

VOLUME 20(3), 2021 365

Date of publication SEP-30, 2021, date of current version JUN-07, 2021.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209

Online ISSN 2312-5381

DOI 10.47839/ijc.20.3.2282

A Decoder – Look up Tables for FPGAs

SERGEY F. TYURIN1,2, RUSLAN V. VIKHOREV3
1 Department of Automation and Telemechanic, Perm National Research Polytechnic University, Russia, Perm, 614990, 29 Komsomolsky prospect,

(e-mail: tyurinsergfeo@yandex.ru)
2 Department of Software Computing Systems, Perm State University, Perm, Russia, 614990, 15 Bukireva Street, (e-mail: tyurinsergfeo@rambler.ru)

3 Perm scientific-industrial instrument making company, Perm, Russia, 614095, Karpinskogo 87, 101, (e-mail: Vihrusvla@gmail.com)

Corresponding author: Sergey F. Tyurin (e-mail: tyurinsergfeo@yandex.ru).

Great thanks to the PhD Irina A. Barinova (Perm National Research Polytechnic University). This work was supported in part by a grant
from EU by TEMPUS-GreenCo (530270-TEMPUS-1-2012-1-UK- TEMPUS-JPCR) with the assistance of the Department "Computer

Systems and Networks" Kharkiv National Aerospace University named after V. E. Zhukovsky “HAI”.

 ABSTRACT The FPGA (Field-Programmable Gate Array) has recently become the popular hardware and so-

called LUTs (Look up Tables) are the basic of the FPGAs logic. For example, n-LUT is the MOS pass transistors

multiplexer 2n-1 which input data receive SRAM cells logic function configuration (user’s projects Truth Table).

Address inputs of the LUT are the variables. Therefore, we get one n-arguments logic function for the actual FPGA

configuration. To get m functions (even with the same n-arguments) we should take m LUT. Authors propose a

novel Decoder n-LUT (n-DC LUT), which makes possible to get m functions with the same n-arguments, like in

Program Logic Array (PLA) CPLD (Complex Programmable Logic Device). DC LUT activates one of the 2n

product terms outputs. Combined with OR product terms we can get m functions with the same n-arguments. To

do this option we can use, for example, FPGAs typical connections units. The restriction of Meade-Conway for

the FPGAs allows n=3 in one tree. Two 3-LUTs with one 1-LUTs form 4-LUT. Modern Adaptive Logic Modules

(ALM) have n=8, but not all possible functions are implemented. The article deals with the design and investigation

of some variants 3-DC LUT: with pull up output resistors, with orthogonal output circuits, with orthogonal

transistors for each pass transistor. Simulation confirms the feasibility of the proposed method and shows that DC

LUT with orthogonal output circuits is better variant of the systems realization in terms of current consumption

and time delay at large n. A further development of the ALM concept may be the introduction of adaptive DC

LUT, which, by tuning, can calculate single LUT function or 2n decoder functions. The proposed elements allow

to increase the functionality of the FPGAs.

 KEYWORDS Architecture; CMOS; FPGA Synthesis; Layout.

I. INTRODUCTION

A. MOTIVATION

OOK UP TABLE (LUT) is a simplest, elementary

FPGAs Logic Unit [1]. This logic realization started

from MUX (multiplexor) and single output ROM (read only

memory) universal logic modules direction, using Canonical

Disjunctive Normal Form (CDNF) or Minterm Canonical

Form (MCF). Another direction used PLA and PAL

(Programmable Array Logic) using DNF representation of

the logic functions, which later led to the CPLD creation.

FPGA and CPLD are two competing areas of programmable

devices. These solutions are equal and have their own

strengths and weaknesses, so attempts to create hybrid

devices do not stop [2, 3]. However, this direction is mainly

associated with attempts to introduce PLАs into FPGAs and

use them in conjunction with LUTs. This, of course,

increases the bit depth of the implemented systems of

functions, but, in turn, leads to the complication of the FPGA

manufacturing technology. Known examples of improving

FPGAs do not use the abilities of a set of variables decoding

to implement systems of logical functions in FPGAs [4-6].

