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 ABSTRACT Synthetic aperture radars (SARs) provide a lot of images that can be used for numerous 

applications. A problem with acquired images is that they are corrupted by speckle which is a noise-like 

phenomenon with multiplicative nature. In addition, speckle is non-Gaussian and it is often spatially correlated. A 

typical task in SAR image processing is despeckling and many methods have been already proposed. However, 

most of them do not take noise spatial correlation into account during denoising. In this paper, we show how this 

can be done in despeckling based on discrete cosine transform. The use of frequency-dependent thresholds leads 

to sufficient improvement of denoising efficiency in terms of visual quality metrics. Moreover, we consider quite 

complex structure texture images for which noise removal is usually problematic and can lead to information loss. 

Comparison to the well-known local statistic Lee and Frost filters, extended DCT-based filter is carried out for 

different remote sensing systems including Sentinel-1 and Sentinel-2. 
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I. INTRODUCTION 

ADAR remote sensing that is currently mostly 

represented by airborne and spaceborne synthetic 

aperture radars is widely employed in various applications 

[1-3]. Modern SARs are able to acquire images during day 

and night as well as in bad weather conditions with 

appropriate spatial resolution of several meters. The problem 

of SAR images is that they suffer from noise-like 

phenomenon called speckle [4-6]. This problem has been 

understood for many years started from fundamental works 

of J.-S. Lee [7] and V. Frost [8]. The necessity of efficient 

despeckling of SAR images has been mentioned in numerous 

papers [9-11]. Filters that belong to different groups have 

been proposed starting from scanning window ones [7, 8, 

12], continued by denoisers based on orthogonal transforms 

[13, 14], and finalized by modern non-local approaches [15-

17]. Their performance steadily improves but it is still 

desired to suppress speckle and preserve heterogeneities 

(details, edges, textures) better. The practical cases for which 

a limited success has been gained are complex structure 

images (those ones containing a lot of edges and fine details 

and/or highly textured ones) corrupted by spatially correlated 

speckle. The main reasons for this are the following. Firstly, 

it is hard to reach high efficiency of filtering for complex 

structure images (see examples in Fig. 1) even potentially 

[18-20]. Meanwhile, texture features and fine details have to 

be preserved at image denoising stage [21, 22]. Secondly, it 

is especially difficult to discriminate texture and noise if 

noise is spatially correlated since both statistical and spatial 

characteristics of signal and noise are quite similar. Thirdly, 

the case of spatially correlated noise is paid much less 

attention than a simpler case of white noise. In this sense, it 

is worth mentioning the papers [14, 23-25] specially devoted 

to considering reduction of spatially correlated noise.  

Thus, our primary goal is to analyze despeckling 

efficiency for highly textured images corrupted by spatially 

correlated speckle. Note that speckle is spatially correlated 

for images acquired by such modern SAR systems as 

TerraSAR-X (see examples in Fig. 1) and Sentinel-1 [13] 

(see examples in Fig. 2). The novelty of the presented results 
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is that we show how spatial correlation of the speckle can be 

taken into account in despeckling based on discrete cosine 

transform (DCT) and evaluate the benefits quantitatively 

with particular attention to highly textured images.  

The paper structure is the following. In Section 2, we 

briefly analyze an image/noise model and its main 

properties. Section 3 deals with criteria of image despeckling 

efficiency. Simulation data and their analysis are given in 

Section 4. Real data example is given as well. Finally, the 

conclusions are presented. 

II. IMAGE/NOISE MODEL 

A traditional model of SAR images is based on assumption 

that speckle is pure multiplicative [4, 7-10] that has been 

confirmed by many tests [4, 6]. Then, the noisy (acquired) 

image is then described as ij

true

ij

sp II
ij

= , i.e. the product of 

a true value and random multiplicative factor where ij are 

indices of image pixels. For pure multiplicative noise, it is 

assumed that speckle has constant (relative) variance equal 

to L273.02 =  where L is the number of looks. For real 

life data, this parameter can be either determined using a 

priori information on operation principles and characteristics 

of a given SAR, or experimentally as 
2222

  ijij I
ij
= , 

where 
2

ij  is the local variance estimate determined for a 

manually or automatically chosen homogeneous image 

region and 
2

ijI  is the mean for this fragment. 
2

  varies 

within the limits from 0 to 1 depending SAR characteristics, 

for single look amplitude speckle 
2

  = 0.273 – this is just 

the case in Fig. 1 where many parts (regions) of the image in 

Fig. 1(b) can be used for getting the speckle variance 

estimate.  

