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 ABSTRACT Rapid assessment of plant photosynthetic pigments content is an essential issue in precise 

management farming. Such an assessment can represent the status of plants in their stages of growth. We have 

developed a new 2 Dimensional-Convolutional Neural Network (2D-CNN) architecture, the P3MNet. This 

architecture simultaneously predicts the content of 3 main photosynthetic pigments of a plant leaf in a non-

destructive and real-time manner using multispectral images. Those pigments are chlorophyll, carotenoid, and 

anthocyanin. By illuminating with visible light, the reflectance of individual plant leaf at 10 different wavelengths 

– 350, 400, 450, 500, 550, 600, 650, 700, 750, and 800 nm – was captured in a form of 10 digital images. It was 

then used as the 2D-CNN input. Here, our result suggested that P3MNet outperformed AlexNet and VGG-9. After 

undergoing a training process using Adadelta optimization method for 1000 epochs, P3MNet has achieved superior 

MAE (Mean Absolute Error) in the average of 0.000778 ± 0.0001 for training and 0.000817 ± 0.0007 for validation 

(data range 0-1).  
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I. INTRODUCTION 

HOTOSYNTHETIC pigments in plants have essential 

roles in the process of plant growth. They harvest solar 

light energy and use it for photosynthesis. Therefore, any 

changes in their contents can represent various conditions 

such as nutritional status, senescence, responses to 

environmental changes [1] as well as pests and diseases 

attack [2]. Hence, the development of rapid analysis methods 

of photosynthetic pigment contents is an important topic in 

agricultural research.  

In recent years, advances in computer technology and 

electronics have led agricultural research to the development 

of pigment analysis methods in a non-destructive manner [3]. 

Non-destructive methods allow the quantification of pigment 

contents to be done in-situ and in real-time, and, thus, a rapid 

analysis can be easily performed. Gitelson et al. [4-6] have 

developed several non-destructive methods based on spectral 

reflectance from spectrophotometer-based measurements to 

predict the content of three main photosynthetic pigments 

(chlorophyll, carotenoid, anthocyanin) in plant leaves. 

Although the predictions are claimed to be quite good, 

spectrometer-based measurements are generally costly. 

Other researchers then developed an image-based 

measurement as an alternative [7]. These methods have been 

proven to be efficient, accurate, and easy to implement. In 

general, the RGB format is used [8-10]. However, in the case 

of simultaneous measurement of pigment contents, the RGB 

format is not enough. This refers to the theory that each type 

of pigment has a unique light reflectance behavior at certain 

wavelengths. The RGB format is mostly produced by camera 

P 
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sensors that have been filtered only to be able to capture 

reflections in the red (620–750 nm), green (495–570 nm) and 

blue (450–495) ranges. Therefore, using the RGB format as 

the raw data will eliminate a lot of important information that 

can be obtained from other wavelengths. For example, the 

reflectance in the near-infrared range (750–800 nm), which 

carries information about the diversity of leaf structure and 

thickness and as a correction for the calculation of pigment 

content in leaves containing both chlorophyll and 

anthocyanin [11]. Hence, in this study, we propose the use of 

multispectral digital images consisting of 10-channels. With 

reference to the positive results in our preliminary study 

using different species and without the wet chemical 

procedure [12], we hypothesized that, the prediction of 

photosynthetic pigments content in plant leaves would be 

approaching the results given by the spectrophotometer-

based measurements and certainly better than those of 3-

channel (RGB) images. In 10-channel images, the quantity 

of light reflectance that represents the content of the 

photosynthetic pigments becomes more thorough and guides 

the system to produce better predictions. 