Therefore, the article discusses this new proposed direction

of implementation of programmable logic.

B. STATE OF THE ART

Linear representation of the 1-LUT’s logic function [7-9] is

the following:

L

 Sergey F. Tyurin et al. / International Journal of Computing, 20(3) 2021, 365-373

366 VOLUME 20(3), 2021

0 1(,) ,z x d d x d x=    (1)

where 0 1,d d are configurations data of the one argument

(n=1) ()z x function. Combining 0 1,d d we can get
22

functions (Fig1).

For example, if 0 11, 0d d= = we get the NOT function:

(,1,0) 1 0z x x x x=    = , (2)

where x – input variable.

If 0 10, 1d d= = we get the x function,

(,0,1) 0 1z x x x x=    = . (3)

Sometimes any LUTs used like connectors, so

configurations data are 0 10, 1.d d= =

Figure 1. 1-LUT tree.

Fig. 1 shows 1-LUT according to tree representation of

(1), with two MOS-p pass transistors [10],[11],[12] two

configuration inputs 0 1,d d , one input variable (x) and single

output function (z). NOT gates (invertors) are an amplifiers,

the signal’s restoration elements, one x-invertor realizes

NOT(x) signal.

Linear representation of the 2-LUT’s logic function is the

next

2 1 2 12 1 0 1 1 2 2 3 2 1() ,z x x d d x x d x x d x x d x x=        (4)

where 0 1 2 3, , ,d d d d – configurations data of the two

arguments function 2 1()z x x .

Combining 0 1 2 3, , , ,d d d d we can get
42 functions.

For example, if 0 1 2 30, 1, 1, 0,d d d d= = = = we get

XOR function.

Connecting three of the basic 1-LUT trees (without

some of the NOT gates), we can design 2-LUT tree – Fig. 2.

Figure 2. 2-LUT tree.

Linear representation of the 3-LUT’s logic function

is expression (3)

3 2 1 3 2 3 13 2 1 0 1 1 2 2

3 2 1 23 2 1 4 3 5 3 1

16 3 2 7 7 2 1

()

.

z x x x d d x x x d x x x d x x x

d x x x d x x x d x x x

d x x x d x x x

=      

     

   

(5)

Connecting two 2-LUT and one 1-LUT, we can get

3-LUT tree – Fig.3.

Figure 3. 3-LUT tree.

Combining 0 1 2 3 4 5 6 7, , , , , , ,d d d d d d d d we can get
82

functions.

Each branch of the tree (3) 3 2 1

3 2 1x x x
   , where

{0,1}
i

  is indicator of the negation presence (=1) or

negation absence (=0) is orthogonal to another branches. So

only one branch activates [13-15].

Due to Meade-Convey restrictions [16] on the number of

series-connected transistors (not more than three) 1, 2, 3-

LUTs are the main FPGA’s logic gates. Meade-Convey

restriction [16] requires restoration after each third pass

transistors link. 4-LUT and another (Adaptive Logic

Modules has 5-LUT, 6-LUT and even more [11]) are created

as 3-LUTs composition.

However, all n-LUTs produce only single logic function

of n arguments in the canonical disjunctive normal form

(CDNF) or minterm canonical form (MCF).

At the same time, each minterm can activate other logic

functions of the same arguments (for example sum and carry

functions). Combining this minterms by OR we can get

multi-outputs logic element. CPLD, in contrast to FPGA,

uses multiple output PLA technology, which uses DNF

representation of the logic functions.

Sergey F. Tyurin et al. / International Journal of Computing, 20(3) 2021, 365-373

VOLUME 20(3), 2021 367

C. OBJECTIVES AND STRUCTURE

In the article, so-called a Decoder - Look up Tables (DC

LUT) is proposed for the realization of decoding the binary

vector and the multi-output logic element. Decoder (DC) is

used to modify FPGAs LUT for the realization of multiple

output units, based on CDNF. To solve this problem, the

authors perform:

• synthesis and analysis of the proposed DC LUT by

modifying known DC circuit (section 2);

• comparing the complexity in the number of

transistors of the obtained solution with the known

(section 3);

• layout simulations of the proposed DC LUTs and

comparing the layout square, dynamic power

consumption and time delay (section 4).