Fig. 2 gives examples of SAR image fragments acquired 

by Sentinel-1 for two polarizations: vertical-vertical (vv) and 

vertical-horizontal (vh). Red color squares show manually 

chosen fragments for which speckle variance has been 

estimated and occurred to be slightly larger than 0.05 (i.e. L 

is about 5). Spatial correlation of the speckle can be 

characterized in different manner. It is possible to estimate 

two-dimensional (2D) autocorrelation function for manually 

chosen quasi-homogeneous regions of a certain size (e.g., 

32×32 or 64×64 pixels). However, in our case, it is better to 

estimate 8×8 spectrum in discrete cosine transform (DCT) 

domain. The reasons for this are the following. Firstly, this 

spectrum is needed in DCT-based denoising adapted to noise 

properties (see the details in Section 4). Secondly, for such 

size, spectrum estimates can be averaged well since it is 

usually quite easy to find quasi-homogeneous image regions 

totally containing thousands of pixels. 

 

 

(a) 

 

(b) 

Figure 1. Single-look SAR image fragments of complex (a) 

and simple (b) structures 

 

 

(a) 



Oleksii Rubel et al. / International Journal of Computing, 20(3) 2021, 319-327  

VOLUME 20(3), 2021 321 

 
(b) 

Figure 2. SAR image fragments of vv (a) and vh (b) 

polarizations with marked homogeneous regions 

Examples of normalized DCT spectrum estimates 

for image fragments in Fig. 2 are given in Fig. 3. Here 

some explanations are needed. Small indices 

correspond to low spatial frequencies. Thus, spectrum 

is, obviously, non-uniform that evidences in favor of 

conclusion that speckle in spatially correlated.  
 

 

(a)                                            (b) 

Figure 3. DCT spectrum estimates for vv (a) and vh (b) 

polarization images 

Then, to get quantitative evaluation of speckle 

suppression efficiency, we need means for modelling 

speckle with the determined properties. Methods to do this 

have been earlier described in our papers [23, 26]. In Fig. 4, 

we give an example of noise-free and three noisy images 

with spatially correlated speckle with different properties. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Noise-free test image (a) and its noisy versions for 

single-look speckle (b) and five looks with smaller (c) and 

higher (d) degrees of spatial correlation 

Noise-free image, see Fig. 4(a) contains homogeneous 

regions and many objects of different shapes and contrasts 

with respect to surrounding background as well as fine 

details. Image in Fig. 4(b) corresponds to the case of 

amplitude single-look speckle with low degree of spatial 

correlation. Obviously, many small-sized objects (especially 

if they have low contrast) cannot be easily recognized. 

Fig. 4(c) shows the image with the same spatial correlation 

properties of speckle but with L=5. The image looks more 

pleasant compared to the image in Fig. 4(b) and more small-

sized objects can be reliably detected and localized. Fig. 4(d) 

presents 5-look image but with speckle with considerably 

larger degree of spatial correlation than in image in Fig. 4(c). 

Its appearance (visual quality) is sufficiently worse and it is 

difficult to judge what image is better, in Fig. 4(b) or 4(d). 
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This example shows one more problem with spatially 

correlated noise in general and speckle in particular. Images 

corrupted by noise with higher degree of spatial correlation 

are perceived as those one having worse visual quality. Thus, 

in addition to traditional criteria of original image quality and 

efficiency of their denoising, it is worth applying visual 

quality criteria. Note that it is still a question what are the best 

visual quality criteria for applicable in SAR image analysis 

and processing. Obviously, this should be metrics applicable 

for grayscale images and possessing good adequateness with 

respect to peculiarities of human vision system (HVS). In this 

sense, we can further employ earlier experience [22, 26] 

concerning visual quality metrics [27-30] and their use in SAR 

image processing [26]. 

Alongside with test images given in Fig. 4, we are more 

interested in special kinds of textural images. This is because 

it is known that the task of improving image quality due to 

denoising is the hardest just for highly textured images 

[18, 26]. One way to simulate them is to apply fractals. 

