
 

350 VOLUME 20(3), 2021 

Date of publication SEP-30, 2021, date of current version MAY-12, 2021. 
www.computingonline.net / computing@computingonline.net 

Print ISSN 1727-6209 

Online ISSN 2312-5381 

DOI 10.47839/ijc.20.3.2280 

Hybrid Maintainability Prediction using 

Soft Computing Techniques 

MANJU DUHAN, PRADEEP KUMAR BHATIA 
Guru Jambheshwar University of Science &Technology, Hisar 

(e-mail: duhan.manju@gmail.com, pkbhatia.gju@gmail.com) 

Corresponding author: Manju Duhan (e-mail: duhan.manju@gmail.com). 

The authors are grateful for support from the Guru Jambheshwar University of Science and Technology, for providing a lab facility to 

run various tools used in the current study. 

 ABSTRACT Effective software maintenance is a crucial factor to measure that can be achieved with the help of 

software metrics. In this paper, authors derived a new approach for measuring the maintainability of software 

based on hybrid metrics that takes advantages of both i.e. static metrics and dynamic metrics in an object-oriented 

environment whereas, dynamic metrics capture the run time features of object-oriented languages i.e. run time 

polymorphism, dynamic binding etc. which is not covered by static metrics. To achieve this, the authors proposed 

a model based on static and hybrid metrics to measure maintainability factor by using soft computing techniques 

and it is found that the proposed neuro-fuzzy model was trained well and predict adequate results with MAE 0.003 

and RMSE 0.009 based on hybrid metrics. Additionally, the proposed model was validated on two test datasets 

and it is concluded that the proposed model performed well, based on hybrid metrics. 
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I. INTRODUCTION 

OFTWARE maintenance is the most critical activity in 

the software development life cycle. It can consume 

around 70% of the cost of the entire life cycle [1]. Thus, 

the right maintainability prediction can reduce the cost of the 

software product. Therefore, evaluating maintainability in 

the early phases of the software development life cycle is 

essential and beneficial in terms of cost, productivity, time 

and efforts required to build different projects. Many Object-

Oriented metrics exist to compute the maintainability factor 

of a software system in an Object-Oriented environment. 

Static metrics provide early detection of faults and cost 

benefits, whereas dynamic metrics show the actual software 

behaviour by capturing features like run time polymorphism 

and dynamic binding. Besides, Dynamic metrics evaluation 

is a time-consuming task. Therefore, the hybrid approach 

saves time and effort and covers all the features that affect 

software maintainability. Therefore, in this paper, authors 

mainly have chosen six factors: complexity, coupling, 

cohesion, inheritance, the response between classes and size, 

to evaluate maintainability as a function of change using 

static and hybrid metrics (a combination of static and 

dynamic metrics). In the case of static metrics, we have 

chosen six metrics, i.e. WMC, DIT, LCOM, RFC, CBO and 

CLOC whereas, in the case of hybrid metrics, we took three 

metrics from the static metrics set, i.e. RFC, CBO and DIT 

and three dynamic metrics, i.e. DLCOM, DWMC and 

DLOC, as described in Table 1. We have chosen these 

metrics based on the correlation of these metrics with 

external quality factor, i.e. maintainability.  

Further, there is no direct relationship between 

maintainability attributes. Therefore, the neural network 

(NN) [2] approach provides adaptive learning capabilities to 

predict software maintainability, whereas fuzzy logic can 

generalize rules. To take advantage of both, we have 

proposed a neuro-fuzzy (NF) approach [3] to determine a 

class's maintainability effectively. Further, the authors also 

compared the proposed NN and NF model with four existing 

machine learning algorithms as described below. 
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Table 1. Static and dynamic metrics used in the current 

study 

Static 

Metrics 
Description 

WMC “Sum of the complexity of the methods of a class” [4] 
DIT “The max. length from the node to the root of the tree” 

[4] 
LCOM96a “Number of attributes invoked by all the methods in a 

class at compile time” [5] 
RFC “Numbers of methods invoked from a class” [4] 
CBO “Number of other classes to which it is coupled” [4] 
CLOC “The number of all nonempty, non-commented lines 

of the body of the class” 
Dynamic 

Metrics 
Description 

DLCOM “It is defined as the combination of RLCOM (Runtime 

Lack of cohesion of methods), RAAR (Runtime 

Attribute Access Rate) and RMMC(Runtime method 

to method call)” [6] 

DWMC “Number of times methods of class executed at 

runtime” 

DLOC “Number of times lines of a class executed at runtime” 

A. RANDOM FOREST 

Random Forest is a supervised learning algorithm used in 

classification and regression but most commonly used in 

classification. This algorithm builds the decision tree using 

each data sample and takes the prediction of each decision 

tree. Then voting is performed on every predicted result and 

selects that prediction which gets the maximum vote and 

gives the best result. 