II. SYNTHESIS AND ANALYSIS OF THE PROPOSED
DECODER LUT

Decoder or DC LUT is almost the reverse LUT, for example,

1-LUT – Fig.4.

Figure 4. Reversed 1-LUT

Unlike Fig. 1, the input signal (constant) will be on the

right, and the output signals will be on the left.

Linear DC 1-LUT representation is the next:

() ;

() .

in

in

z x d x

z x d x

 = 


= 
 (6)

In case x=1 input of the dout0 inverter (Fig. 4) will

become disconnected to “Ground”. In case x=0 input of the
dout1 invertor will became disconnected to “Ground”. Pull-
up resistors usually solves the orthogonal problem in the
invertor’s inputs, as shown in Fig. 5. Using additional two
transistors to reverse 1-LUT (Fig.4) we get next variant of the
orthogonal problem solving, 1-DC–LUT with orthogonal
outputs (s0,s1) is shown in Fig. 6.

Figure 5. DC-LUT-R with pull-up resistors

Figure 6. DC-LUT-O with proposed orthogonal outputs

(s0,s1)

Additional transistors (Fig. 6) eliminate the undefined
state of the inputs of inverters connected to s0 s1 without
using pull-up resistors (Fig. 5).

Linear DC 2-LUT representation without orthogonal
transistors is the next:

2 10 2 1

21 2 1 1

12 2 1 2

3 2 1 2 1

() ;

() ;

() ;

() .

in

in

in

in

z x x d x x

z x x d x x

z x x d x x

z x x d x x

 = 


= 


= 


= 

 (7)

2-DC–LUT-O with proposed orthogonal outputs

[14],[15],[16] (s0,s1,s2,s3) is shown in Fig. 7.

Figure 7. 2-DC-LUT-O with orthogonal outputs

(s0,s1,s2,s3)

Figure 8. 3-DC-LUT-O with orthogonal by each transistor

 Sergey F. Tyurin et al. / International Journal of Computing, 20(3) 2021, 365-373

368 VOLUME 20(3), 2021

Linear DC 3-LUT representation without orthogonal

transistors is the next:

3 2 10 3 2 1

3 21 3 2 1 1

3 12 3 2 1 2

33 3 2 1 2 1

2 14 3 2 1 3

25 3 2 1 3 1

16 3 2 1 3 2

7 3 2 1 3 2 1

() ;

() ;

() ;

() ;

() ;

() ;

() ;

() .

in

in

in

in

in

in

in

in

z x x x d x x x

z x x x d x x x

z x x x d x x x

z x x x d x x x

z x x x d x x x

z x x x d x x x

z x x x d x x x

z x x x d x x x

 = 


= 


= 


= 


= 


= 


= 
 = 

 (8)

3-DC–LUT-O with proposed orthogonal outputs

(s0,s1,..,s6,s7) is shown in Fig. 8. Fig. 8. represents DC–

LUT-O with orthogonalization relating to each of the pass

transistors. Note, that expressions (4), (5), (6) do not take

into account orthogonal problem. These are input decoding

expressions, but they can be combined by OR to obtain a

system of functions. For example (Fig. 7):

2 11 2 1 1 2 1 2

2 2 1 2 1 3

() ,

() .

f x x x x x x s s

f x x x x s

=  = 

= =
 (9)

III. ANALYSIS OF LUT / DC LUT COMPLEXITY IN
TRANSISTORS

The n-LUT’s complexity in amount of the transistors (taking

into account SRAM cells for the functions configuration, not

showed in Fig.1–3) is expression (10):

1(2 2) 8 2 4 2,n n

n LUTL n+

− = − +  + + (10)

where
12 2, 1,2,3n n+ − = – amount of the tree pass

transistors; 8 2n – amount of the SRAM cells transistors (6

transistors in one cell) +input data invertors transistors; 4n

– amount of the input variables invertors transistors; 2 –

amount of the output invertor transistors.