Another way is to use images acquired by Sentinel-2. Two 

examples of noise-free images are represented in Fig. 5. 

Their noisy versions with noise having properties similar to 

Sentinel-1 images are shown in Fig. 6. Fig. 7 gives an 

example of the image with many details. Obviously, noise 

distorts textures and, simultaneously, texture masks noise. 

The task is then to remove noise with texture feature 

preservation. 

 

 

(a) 

 
(b) 

Figure 5. Examples of noise-free textures 

 
(a) 

 
(b) 

Figure 6. Noisy versions of images in Fig. 5 with PSNR 

about 17.5 dB (a), PSNR-HVS-M is about 14.8 dB (b) 

 
(a) 

 
(b) 

Figure 7. Noise-free (a) and noisy (b) images with many 

details, PSNR=19.5 dB, PSNR-HVS-M=16.9 dB 
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III. QUANTITATIVE CRITERIA AND PRINCIPLE OF DCT-
BASED DENOISING 

One traditional criterion – peak signal-to-noise ratio (PSNR) 

– has been already mentioned. In simulations, it can be 

determined as 

 

),(log10 2

10

inpinp MSEDPSNR =  (1) 


= =

−=
I

i

J

j

true

ij

noise

ij

inp IJIIMSE
1 1

2 ),()(  (2) 

 

where I and J determine image size, D is image 

representation dynamic range equal to 255 in the considered 

case. PSNR is expressed in dB where a larger value relates 

to a better quality.  

Another used metric is PSNR-HVS-M 

(http://www.ponomarenko.info/psnrhvsm.htm) based on 

HVS. The following two important properties of HVS are 

exploited: a higher sensitivity to distortions in low spatial 

frequencies and masking effect. These effects are incorporated 

in calculation of MSE-HVS-M used in calculation of PSNR-

HVS-M as 

 

),(log10

--

-

2

10
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Suppose now that we have despeckled images 

 JjIiI d

ij ,...,1,,...,1, == . Then it is possible to calculate  
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where MSEHVSM is calculated for filtered and noise-free images. 

PSNR-HVS-M is also expressed in dB and its larger values 

correspond to better visual quality. 

Having input and output values of the considered metrics, 

it is possible to calculate their improvements as: 

 

,inpd PSNRPSNRPSNR −=  (7) 

,----

--

inpd MHVSPSNRMHVSPSNR

MHVSPSNR

−

=
 (8) 

where both improvements are in dB and their larger values, 

in general, correspond to more efficient denoising. 

We have numerous options in choosing filters for 

efficiency analysis [22]. Even though many filters are not 

suited for multiplicative noise removal, preliminary 

homomorphic transform of logarithmic type can be used to 

convert pure multiplicative noise into pure additive [20] 

(although not Gaussian). Meanwhile, many filters can not be 

directly adapted to suppression of spatially correlated noise 

and this might make worse their performance. Due to this 

obstacle, we further consider DCT-based filters [13] that can 

be easily adapted to both multiplicative nature and spatial 

correlation of speckle. 

More in detail, image despeckling is carried out in the 

following four steps. Firstly, direct 2D DCT is performed for 

each 8×8 pixel block. In this way, 64 DCT coefficients are 

obtained. Secondly, they are thresholded (only the DCT-

coefficient relating to the block mean is kept unchanged). 

Several variants of thresholding are possible. Here we 

consider hard thresholding. For conventional DCT-filter, for 

each nm-th block the threshold is set as 

( ) ( )( )mnIfmnT ,, =  where   denotes the filter 

parameter commonly set equal to 2.7, ( )mnI ,  denotes the 

local mean in the block, ( )( )mnIf ,  is the function that 

characterizes dependence of the local variance on local 

mean; then, for pure multiplicative noise one has 

( ) ( )( )mnIfmnT ,, = . For the modified DCT-based 

filter [13, 26] adapted to speckle spatial correlation, one has 

frequency dependent thresholds defined as 

( ) ( ) ),(,,,, lkWmnIlkmnT =  where 

7,...,0;7,...,0),,( =klkW  is the aforementioned 

normalized power DCT spectrum for 8×8 pixels. Then, 

inverse 2D DCT in each block is applied to thresholded DCT 

at the third step. This leads to obtaining preliminary filtered 

values for all pixels belonging to a given block. Note that 

filtering is usually performed for fully overlapping blocks. 