B. LINEAR REGRESSION 

The Linear Regression model mainly based on the concept 

of best fit by finding the relationship between attributes. This 

algorithm also comes under the category of supervised 

learning classification algorithms. 

C. SMOreg 

Sequential Minimal Optimization Regression algorithm 

performed best for solving quadratic programming problems 

to train support vector machines. This algorithm also comes 

under the category of supervised learning classification 

algorithms that takes advantage of the regression algorithm. 

D. MULTILAYER PERCEPTRON 

MLP is a supervised learning classification algorithms that 

use a back-propagation algorithm for training of attributes 

feed as input to the artificial neural network. It uses multiple 

layers and many folds instead of a single layer perceptron 

that enhance its accuracy. 

The rest of the paper divides into mainly four sections. 

Section 2, presents a literature review and research 

methodology followed in this paper. Section 3, presents the 

proposed formula and proposed model to measure 

maintainability using soft computing techniques. Section 4, 

explains the experimental study done on HoDoKu software 

and comparison of various soft computing techniques. 

Section 5, describes the conclusion and future directions 

referenced to the current study.  

II. RESEARCH WORK 

A. RESEARCH BACKGROUND 

Software design metrics evaluate the software 

maintainability in the early phases of software development 

life cycle (SDLC) that lack in handling run time features of 

object-oriented languages like dynamic binding and run time 

polymorphism. Many empirical studies exist in the literature 

to compute software maintainability using static design 

metrics [7-16]. However, significantly less emphasis was 

done to map dynamic metrics to the software’s 

maintainability factor. AI-Jamimi et al., 2012 [16] proposed 

a fuzzy logic model based on static metrics and applied it on 

two object-oriented datasets. Alijamaan et al., 2013 [17] 

proposed an ensemble model using four other machine 

learning algorithms, i.e. MLP, RBF, SVM and M5P, to find 

the maintainability of object-oriented software. They applied 

these models on different datasets, which also took static 

metrics, i.e. CK, Li and Henry and size, as its base. Baqais et 

al., 2013 [18] proposed neural network and genetic 

algorithms implementation to find maintainability 

estimation by applying it on Andriod, an open-source 

software, using the same set of static metrics as input to their 

models used by previous authors. Malhotra et al., 2014 [19] 

proposed a Group method of data handling (GMDH) model 

and compared this model with the other two models, i.e. 

FF3LBPN and GRNN and concluded that the proposed 

GMDH model was best among all with the least errors. They 

also used the same set of metrics as the input used by 

previous author’s, i.e. static metrics. Sharma et al., 2015 [20] 

compared the static and dynamic metrics approach to find 

maintainability of software by using four machine learning 

algorithms, i.e. MLP, Linear Regression, SMOreg Gaussian 

process. The authors concluded that the Linear regression 

model performed best among all dynamic metrics to find 

software’s maintainability. Kumar et al., 2017 [3] proposed 

a neuro-fuzzy model to evaluate software maintainability by 

applying it on two commercial software, i.e. UIMS and 

QUES, using static metrics. Authors used PCA and RSA 

theory for feature reduction and concluded that these 

techniques found the maintainability of software with higher 

accuracy. Hence, from the existing literature survey, it is 

observed that all the studies made by various researchers 

took static metrics as input and very little work done on 

dynamic metrics. Therefore, in this paper, the authors choose 

hybrid metrics that are a combination of static and dynamic 

metrics to predict software maintainability that consumes 

less time and provides higher accuracy. Further, we observed 

that machine learning algorithms, i.e. Random Forest and 

hybrid approach, i.e. neuro-fuzzy, were not explored much. 

Therefore, the authors proposed a neural network and neuro-

fuzzy model based on static and hybrid metrics and 

compared them with four other existing machine learning 
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models, i.e. MLP, Random Forest, SMOreg and Linear 

regression [20].  