To provide real-time analysis, an image-based 

measurement needs to be equipped with a machine learning 

method that is used to perform either classification [13] or 

regression [14] tasks on the image. In this study, we used the 

2D-Convolutional Neural Network (2D-CNN) to perform a 

regression task on our pigments prediction system. This 

method is a variant of the Artificial Neural Network (ANN) 

that is now popularly used to handle input in the form of 

digital images. By applying the convolution method, the use 

of hyperparameter on 2D-CNN is more efficient so that the 

learning process can be done quickly even with a large 

dimension of inputs [15] and minimize dependencies on 

human knowledge in determining the main features of the 

input images [16]. In conventional ANN, manual 

determination of the input main features is the most critical 

task to ensure the model performance. But on 2D-CNN, the 

features that represent the input image are generated 

automatically and continuously adjusted throughout the 

learning process without human bias. Moreover, 2D-CNN 

can also extract information from a digital image that 

consists of many color components (multispectral) 

simultaneously. In pigment analysis, each color component 

in a multispectral image carries unique information. 

Therefore we need a tool that can perform simultaneous and 

automatic extraction of all color components, such as the 

convolution method. This makes 2D-CNN superior to 

conventional ANN, especially in handling multispectral 

digital images. 

II. MATERIAL AND METHODS 

A. THE SAMPLE  

Four species of Indonesian herbal plants were used in the 

experiment: Syzygium oleana, Piper betle, Jasminum sp. and 

Graptophyllum pictum. Each species was chosen carefully to 

be able to represent the diversity of the chlorophyll, 

carotenoid, and anthocyanin [17]. These pigments have a 

major role in the photosynthesis process. Also, compared to 

other pigments, they are more easily observed visually. S. 

oleana contained high concentrations of carotenoid and 

anthocyanin, while G. pictum contained high concentrations 

of anthocyanin and chlorophyll. Jasminum sp contained high 

concentrations of chlorophyll and carotenoid. If there is a 

predominance of certain pigments in these three varieties, 

then P. betle is not the case. Hence, P. betle played a role to 

complement the other diversity that could not be obtained 

from the other three varieties. Part of the plants sampled in 

this study were leaves. The sample diversity of color, age, 

and position from the terminal bud was among our 

consideration during the sample preparation. A total of 212 

fresh leaves were taken from several regions in Malang, East 

Java, Indonesia. 

B. DATA ACQUISITION 

Two data acquisition processes were applied to each leaf on 

the same day. The first process was the acquisition of its 

multispectral image and the second process was the 

acquisition of photosynthetic pigment content by wet 

chemical methods.  

B.1. MULTISPECTRAL IMAGE ACQUISITION 

Fig 1. depicts the devices arrangement. The leaf sample was 

placed in a tray with special clips. A bandpass filter with 10 

channels – 350, 400, 450, 500, 550, 600, 650, 700, 750, and 

800 nm – was placed between the CCD camera and the leaf 

samples. Tungsten halogen was used as the light source since 

it provides a wide range of electromagnetic wavelengths 

from 360 up to 2400 nm.  

An image of the leaf was then taken with a CCD camera 

(Pcopixelfly 14 bit). A reflectance spectrophotometer 

(Ocean Optic USB- 4000) was also used to capture the 

reflectance spectrum of each leaf sample. The spectra of the 

samples were used for calibration and validation. Fig. 2 

depicts an example of the multispectral images taken from a 

leaf sample. Dark-colored images indicate the lack of 

reflectance of leaf samples at certain wavelengths and vice 

versa. The images labeled 350, 400, 450 and 500 nm appear 

quite dark. This visualization shows that the leaf sample is 

very little or even does not reflect light at these ranges. 

 



Kestrilia Rega Prilianti et al. / International Journal of Computing, 20(3) 2021, 391-399  

VOLUME 20(3), 2021 393 

Figure 1. The devices arrangement for multispectral image 

acquisition 

 

Figure 2. The example of a leaf multispectral image 

B. PIGMENT CONTENTS MEASUREMENT 

Each leaf was divided into 2 parts, one for the chlorophyll 

and carotenoid measurement and the other for the 

anthocyanin measurement. Using a mortar and pestle, they 

were mashed into small pieces. As much as 0.05 grams were 

then withdrew and put into different tubes. The pigments 

were then extracted by adding the CaCO3 and sodium 

ascorbate powder with 1.5 mL of solvent into the tubes. 