This means that neighbor block positions differ by only one 

pixel in horizontal or vertical directions. Then, a given pixel 

in most cases belongs to 64 blocks and many preliminary 

denoised values correspond to it. Usually, these values are 

averaged for each given pixel and a final filtered value is 

obtained (this is treated as the fourth step). Let us call this 

version of DCT-based filter as spatial spectrum adapted 

(SSA) one. In general, the DCT-based denoising with full 

overlapping is the most efficient option (among possible 

variants) – it provides minimal output MSE and MSEHVS-M. 

Below we consider DCT-based filters with full overlapping 

of blocks. Note that due to existence of fast algorithms, the 

filters are very fast. 
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IV. ANALYSIS OF EXPERIMENTAL RESULTS 

Therefore, we consider the performance of conventional and 

SSA versions of the DCT-based filter. For comparison 

purpose, we have also analyzed data for the following well-

known denoising techniques: the local statistic 5×5 and 7x7 

Lee filter [7] as well as 5x5 and 7x7 Frost filter [8].  

Fig. 8 shows the 5x5 Lee filter outputs for images given 

in Fig. 6. Noise is suppressed and there are considerable 

improvements of PSNR and PSNR-HVS-M. Meanwhile, 

there is some smearing observed in output images. 

 

 
(a) 

 
(b) 

Figure 8. 5x5 Lee filter outputs for noisy images in Fig. 6: 

PSNR=24.1 dB, PSNR-HVS-M=19.3 dB (a); PSNR=24.2 

dB, PSNR-HVS-M=19.7 dB (b) 

Output images for two versions of DCT filters are 

presented in Figs 9 and 10. Analysis of images in Fig. 9 

shows that noise suppression is poor and improvements are 

less than for the Lee filter. Artifacts are observed. Thus, 

conventional DCT-based filter is not worth applying. 

Analysis of output images in Fig. 10 shows that noise 

suppression is much better and this version outperforms the 

local statistic Lee filter both in terms of PSNR and PSNR-

HVS-M. However, there are specific artifacts in the form of 

small vertical or horizontal “sticks” that are not “detected” 

by the quality criteria used but which are undesired. This 

shows that, in additional to quantitative criteria (metrics) 

analysis, visual inspection is worth applying. 

 
(a) 

 
(b) 

Figure 9. Conventional DCT-based filter outputs for noise 

images in Fig. 6: PSNR=23.3 dB, PSNR-HVS-M=18.7 dB 

(a); PSNR=23.3 dB, PSNR-HVS-M=18.8 dB (b) 

 
(a) 

 
(b) 

Figure 10. SSA DCT-based filter outputs for noise images 

in Fig. 6: PSNR=26.7 dB, PSNR-HVS-M=22.5 dB (a); 

PSNR=25.9 dB, PSNR-HVS-M=21.8 dB (b) 
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Table 1 gives simulation results for despeckling the test 

image in Fig. 6(a) for all considered filters. Output values of 

PSNR, PSNR-HVS-M and FSIM [27] are given (the larger 

the better). In turn, Table 2 presents data for the test image 

in Fig. 6(b). 

As one can see, all the considered filters improve the 

image quality according to the used quality metrics and this 

improvement is sufficient. Meanwhile, the results for the 

modified DCT filter are the best or very close to the best. 

Table 1. Comparison data for despeckling the image in 

Fig. 6(a); input FSIM is equal to 0.611 

Filter type Output 

PSNR 

Output PSNR-

HVS-M 

Output FSIM 

5x5 Lee 24.1 19.3 0.776 

7x7 Lee 25.5 21.0 0.828 

5x5 Frost 23.8 18.9 0.769 

7x7 Frost 25.1 20.4 0.820 

DCT 23.3 18.6 0.755 

SSA DCT 26.7 22.5 0.827 

Table 2. Comparison data for despeckling the image in 

Fig. 6(b); input FSIM is equal to 0.692 

Filter type Output 

PSNR 

Output PSNR-

HVS-M 

Output FSIM 

5x5 Lee 24.2 19.7 0.819 

7x7 Lee 25.0 20.7 0.839 

5x5 Frost 23.9 19.3 0.814 

7x7 Frost 24.7 20.2 0.836 

DCT 23.4 18.9 0.800 

SSA DCT 25.9 21.8 0.835 

 

