silva Junior, G. de Souza,
H.P.A. Souto, “An OpenMP parallel implementation for numerical

simulation of gas reservoirs using Intel Xeon Phi coprocessor,”

Revista Interdisciplinar De Persquisa Em Engenharia (RIPE), vol. 2,
issue 21, pp. 37-56, 2016, https://doi.org/10.26512/ripe.v2i21.21697.

[6] F.M. Arrayas, Parallelization of Finite Difference Methods: Nodal

and Mimetic solutions of the wave equation, Polytechnic University of
Catalonia, Barcelona, 2016, 116 p.

https://doi.org/10.1109/PACRIM.2015.7334845
https://doi.org/10.1016/B978-0-12-802118-7.00004-2
https://doi.org/10.47839/ijc.17.4.1144
https://doi.org/10.1142/S0217751X13400216
https://doi.org/10.26512/ripe.v2i21.21697

 Kyrylo S. Krasnikov et al. / International Journal of Computing, 20(2) 2021, 286-292

292 VOLUME 20(2), 2021

[7] F. Luporini, Automated Optimization of Numerical Methods for

Partial Differential Equations, thesis for the degree of Doctor of

Philosophy in Computing, Imperial College, London, 2016, 213 p.
[8] X. Liang, A.A. Humos, and T. Pei, “Vectorization and parallelization

of loops in C/C++ code,” Proceedings of the 13th International

Conference on Frontiers in Education: Computer Science and
Computer Engineering, Las Vegas, USA, July 17-20, 2017, pp. 203-

206.

[9] A. Roussel, Parallelization of iterative methods to solve sparse linear
systems using task based runtime systems on multi and many-core

architectures: application to Multi-Level Domain Decomposition

methods, Universite Grenoble Alpes, France, 2018, 123 p.
[10] J. Jeffers, J. Reinders, A. Sodani, Intel Xeon Phi Processor High

Performance Programming: Knights Landing Edition, Elsevier

Science, 2016, 662 p., https://doi.org/10.1016/B978-0-12-809194-
4.00002-8.

[11] B.M. Ginting, R.-P. Mundani, “Comparison of shallow water solvers:

Applications for Dam-Break and Tsunami cases with reordering
strategy for efficient vectorization on modern hardware,” Water

(Switzerland), vol. 11, issue 4, pp. 1-31, 2019,

https://doi.org/10.3390/w11040639.
[12] V.M. Konyukhov, I.V. Konyukhov, A.N. Chekalin, “Numerical

modeling and parallel computations of heat and mass transfer during

polymer flooding of non-uniform oil reservoir developing by system
of producing and injecting wells,” Journal of Physics, vol. 1158, issue

3, pp. 1-8, 2019, https://doi.org/10.1088/1742-6596/1158/3/032018.

[13] I. Hristov, R. Hristova, S. Dimova, “Parallelization of a finite
difference scheme for solving systems of 2D Sine-Gordon equations,”

Proceedings of the 7th International Conference Distributed

Computing and Grid-technologies in Science and Education, Dubna,
Russia, July 4-9, 2016, pp. 250-255.

[14] N. Tran, M. Lee, and S. Hong, “Performance OPTIMIZATION of 3D

Lattice Boltzmann flow solver on a GPU,” Scientific Programming,

vol. 2017, article ID 1205892, pp. 1-16, 2017,

https://doi.org/10.1155/2017/1205892.

[15] I. Bell and M. Kunick, “NISTfit: A natively multithreaded C++11
framework for model development,” Journal of Research of National

Institute of Standards and Technology, vol. 123, article ID 123003, pp.

1-12, 2018, https://doi.org/10.6028/jres.123.003.
[16] R. Alfieri, S. Bernuzzi, A. Perego, and D. Radice, “Optimization of

finite-differencing kernels for numerical relativity applications,”

Journal of Low Power Electronics and Applications, vol. 8, issue 2,
article ID 15, pp. 1-13, 2018, https://doi.org/10.3390/jlpea8020015.

[17] M. Craus, L. Rudeanu, “Multi-level parallel framework,”

International Journal of Computing, vol. 3, issue 3, pp. 20-28, 2004,
https://doi.org/10.47839/ijc.3.3.301.