We see an exponential dependence of complexity on the

number of variables. Simplifying (10), we get formula (11):

1

2 2 8 2 4 10 2 4

5 2 4 .

n n n

n LUT

n

L n n

n

−

+

=  +  + =  + =

=  + 

(11)

Expression (11) describes conditional complexity
1(2)nO + of the single logic function realization without

restrictions [13]. We can design 2-LUT like (1-LUT)+(1-

LUT)+(1-LUT) pay attention to restrictions [13].

Then for 3-LUT: (1-LUT +1-LUT +1-LUT)+(1-LUT +1-

LUT +1-LUT) +1-LUT =3-LUT. Another variant is 2-LUT

+2-LUT +1-LUT =3-LUT.

So for 4-LUT: 3-LUT +3-LUT +1-LUT =4-LUT; (2-

LUT +2-LUT +1-LUT)+(2-LUT +2-LUT +1-LUT)+1-

LUT=4-LUT.

Then for 5-LUT: (3-LUT +3-LUT +1-LUT)+(3-LUT +3-

LUT +1-LUT)+1-LUT=5-LUT;

3-LUT +3-LUT +3-LUT +3-LUT+2-LUT =5-LUT.

To minimize trees levels (3-3 is better than 3-1-1, 2-2-2

better than 1-1-1-1-1-1) let design max decomposition by,

for example, max r=3:

6 5
, 2; 1;

3 3
r

n

r


     
= = =     

     

 (12)

with finite rf:

5 6
;5 3 2;6 3 0;

3 3fr

n
n r

r


     
= − −  = −  =     

     

 (13)

Where    the round up (or take the ceiling or ceiling n/r

function).

Then amount of the r-LUTs (amount of the rf LUT

always=1):

1

2 .

n

r
n ir

r LUT

i



 
 
 

−

−

=

=  (14)

It is easy to see why n-tree complexity is

1

_ 2 2.n

n LUT treeL +

− = − (15)

Therefore, n-LUT scaling by max r-LUT without

configuration complexity and fan-out of the input inverters

gives expression (16):

1

_ 2 2.n

n LUT treeL +

− = − (16)

where
1

2 2

n

r
n ir

i

 
 
 

−

=

 - number of the restoration blocks

(invertors) transistors, 2-number of the transistors in single rf

LUT’s invertor.

Taking into account Fig.8 and expression (16) we can

get n-DC–LUT-O complexity:

1

(max)

1

2 (2 2) 8 2

4 2 2 2.

n n

n r DC LUT O

n

r
n ir

i

L

n

+

− − −

 
 
 

−

=

=  − +  +

+ +  +

(17)

The authors have developed and researched several

variants of the device. Second proposed variant is the block

of the orthogonal additional transistors called the block of

the canonical form – BCN (canonical conjunctive normal

form – CCNF). 3-DC-LUT-BCN is shown in Fig. 9.

Sergey F. Tyurin et al. / International Journal of Computing, 20(3) 2021, 365-373

VOLUME 20(3), 2021 369

For example, minterm 3 2 1x x x requires orthogonal

maxterm 3 2 1x x x  du to 3 2 1 3 2 1.x x x x x x=   This

BCNs connects to invertors inputs. Therefore, we have

complexity (18):

1

(max)

1

(2 2) 8 2 2

4 2 2 2.

n n n

n r DC LUT BCN

n

r
n ir

i

L n

n

+

− − −

 
 
 

−

=

= − +  + 

+ +  +

(18)

Figure 9. Proposed 3-DC-LUT-BCN with orthogonal by

outputs (s0,s1,..,s6,s7)

In the input of the output invertor s(i) (Fig.8, Fig.9) all

signals are orthogonal due to s signal is one hot code (only

one is active=1). To calculate m function it needs H signals

are the configuration information, H(j)=1 if the i-function

(si) include j-maxterm. Single disjunctive block for n

arguments showed on Fig.10.