Solvent for chlorophyll and carotenoid were 100% acetone, 

whereas a mixture of methanol, concentrated hydrochloric 

acid and distilled water was used for anthocyanin. 

Homogenization of the mixture was then carried out for 1 

minute using a vortex. For the next 1 minute, the tubes were 

immersed in the ice cubes. The homogenization process was 

repeated 3 times before all tubes were centrifuged at 14000 

rpm for two minutes and cooled again with the ice cubes. The 

absorbance measurement was done using double-beam 

UV/VIS scanning spectrophotometer (Shimadzu Corp., 

Kyoto, Japan) and the conversion of the absorbance values 

into pigment contents (µg/g) was done using Lichenthaler 

[18] and Sims and Gammons [19] formula. At the end, for 

each leaf, 3 sets of data were acquired, i.e., the chlorophyll 

content, the carotenoid content and the anthocyanin content. 

C. DESIGN OF THE 2D-CNN ARCHITECTURES 

We have developed 3 of our original 2D-CNN architectures 

and compared them with 2 well-known architectures, i.e., 

AlexNet and VGG-9. Our original architecture is named 

P3MNet, which stands for Plant Pigment Prediction 

Multispectral Network. The input was a 10 channels digital 

image of a plant leaf while the output was the prediction of 

chlorophyll, carotenoid, and anthocyanin contents. Table 1 

shows the details of the five architectures used in the 

experiment. These five architectures are carefully arranged 

to represent the level of network complexity. The 

architectures on the left column side are less complex 

compared to those on the right column side. The architecture 

with the highest complexity is VGG-9 and the lowest is 

P3MNet_1. Prior to the experiment, we modified AlexNet 

and VGG-9, which are generally used for classification 

tasks. In this study,  AlexNet and VGG-9 are modified for 

regression tasks.  

We used a total of 212 10-channel multispectral images 

for the training process. Each architecture was trained using 

7 gradient descent-based optimization methods: Stochastic 

Gradient Descent (SGD) [20], Adaptive Gradient (Adagrad) 

[21], Adaptive Delta (Adadelta) [22], Root Mean Square 

Propagation (RMSProp) [23], Adaptive Momentum (Adam) 

[24], Adaptive Max Pooling (Adamax) [24], and Nesterov 

Adaptive Momentum (Nadam) [25]. We carefully select the 

optimization method that is most suitable for each 

architecture. Thus, the results reported in this article are the 

most accurate results among all possible outcomes. We have 

also tried to apply the hessian-based optimization method. 

However, the training time is almost two times longer than 

the training time for the gradient-based method. This is due 

to heavy computations to create the hessian matrix of the loss 

and without the concept of batch, the training process is 

forced to receive the training set at once in one epoch. 

Moreover, we found that the MAE of the hessian-based 

method is relatively equal to the MAE of the gradient-based 

method. Therefore, we did not continue the experiment with 

the hessian-based optimization method. 

Table 1. The 2D-CNN architectures that were experimented on 

Layer P3MNet_1 P3MNet_2 P3MNet_3 AlexNet VGG-9 

Input Image 
Size 

343410 343410 12012010 12012010 12012010 

C
o
n
v

o
lu

ti
o
n
 

1 
32 kernels in size 33 

with max pooling 

16 kernels in size 33  60 kernels in size 55 

with max pooling  

96 kernels in size 55 

with max pooling 

64 kernels in size 55  

2 
32 kernels in size 33 

with max pooling 

16 kernels in size 33 

with max pooling 

90 kernels in size 33 

with max pooling 

256 kernels in size 

33 with max pooling 
64 kernels in size 33 

with max pooling 

3 
- 16 kernels in size 33 

with max pooling 

120 kernels in size 

33 with max pooling 

384 kernels in size 

33 

128 kernels in size 

33  

4 
- - - 256 kernels in size 

33 with max pooling 

128 kernels in size 

33 with max pooling 

5 
- - - - 256 kernels in size 

3x3  

6 
- - - - 256 kernels in size 

3x3 

7 
- - - - 256 kernels in size 

3x3 with max pooling 

F u
l

ly
 

C o n n
e ct ed
 1 90 nodes, ReLu 90 nodes, ReLu 100 nodes, ReLu 4096 nodes, ReLu 4096 nodes, ReLu 