B. RESEARCH METHODOLOGY 

The methodology implemented in the current study is shown 

in Figure 1. The authors worked on two versions of 

HoDoKu, open-source software i.e. HoDoKu 2.0.1(2010) 

and HoDoKu 2.2(2012) that were compared on the same 

source code. Based on that, 63 classes were evaluated. Static 

metrics were collected by using the CodeMR tool [21], an 

Eclipse plugin and dynamic metrics were collected by using 

the AspectJ [22] tool, an implementation of aspect-oriented 

programming [23] on the Eclipse platform [24]. Aspects 

were created and run with Java classes using AspectJ to 

extract dynamic metrics without affecting the functioning of 

original Java classes which is the best feature of aspect-

oriented programming. The authors also applied four 

existing machine learning algorithms (MLA) by using 

WEKA 3.8 tool [25] on static and hybrid metrics. Results 

were analysed based on Mean Absolute Error (MAE) and 

Root Mean Square Error (RMSE) [20] values obtained by 

comparing the various machine learning algorithms [26, 27]. 

 

 

Figure 1. Research Methodology followed in the current 

study 

III. PROPOSED WORK 

A. PROPOSED FORMULA 

A formula is proposed based on metrics described in section 

1. Static and Hybrid metrics were considered as independent 

variables whereas maintainability i.e. a function of change 

was considered as a dependent variable. The Change was 

counted by comparing two consecutive versions of software 

whereas addition and deletion of code were counted as one 

changFe while updating of code was counted as two changes 

[3]. The proposed formula is defined in equation (1) and (2) 

whereas in equation (2) combination of static and dynamic 

metrics were used i.e. three metrics DIT, RFC and CBO were 

static metrics and DWMC, DLCOM and DLOC were 

dynamic metrics. 

 

Maintainability for static metrics=    

ƒ(WMC,DIT,RFC,CBO, LCOM, LOC ).                        (1) 

Maintainability for Hybrid metrics=   

ƒ(DWMC,DIT,RFC,CBO,DLCOM,DLOC).                  (2) 

 

B. PROPOSED NEURAL NETWORK MODEL 

The proposed neural network [2] was trained with six inputs 

and one output i.e. software maintainability. Trainbr was 

used as a training function, the number of neurons at the 

hidden layer was set to 30 and transit function was used as a 

transfer function as described in Table 2.  

The proposed ANN as shown in Figure 2 was trained on 

raw data sets by the standard error back-propagation 

algorithm at a learning rate of 0.006, having the mean 

squared error as the training stopping criterion. The network 

divides the 63 samples into three parts i.e. 45 samples (70%) 

for training, 9 samples (15%) for testing and 9 samples 

(15%) for validating the neural network. 

Table 2. Proposed neural network Description 

Input units 6 

Output units 1 

No. of neurons at hidden layer 30 

Algorithm Back propagation 

Training function Trainbr 

Network ratio 3:1:1 

 

 

Figure 2. Proposed Neural Network Model 

C. PROPOSED NEURO-FUZZY MODEL 

Neuro-fuzzy is a hybrid system [3] that takes the benefit of a 

fuzzy logic approach that provides flexibility to a system 

rather than crisp logic and a neural network that can learn by 

itself. Therefore, we can say that the neuro-fuzzy approach 

is a mixture of implicit and explicit knowledge. In this paper, 

the neuro-fuzzy model was applied with the help of the 

MATLAB tool using the ANFIS editor. Firstly, raw data was 
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loaded into the ANFIS editor by using the load data option 

and set the type of the data as training data in the load data 

part of the ANFIS editor. After successful loading of data, a 

message appeared on the ANFIS editor screen that train data 

loaded. In this paper, 63 Java classes were loaded 

successfully in the ANFIS editor for training having 6 

numbers of inputs and one output as shown in Figure 3. 

 

 

Figure 3. Loaded data in the neuro-fuzzy model 

After the successful loading of data, we can see the 

structure of the proposed neuro-fuzzy model having 6 inputs 

and one output i.e. maintainability. After that, the authors 

generated a Sugeno fuzzy inference system having three 

membership function (gaussmf) i.e. low, medium and high 

using grid partitioning method and then train the generated 

FIS using a hybrid optimization method by setting the 

number of epochs to 60. Further, trained ANFIS was tested 

on 2 validation datasets by setting the load data type to 

testing and again authors generated the FIS on testing data. 

The detailed description of the proposed neuro-fuzzy model 

is shown in Table 3. 

 

Table 3. Proposed Neuro-Fuzzy Model Description 

Input units 6 

Output units 1 

No of train data pairs 63 

No. of fuzzy rules generated 749 

FIS model Sugeno 

FIS training optimization method Hybrid 

FIS input membership function Gaussmf (Low, 

Medium, High) 

FIS output membership function Linear 

FIS generation method Grid 

Partitioning 

No. of epochs 60 

 

D. MACHINE LEARNING ALGORITHMS USED IN 
CURRENT STUDY 

Authors have also used four machine learning algorithms i.e. 