Consider now the filter outputs for the test image with 

more details (Fig. 7). The image denoised by the 5x5 Lee 

filter is depicted in Fig. 11. PSNR improvement is almost 4 

dB, improvement of PSNR-HVS-M is about 3 dB. The 

outputs for the two versions of DCT-based filter are given in 

Fig. 12. Again, the conventional version (Fig. 12(a) does not 

perform well since criteria improvements are quite small. 

The SSA DCT-based filter output is presented in Fig. 12(b). 

Improvements of metrics’ values are considerable (they are 

sufficiently greater than improvements for the 5x5 Lee 

filter). Noise suppression is clearly visible (compare to 

images in Fig. 7). However, artifacts are again visible as 

well. 

 

 

Figure 11. Lee filter outputs for noise image in  

Fig. 7(b): PSNR=23.4 dB, PSNR-HVS-M=19.9 dB  

 
(a) 

 
(b) 

Figure 12. DCT-based filters’ outputs for noise images in 

Fig. 7: PSNR=23.8 dB, PSNR-HVS-M=19.9 dB (a); 

PSNR=25.0 dB, PSNR-HVS-M=21.4 dB (b) 

Let us give the obtained quantitative data (Table 3). Here 

we can observe the case when 5x5 Lee, 5x5 Frost, and 

standard DCT filters produce practically the same quality 

outputs. Meanwhile, the modified version adapted to speckle 

spatial correlation clearly outperforms all aforementioned 

filters.  

Table 3. Comparison data for despeckling the image in 

Fig. 7(b); input FSIM is equal to 0.761 

Filter type Output 

PSNR 

Output PSNR-

HVS-M 

Output FSIM 

5x5 Lee 23.5 20.0 0.831 

7x7 Lee 23.2 19.5 0.806 

5x5 Frost 23.5 19.9 0.831 

7x7 Frost 23.4 19.7 0.818 

DCT 23,7 19.9 0.831 

SSA DCT 25.9 21.5 0.840 

 

Finally, Fig. 13 presents a fragments of real life example. 

VV-polarization Sentinel-1 image with five looks is given in 

Fig. 13(a). The SSA DCT-filter output is shown in 

Fig. 13(b). As one can see, speckle is suppressed well whilst 

textures, edges, and small-sized objects are preserved.  
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(a) 

 
(b) 

Figure 13. Original (noisy) SAR image (a) and the SSA 
DCT filter output (b) 

The presented examples show the following:  
1) The DCT-based filter is able to preserve textures quite 

well (in particular, sufficiently better than the local statistic 
Lee filter) but only if it is adapted to spatial spectrum of 
spatially correlated noise; 

2) In analysis of filter performance, visual inspection is 
needed since visual quality metrics can evidence in favor of 
some filters without taking into account the fact that some 
undesired artifacts are observed in output images; the DCT-
based filter adapted to speckle properties produces artifacts 
that are undesired and can be treated (detected) as low 
contrast small-sized objects at further stages of SAR image 
processing.  

3) We expect that modifications of nonlocal filters 
adapted to speckle properties [15, 23] can improve 
despeckling performance according to the metrics used (both 
traditional and visual quality ones) and the artifacts will be 
either absent or less seen; probably, not only processing in 
blocks, but also block search algorithm should be adapted to 
spatial correlation of the speckle.  

V. CONCLUSIONS 

The task of removal of spatially correlated speckle in 
textured images is considered. It is demonstrated that, in 
general, such noise can be suppressed with improvement of 
PSNR by up to 5-8 dB. Visual quality improves as well. 
Meanwhile, the sufficient positive effect can be reached if 
speckle spectral properties are taken into account. This can 
be done in DCT-based filtering by setting frequency 
dependent (and, simultaneously, intensity dependent) 
thresholds. At the same time, if one neglects speckle spatial 

correlation, this can result in considerable difference 
between attained and potential efficiencies of denoising. 
Besides, one has to be careful with artifacts since they can be 
present even if quantitative criteria show high efficiency of 
filtering. 
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