2 - - 100 nodes, ReLu 4096 nodes, ReLu  4096 nodes, ReLu  
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Output 3 nodes, LeakyReLu 3 nodes, LeakyReLu 3 nodes, LeakyReLu 3 nodes, LeakyReLu 3 nodes, LeakyReLu 

 

The ReLu activation function was used in the 

convolutional and fully connected layer. In the output nodes 

we used LeakyReLu [26] to avoid a dead ReLu. The 

LeakyReLu activation function is:  

 

 ℎ(𝑖) = max(𝑤(𝑖)𝑇𝑥, 0),                        (1) 

 

𝑤(𝑖)𝑇𝑥 =  {
 𝑤(𝑖)𝑇𝑥     , 𝑤(𝑖)𝑇𝑥 > 0

   0.1 𝑤(𝑖)𝑇   , 𝑒𝑙𝑠𝑒          
,              (2) 

where w(i) is the weight vector for the i-th hidden unit and x 

is the input. Due to differences in the amount of pigment 

content, – chlorophyll ranges in a hundred while anthocyanin 

and carotenoid range in the tens – we normalize the target 

data into a 0–1 range. The normalization was done using  

 

𝑧 =
𝑥−min (𝑥)

[max(𝑥)−min(𝑥)]
 ,                             (3) 

 

where 𝑧 is the normalized data and 𝑥 is the raw data. The 

normalized data will ensure that each neuron (kernel) in the 

2D-CNN has an equal chance to learn the variation of each 

pigment content. In addition, normalization will also speed 

up the calculation process for the hyperparameter updates. 

Mean Absolute Error (MAE) was used as the performance 

indicator,  

 

𝐌𝐀𝐄 =
𝟏

𝒏
∑ |𝒚𝒊 − �̂�𝒊|

𝒏
𝒊=𝟏 ,                   (4) 

where 𝑦𝑖 is the actual pigment content, �̂�𝑖 is the predicted 

pigment content and 𝑛 is the sample size. The optimization 

methods task is to minimize the MAE. 

D. DATA AUGMENTATION 

One of the issues that we face in this study is related to the 

time and cost of wet chemical procedures. This precludes the 

production of large data, which is generally a requirement of 

CNNs. However, some previous studies have claimed that 

CNNs can still show good performance with small data [27-

28]. We have found that augmentation techniques can be 

applied to overcome underfitting and overfitting problems 

that often occur in the case of small data learning processes 

[29]. In this study, we applied a spatial-based augmentation. 

We created various variations in the position of the leaf 

image using rotation. Fig. 3 compares the P3MNet_3’s MAE 

with and without the application of augmentation techniques. 

It can be seen that without augmentation, the fluctuations in 

MAE values in both the training and validation processes are 

enormous. This shows the instability of the predictions. With 

augmentation, the fluctuations in the MAE considerably 

decrease. In addition to the fluctuation problem, we also 

faced the problem of underfitting. It can be found in the MAE 

value at the end of the training epoch. Without augmentation, 

the MAE is much greater (±0.0203) when compared to the 

MAE with augmentation (±0.000778). 

E. EXPERIMENTAL SETUP 

Python 2 was used to develop the 2D-CNN architectures. 

The TensorFlow backend along with the Keras API and GPU 

support was used to enable fast calculations. The experiment 

was run with the support of Google Colaboratory facilities 

and on a personal computer with the macOS Sierra operating 

system, Intel Core i5 1.6 GHz processor, and 8 GB of DDR3 

RAM. 

III. RESULT AND DISCUSSION 

A. Pigment Contents and Composition 

The wet chemical procedure produces data of pigment 

contents from each leaf samples as summarized in Table 2. 