Linear Regression, Multilayer Perceptron, Random Forest 

and SMOreg in the current study to find the maintainability 

factor of software. The authors applied these algorithms by 

using WEKA 3.8 tool [25]. Firstly, static and hybrid metrics 

raw data were normalized using the min-max normalization 

[12] technique to reduce the complexity of attributes taken 

as input to machine learning models and processing speed 

got faster to measure the desired output. After that, the 

classification of processed data was done by setting the 

cross-validation folds value to 30 as shown in Figure 4. 

 

Figure 4. Loaded data of static metrics in WEKA 3.8 tool 

IV. ANALYSIS RESULTS 

An experimental study was conducted on HoDoKu, open-

source software by comparing 2 consecutive versions of it. 

Static and hybrid metrics were extracted from classes having 

the same source code in both versions. Static metrics were 

extracted using the CodeMR tool and dynamic metrics were 

extracted using AspectJ, an implementation of aspect-

oriented programming on the eclipse platform. Aspect-

oriented programming is used as the process of building a 

tracing or profiling framework using the aspect-oriented 

approach that is relatively simpler than any other approach. 

Further, statistics were applied to calculated values of 

metrics using the MATLAB tool [2]. Functions named 

min( ), max( ), mean( ) and std( ) used in MATLAB to find 

a minimum, maximum, mean and standard deviation of 

measured metrics values, respectively. The statistical result 

on metrics values are shown in Table 4 and Table 5, 

respectively. 
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Table 4. Statistical data of Static Metrics 

Metric 

Name 

MIN MAX MEAN STD. 
DEV. 

WMC 0 749 64 124.29 

DIT 1 6 3.41 2.15 

RFC 0 444 72.65 80.04 

CBO 0 21 3.47 4.26 

LCOM(96a) 0 1 0.71 0.31 

CLOC 3 2336 290.57 394.25 

CHANGE 0 607 44.60 111.06 

Table 5. Statistical data of Hybrid Metrics 

Metric 

Name 

MIN MAX MEAN STD. 

DEV. 

DWMC 0 450 63.45 98.34 

DIT 1 6 3.36 2.18 

RFC 0 444 76.07 91.56 

CBO 0 21 3.65 4.79 

DLCOM 0 0.99 0.65 0.31 

DLOC 2 1040 225.63 253.39 

CHANGE 0 607 44.60 111.06 

 

From these descriptive statistics some observations 

were recorded as mentioned below: 
• WMC and DWMC showed a great difference in their 

values that indicates all the methods of a class were 

not executed at run time. Hence, the complexity of 

methods at a run time decreases when compared with 

the compile-time complexity of methods that affects 

the maintainability of software and makes the 

DWMC an essential metric to predict the 

maintainability of software.  

• LCOM and DLCOM values were nearly the same in 

most of the cases and showed high variation in some 

cases that shows cohesion of classes is not predicted 

well by static metrics. Therefore, DLCOM has its 

importance to find the maintainability of software. 

• Size of code is decreased by almost half at run time 

that is computed well by DLOC metric as compared 

to size computed at compile time by CLOC metric.  

A. COMPARISON RESULTS  

Static and Dynamic Metrics were analysed on six soft 

computing techniques including the proposed neural 

network and neuro-fuzzy model and results indicate that the 

proposed neuro-fuzzy model performed well and better 

predicts the maintainability of software in the case of hybrid 

metrics as shown in Table 6. From Table 6, it is observed 

that hybrid metrics provides better results irrespective of any 

machine learning prediction model as compared to static 

metrics. 

Table 6. Comparison of various classification algorithms  

 

From Table 6, the authors observed that the highest value 

of MAE is 0.31 for static metrics and 0.30 for hybrid metrics 

using Linear Regression and SMOreg models that indicate 

that these models have the highest difference between 

predicted and actual value. The lowest value of MAE is 0.01 

for static metrics and 0.003 for hybrid metrics using the 

neuro-fuzzy model that indicates that the proposed neuro-

fuzzy model was trained well and has minimized the 

differences between predicted and actual values more in the 

case of hybrid metrics. In contrast, time taken to build the 

neuro-fuzzy model is highest as compared to other 

classification models and least in the case of MLP model that 

shows there is a trade-off between time and accuracy factor 

of various models. 