Figure 10. Single disjunctive block for n arguments

The block Fig. 10 performs the OR function of the CCNF

elements.

The comparison shows the advantages of the proposed

device in the implementation of systems of functions that

depend on the same variables. in Comparative curves of m

function realization according to (19),(20),(21) in Mathcad

shows Fig.11.

4 5 6 7
1

1.2809 10
3



2.5608 10
3



3.8407 10
3



5.1206 10
3



6.4005 10
3



7.6804 10
3



8.9603 10
3



1.02402 10
4



1.15201 10
4



1.28 10
4



L1 n()

Ldco n()

Ldcbcn n()

n
a) r=3;m=8

4 5 6 7
1

2.2809 10
3



4.5608 10
3



6.8407 10
3



9.1206 10
3



1.14005 10
4



1.36804 10
4



1.59603 10
4



1.82402 10
4



2.05201 10
4



2.28 10
4



L1 n()

Ldco n()

Ldcbcn n()

n

b) r=3;m=16

4 5 6 7
1

578.9

1.1568 10
3



1.7347 10
3



2.3126 10
3



2.8905 10
3



3.4684 10
3



4.0463 10
3



4.6242 10
3



5.2021 10
3



5.78 10
3



L1 n()

Ldco n()

Ldcbcn n()

n

c) r=3;m=4

Figure 11. Comparison of the m LUT, DC-LUT-O and

DC-LUT-BCN (Ldcbcn) with different n,r.

It easy to see, that Ldco is better, than Ldcbcn (and L1,

of course). Let get relation L1/ Ldco:

 Sergey F. Tyurin et al. / International Journal of Computing, 20(3) 2021, 365-373

370 VOLUME 20(3), 2021

1

1

1

1

[(2 2) 8 2 4 2 2 2]

.

2 (2 2) 8 2 4 2 2 2 8 2

n

r
n n n ir

i

n

r
n n n ir n

i

m n

n m



 
 
 

+ −

=

 
 
 

+ −

=

− +  + +  +

=

 − +  + +  + + 





(19)

The resulting expression (19) is a new scientific result, the

use of which makes it possible to evaluate the advantages of

a new technical solution. Curves of the expression (19)

represents Fig.12.

4 5 6 7 8 9 10
1

1.04

1.08

1.12

1.16

1.2

1.24

1.28

1.32

1.36

1.4

 n m1 ()

 n m2 ()

 n m3 ()

 n m0 ()

n

Figure 12. Curves of the relation L1/ Ldco; r=3; m0=4;

m1=8; m2=16; m3=24;

Therefore, to greater m we get greater advantages of
the DC LUT. If only single Decoder is produced, we get
maximum profit – Fig.13.

2 3 4
1

300.9

600.8

900.7

1.2006 10
3



1.5005 10
3



1.8004 10
3



2.1003 10
3



2.4002 10
3



2.7001 10
3



3 10
3



L1 n()

Ldco n()

Ldcbcn n()

n

Figure 13. Only Single Decoder advantages

Combined DC-LUT O (Fig.8) and DC-LUT BCN

(Fig.9) architecture we can get DC-LUT/BCN-O expression

(20), (Fig. 14,15).

Figure 14. Combined 3-DC-LUT BCN-O with orthogonal

by outputs (s0,s1,..,s6,s7) via only two variables

1

(max)

1

1

(2 2) 8 2

() 2 4 2 2 2 ,

n n

n r DC LUT BCN O

n

r
n n ir j

i

L

n j n

+

− − − −

 
 
 

− +

=

= − +  +

−  + +  +

(20)

where, j-is the number of “O” variables.

The comparison in Mathcad shows the advantages of the

proposed device in the implementation of systems of

functions that depend on the same variables.