[18] W.W. Meng, Y.G. Cheng, J.Y. Wu, Z. Y. Yang, S. Shang and

F. Yang, “GPU parallel acceleration of transient simulations of open
channel and pipe combined flows,” IOP Conference Series: Earth and

Environmental Science, vol. 240, issue 5, article ID 052025, pp. 1-11,

2019, https://doi.org/10.1088/1755-1315/240/5/052025.
[19] A. Ben-Abdallah, A.S. Charao, I. Charpentier, B. Platea, “Ahpik: a

parallel multithreaded framework using adaptivity and domain

decomposition methods for solving PDE problems,” Proceedings of

the 13th International Conference on Domain Decomposition

Methods, Lyon, France, October 9-12, 2000, pp. 295-301.
[20] S.H. Kuo, C.W. Hsieh, R.K. Lin, W.H. Sheu, “Solving Burgers’

equation using multithreading and GPU,” Proceedings of the

International Conference on Algorithms and Architectures for
Parallel Processing, Busan, Korea (Republic of), May 21-23, 2010,

pp. 297-307, https://doi.org/10.1007/978-3-642-13136-3_31.

[21] S. Titarenko, I. Kulikov, I. Chernykh, M. Shishlenin, O. Krivorot’ko,
D. Voronov and M. Hilyard, “Multilevel parallelization: Grid methods

for solving direct and inverse problems,” Proceedings of

Communications in Computer and Information Science:
Supercomputing, Moscow, Russia, September 26-27, 2016, pp. 118-

131, https://doi.org/10.1007/978-3-319-55669-7_10.

[22] Y. A. Cengel, A. J. Ghajar, Heat and Mass Transfer: Fundamentals &
Applications, fifth ed., McGraw-Hill Education, New York, 2015, 968

p.

[23] J.A. Castro, L.M. Silva, G.A. Medeiros, E.M. Oliveirab, H. Nogami.
“Analysis of a compact iron ore sintering process based on

agglomerated biochar and gaseous fuels using a 3D multiphase

multicomponent mathematical model,” Journal of Materials Research
and Technology, vol. 9, issue 3, pp. 6001-6013, 2020,

https://doi.org/10.1016/j.jmrt.2020.04.004.

[24] K.M. Gerke, R.V. Vasilyev, S. Khirevich, D. Collins, M.V. Karsanina,
T.O. Sizonenko, D.V. Korost, S. Lamontagne, D. Mallants, “Finite-

difference method Stokes solver (FDMSS) for 3D pore geometries:

Software development, validation and case studies,” Computers and
Geosciences, vol. 114, pp. 1-61, 2018,

https://doi.org/10.1016/j.cageo.2018.01.005.

KYRYLO S. KRASNIKOV in 2009
graduated from Faculty of Electronics
and Computer Engineering, Dniprovskyi
State Technical University (DSTU) with
M.S. in Software Engineering. At the end
of 2016 in National metallurgical
academy of Ukraine he defended his
thesis for the degree of PhD in
Mathematical simulation and methods of
calculation. Present job: a senior lecturer
at DSTU, Department of systems
software. The scientific interests are

focused on the application of Computational Fluid Dynamics,
System of Solids Dynamics and Thermo-dynamics to the various
problems in the ferrous metallurgy and other fields. Professional
skills include software projecting using UML as well as
programming using modern versions of C++, C#, Java and popular
frameworks.

https://doi.org/10.1016/B978-0-12-809194-4.00002-8
https://doi.org/10.1016/B978-0-12-809194-4.00002-8
https://doi.org/10.3390/w11040639
https://doi.org/10.1088/1742-6596/1158/3/032018
https://doi.org/10.1155/2017/1205892
https://doi.org/10.6028/jres.123.003
https://doi.org/10.3390/jlpea8020015
https://doi.org/10.47839/ijc.3.3.301
https://doi.org/10.1088/1755-1315/240/5/052025
https://doi.org/10.1007/978-3-642-13136-3_31
https://doi.org/10.1007/978-3-319-55669-7_10
https://doi.org/10.1016/j.jmrt.2020.04.004
https://doi.org/10.1016/j.cageo.2018.01.005