Comparison of MAE and RMSE values for static and 

hybrid metrics is shown in Figure 5 and Figure 6 respectively 

that clearly shows that hybrid metrics are better predictors of 

maintainability as compared to static metrics irrespective of 

any classification algorithm. 

 

Figure 5. Comparison of MAE values of various 

classification algorithms. 
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 Static metrics Hybrid metrics 

Classification 

Models 

MAE RMSE Build 

Time 

MAE  RMSE Build 

Time 

Linear 

Regression 
0.31 0.37 0.12 0.30 0.38 0.11 

Multilayer 

Perceptron 

0.30 0.45 0.04 0.27 0.33 0.04 

SMOreg 0.31 0.39 0.34 0.30 0.38 0.33 

Random Forest 0.22 0.30 0.16 0.20 0.28 0.12 

Proposed 

Neural 

Network Model 

0.27 0.33 0.11 0.19 0.27 0.10 

Proposed 

Neuro-Fuzzy 

Model 

0.01 0.05 0.45 0.003 0.009 0.44 
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Figure 6. Comparison of RMSE values of various 

classification algorithms 

B. VALIDATION OF PROPOSED MODEL 

The six machine learning models were validated on 2 

datasets and the result indicates that the neuro-fuzzy model 

was trained well that gave MAE 0.01 for test data set 2 in 

case of static metrics as shown in Table 7 and 0.001 for test 

data set 1 in case of hybrid metrics as shown in Table 8 that 

indicates hybrid metrics better predicts maintainability of 

software and gives higher accuracy than static metrics. 

Table 7. Validation of various classification algorithms 

based on Static Metrics 

 Static metrics 

Validation Test 1 Validation Test 2 

Classification 

Models 

MAE RMSE MAE RMSE 

Linear Regression 0.22 0.28 0.33 0.39 

Multilayer 

Perceptron 

0.23 0.31 0.25 0.34 

SMOreg 0.24 0.32 0.29 0.438 

Random Forest 0.19 0.27 0.15 0.23 

Proposed Neural 

Network Model 

0.27 0.31 0.30 0.40 

Proposed Neuro-

Fuzzy Model 

0.03 0.09 0.01 0.03 

Table 8. Validation of various classification algorithms 

based on Hybrid metrics 

 Hybrid metrics 

Validation Test 1 Validation Test 2 

Classification Models MAE RMSE MAE RMS

E 

Linear Regression 0.21 0.27 0.32 0.39 

Multilayer Perceptron 0.19 0.30 0.13 0.16 

SMOreg 0.20 0.28 0.28 0.40 

Random Forest 0.07 0.11 0.09 0.13 

Proposed Neural 

Network Model 

0.13 0.20 0.20 0.31 

Proposed Neuro-fuzzy 
Model 

0.001 0.003 0.004 0.007 

 

The authors compared the MAE values of dataset 1 and 

dataset 2 as shown in Figure 7 and 8, respectively based on 

static and hybrid metrics. It is found that the value of MAE 

was lower in the case of hybrid metrics irrespective of any 

machine learning algorithm and gave the best results in the 

case of hybrid approach i.e. neuro-fuzzy.  

 

Figure 7. Comparison of MAE values of Classification 

models on data set 1 

 

Figure 8. Comparison of MAE values of Classification 

models on data set 2 

V. CONCLUSIONS 

The main purpose of the current study was to analyze the 

usefulness of hybrid metrics for maintainability estimation 

in an object-oriented environment that takes the advantages 

of both i.e. static metrics and dynamic metrics that takes less 

time and effort to compute maintainability of software with 

higher accuracy. Comparison of various soft computing 

techniques was done with the proposed neural network and 

neuro-fuzzy approach based on static and hybrid metrics by 

collecting metrics from HoDoKu, open-source software. The 

proposed model has taken static and hybrid metrics as input 

and maintainability as output i.e. function of change from 

two consecutive versions of HoDoKu on the same source 

code. Based on that, 63 Java classes were compared based 

on mean absolute error (MAE) and root mean square error 

(RMSE) values and it is found that hybrid metrics performed 

utterly well for all the machine learning algorithms as 

compared to static metrics to estimate the software 

maintainability. Further, it is concluded that the proposed 
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neuro-fuzzy model was trained well and gave satisfactory 

results in the case of hybrid metrics with 0.001 mean 

absolute error (MAE) on validation test data set 1. Hence, 

this study would help the software industry to predict the 

maintainability of software in advance with less time and 

higher accuracy with the help of hybrid metrics. In future, 

the model will be more sophisticated by taking a large set of 

metrics on large projects in Object Oriented environment. 
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