4 6 8 10
1

3.7009 10
3



7.4008 10
3



1.11007 10
4



1.48006 10
4



1.85005 10
4



2.22004 10
4



2.59003 10
4



2.96002 10
4



3.33001 10
4



3.7 10
4



Ldcbcn n()

Ldco n()

Ldcbcno n()

n

a) j=2, n=4…10

Sergey F. Tyurin et al. / International Journal of Computing, 20(3) 2021, 365-373

VOLUME 20(3), 2021 371

4 6 8 10
1

3.7009 10
3



7.4008 10
3



1.11007 10
4



1.48006 10
4



1.85005 10
4



2.22004 10
4



2.59003 10
4



2.96002 10
4



3.33001 10
4



3.7 10
4



Ldcbcn n()

Ldco n()

Ldcbcno n()

n

b) j=3, n=4…10

5 6 7 8
1

690.9

1.3808 10
3



2.0707 10
3



2.7606 10
3



3.4505 10
3



4.1404 10
3



4.8303 10
3



5.5202 10
3



6.2101 10
3



6.9 10
3



Ldcbcn n()

Ldco n()

Ldcbcno n()

n
c) j=3, n=5…8

Figure 15. Comparison of the proposed DC-LUT-O(Ldco),

DC-LUT-BCN (Ldcbcn), DC-LUT-BCN-O (Ldcbcno) at

different j a) j=2, n=4…10; b) j=3, n=4…10; c) j=3,

n=5…8

Therefore, DC-LUT-BCN loses to DC-LUT-O at the large

n (Fig.15). However, estimates in the number of transistors

are not enough, it is necessary to take into account the

topology. Then we get layout simulation in Microwind CAD

[17] using accessible transistors model [18].

IV. DC LUT LAYOUT SIMULATION

Proposed DC-LUT layout simulation in Microwind CAD

[17] with Spice MOSFET Model BSIM4.8, 65nm [18] is

shown in Fig. 16.

a)

b)

c)

d)

Figure 16. Proposed 3-DC-LUT layout: а) 3-DC-LUT-O; b)

2-DC-LUT-BCN; c) 3-DC-LUT-BKN; d) single transistor

Authors proposes Adaptive DC-LUT too. The device can,

depending on the setting, perform the functions of both LUT

and DC-LUT. Adaptive DC-LUT layout simulation in

Microwind [17], [18] is shown in Fig. 17.

 Sergey F. Tyurin et al. / International Journal of Computing, 20(3) 2021, 365-373

372 VOLUME 20(3), 2021

Figure 17. Proposed 2-ADC-LUT layout

Results of the simulation are shown in Table 1. 3-DC-

LUT–BKN layout simulation for XOR is shown in Fig. 18.

The layout simulation results confirm the efficiency of the

proposed new technical solutions and allow you to choose

the best options.

Common results of the proposed devices layout

simulation in comparison with the known solution LUT are

shown in Table 1.

We see the correct formation of a logical zero in cases

(X1X2X3)=001, 010, 100,111 (Fig. 17).

Table 1. Results of the LUT/ DC-LUT layout simulation

№ Name

Layout

Square

S

um^2

Power

consumption

Microwind

(1V)

In dynamic

(uW)

Time

delay

T

(ps)

1 1-LUT for single

function

2,8 5.384 6

2 2-LUT for single

function

3,8 7.297 13

3 3-LUT for single

function

6 8.833 17

4 1-DC-LUT-O for

system

6,2 10.327 8

5 2-DC-LUT-O for

system

9 28.018 15

6 3-DC-LUT-O for

system

19,1 62.552 20

7 1-DC-LUT-BKN for

system

5 10.309 9

8 2-DC-LUT-BKN for

system

11 27.377 16

9 3-DC-LUT-BKN for

system

22,2 58.40 21

Figure 18. 3-DC-LUT–BKN simulation, waveform of XOR

(X1X2X3)

We see that DC LUT outperforms the well-known

solution LUT when implementing a system of decoding

functions (8): for example 3-DC-LUT-O has 19,1 um^2

against 3-LUT 6*8=48 um^2.

V. CONCLUSION

The scientific novelty of the research lies in the fact that

authors propose new gate named DC LUT for the realization

of the logic function systems in FPGAs. The existing LUT

elements implement only one function, so there are as many

of them as there are functions of a given number of

arguments. The complexity estimates are obtained and

investigated, confirming the effectiveness of the new

element. Detailed comparative modeling was performed in

the systems of circuit simulation Maltisim and MicroWind.

Most effect is achieved for the simple n-decoder, when each

from 2n function includes only one product term. Layout

simulation proves workability of the proposed devices. DC-

LUT-BCN loses to DC-LUT-O in transistors quantity at the

large n, but has more layout square and better in dynamic

power consumption. In time delay these variants are almost

equal. Combining DC-LUT-BNC and DC-LUT-O

technology allows achieving better characteristics. Proposed

adaptive gate – ADC-LUT gate can be considered as a further

development of ALM and possible model of the reversible

computing [19], [20] for the Fredkin Gate implementation in

reversible computing. The proposed elements allow to create

advanced FPGAs of a new generation for embedded systems

and on-board computers too.

References
[1] S. Brown, Architecture of FPGAs and CPLDs: A Tutorial. [Online].

Available at:
https://www.ece.iastate.edu/~zambreno/classes/cpre583/documents/

BroRos96A.pdf (accessed: 04.06.2021).

[2] A. Kaviani, S. Brown, Hybrid FPGA architecture, Available at:
https://https://www.eecg.utoronto.ca/~brown/papers/fpga96-

kaviani.pdf (accessed 04.06.2021)

[3] C. H. Ho, C. W. Yu, P. H. W. Leong, W. Luk and S. J. E. Wilton,
"Domain-specific hybrid FPGA: Architecture and floating point

applications,” Proceedings of the 2007 International Conference on

Field Programmable Logic and Applications, 2007, pp. 196-201,
https://doi.org/10.1109/FPL.2007.4380647.

[4] M. Ebrahimi, R. Sadeghi and Z. Navabi, “LUT Input reordering to
reduce aging impact on FPGA LUTs,” IEEE Transactions on

https://doi.org/10.1109/FPL.2007.4380647

Sergey F. Tyurin et al. / International Journal of Computing, 20(3) 2021, 365-373

VOLUME 20(3), 2021 373

Computers, vol. 69, no. 10, pp. 1500-1506, 2020.

https://doi.org/10.1109/TC.2020.2974955.

[5] N. Mehta, An Ultra-Low-Energy, Variation-Tolerant FPGA
Architecture using Component-Specific Mapping, Ph.D. Thesis,

California Institute of Technology, [Online]. Available at:

http://thesis.library.caltech.edu/7226/1/Nikil-Mehta-2013.pdf.
[6] C. Chiasson, Optimization and Modeling of FPGA Circuitry in

Advanced Process Technology, Master Thesis, University of Toronto,

2013. [Online]. Available at:
https://tspace.library.utoronto.ca/bitstream/1807/42733/3/Chiasson_

Charles_RE_201311_MASc_thesis.pdf.

[7] Field Programmable Gate Arrays, [Online]. Available at:
http://www.eng.auburn.edu/~nelson/courses/elec4200/FPGA/FPGAo

verview.pdf.

[8] FPGA Architecture White Paper – Altera. [Online]. Available at:
https://www.altera.com/en_US/pdfs/literature/wp/wp-01003.pdf.

[9] 7 Series FPGAs Data Sheet: Overview, [Online]. Available at:

https://www.xilinx.com/support/documentation/data_sheets/ds180_7
Series_Overview.pdf.

[10] S. Tyurin, “A Quad CMOS gates checking method,” International

Journal of Computing, vol. 18, issue 3, pp. 258-264, 2019.
https://doi.org/10.47839/ijc.18.3.1518.

[11] A. Drozd, M. Drozd, O. Martynyuk, M. Kuznietsov, “Improving of a

circuit checkability and trustworthiness of data processing results in
LUT-based FPGA components of safety-related systems,” CEUR

Workshop Proceedings, vol. 1844, pp. 654–661, 2017.

[12] A. Drozd, M. Drozd, M. Kuznietsov, “Use of natural LUT redundancy
to improve trustworthiness of FPGA design,” CEUR Workshop

Proceedings, vol. 1614, pp. 322–331, 2016.

[13] S. Gao, D. Al-Khalili, N. Chabini, “An improved BCD adder using 6-
LUT FPGAs,” Proceedings of the IEEE 10th International New

Circuits and Systems Conference, NEWCAS, 2012, pp. 13-16.

https://doi.org/10.1109/NEWCAS.2012.6328944.

[14] H. Gao, Y. Yang, G. Dong, “Theoretical analysis of effect of LUT size

on area and delay of FPGA,” 2005. [Online]. Available at:

https://www.researchgate.net/publication/294490633_Theoretical_an
alysis_of_effect_of_LUT_size_on_area_and_delay_of_FPGA.

[15] V. S. Vinitha, R. K. Sharma, “An efficient LUT Design on FPGA for

memory-based multiplication,” Iranian Journal of Electrical and
Electronic Engineering, no. 4, pp. 462–476, 2019.

[16] C. A. Mead, L. Conway, Introduction to VLSI Systems. [Online].

Available at:
https://www.betterworldbooks.com/product/detail/Introduction-to-

VLSI-Systems-9780201043587.

[17] N. Paydavosi, BSIM4v4.8.0 MOSFET Model -User’s Manual 2013
Available at: http://bsim.berkeley.edu/BSIM4/BSIM480.zip.

[18] CAD MicroWind. [Online]. Available at: https://www.microwind.net.

[19] E. Fredkin and T. Toffoli, “Conservative logic,” International Journal

of Theoretical Physics, vol. 21, issue 3/4, pp. 219-253, 1982.
https://doi.org/10.1007/BF01857727.

[20] K. Morita, “Reversible logic gates,” In: Theory of Reversible

Computing. Monographs in Theoretical Computer Science. An
EATCS Series. Springer, Tokyo: https://doi.org/10.1007/978-4-431-

56606-9_4.

[21] T. Toffoli, “Reversible computing,” In: de Bakker J., van Leeuwen J.
(eds) Automata, Languages and Programming. ICALP 1980. Lecture

Notes in Computer Science, 1980, vol 85. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/3-540-10003-2_104.

Drs, Prof. SERGEY F. TYURIN,
graduated from Perm High Command-
Engineering Military School of Rocket
Forces at 1975. PhD in Computer Science,
Kharkov High Command-Engineering
Military School of Rocket Forces (USSR)
at 1991. DrS in Computer Science, Perm
High Command-Engineering Military
School of Rocket Forces (Russia), 1998.
Now he works as Professor at the
Department of Automation and
Telemechanic of Perm National Research

Polytechnic University and as Professor at the Department of
Software Computing Systems of Perm State National Research
University. Research interests: methods and means of assessment
and ensuring for reliability.

Dr. Ruslan V. Vikhorev, graduated Perm
National Research Polytechnic University,
2014. Post graduated student at the
Department of Automation and Tele-
mechanic Perm National Research
Polytechnic University, 2018. PhD
Computer science, Perm National
Research Polytechnic University, 2019.
Now he works as a Design Bureau chief of
the scientific and technical center, JSC

“Perm scientific-industrial instrument making company”.

https://doi.org/10.1109/TC.2020.2974955
https://doi.org/10.47839/ijc.18.3.1518
https://doi.org/10.1109/NEWCAS.2012.6328944
https://doi.org/10.1007/BF01857727
https://doi.org/10.1007/978-4-431-56606-9_4
https://doi.org/10.1007/978-4-431-56606-9_4
https://doi.org/10.1007/3-540-10003-2_104