S. oleana and G. pictum leaves contain a higher 

concentration of anthocyanin than the other two species. 

Jasminum sp. contains more chlorophyll and carotenoid, 

whereas P. betle did not appear to have a significant 

dominating pigment. Therefore, it fills in the other diversity 

of pigments composition which has not been fulfilled by the 

other three species. Since variations in the samples are the 

most important success factor in the 2D-CNN learning 

process, it is important to ensure that the required variations 

are sufficiently represented by the leaf samples.  

Table 2. Statistical summary of the pigment content 

measured by wet chemical procedure  

Species Pigment Name Pigment Content (µg/g)* 

S. oleana 

Chlorophyll 124.21 ± 147.95 

Carotenoid 31.97 ± 32.84 

Anthocyanin 59.45 ± 73.33 

P. betle 

Chlorophyll 30.48 ± 37.23 

Carotenoid 8.94 ± 9.92 

Anthocyanin 4.58 ± 6.61 

Jasminum sp. 

Chlorophyll 306.57 ±171.83 

Carotenoid 44.24 ± 39.29 

Anthocyanin 0 

G. pictum 

Chlorophyll 169.75 ± 161.54 

Carotenoid 26.58 ± 26.08 

Anthocyanin 47.32 ± 67.32 

* Pigment content relative to the dry weight of the leaf material 
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Figure 3. The MAE alteration before and after the application of augmentation process, (a) Before augmentation, (b) After 

augmentation 

 

 

Figure 4. Spectral reflectance example of four individual leaf samples from four different species and its pigments and water 

content 

From Table 2, we can find out that the variation of 

pigment content for each species varies widely, it can be seen 

from the large standard deviation values. Thus, we have 

confirmed that sufficient variation had been successfully met 

in this study. The example of leaf reflectance behavior to a 

visible light at various wavelengths can be seen in Fig. 4. It 

shows a comparison of the reflectance spectra of 4 individual 

leaves from 4 different species measured by a spectrometer. 

In general, the chlorophyll, carotenoid, and anthocyanin 

content in a plant leaf can be observed from the combination 

of its reflectance on three spectral ranges, i.e., (540–560 nm, 

710–720 nm, and 770–800 nm) [4]. In Fig. 4, the difference 

is quite clear at those spectral ranges. The difference in 

pattern is created due to the simultaneous influence of the 

photosynthetic pigments contained in each leaf. 

However, leaf thickness and water content also contribute 

to pattern diversity. Therefore, reflectance at other spectral 

ranges is also important to adjust the predicted pigment 

content to produce more accurate results. Hence, the 

complexity of the light reflectance behavior by a plant leaf is 

formed. Such complexity results in a high non-linear 

relationship between the reflectance pattern and the content 

of photosynthetic pigments. Therefore, in this study, 2D-

CNNs is used to represent such a difficult relationship. 

B. MODEL DEVELOPMENT AND VALIDATION 

Adadelta was the best optimization method to train AlexNet 

and VGG-9 [30]. Fig. 5 shows a comparison of the 

P3MNet_3’s overall MAE trained with seven different 

optimization methods. It appears that Adadelta also gives the 

smallest MAE. The same results also apply to the other two 

P3MNet architectures. Therefore, all P3MNet architectures 

in this experiment were trained using the Adadelta 

optimization method.  

(a) (b) 
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Figure 5. The MAE comparison of P3MNet_3 architecture 

trained with seven different optimization methods 

The experimental results are summarized in Table 3. 

Each architecture underwent 10 learning processes to 

explore its behavior, each process went through 1000 

epochs. Beyond the 1000th epoch, there were no significant 

MAE changes. Of the five architectures that were 

experimented, P3MNet_3, AlexNet, and VGG-9 provides 

lower average of MAE. Thus, we found that the extreme 

addition of the number of kernels in the CNN convolution 

layers and nodes in the fully connected layers (see Table 1) 

did not significantly reduce the MAE. Compared to the 

P3MNet_V3’s MAE, the MAE of AlexNet and VGG-9 seem 

slightly smaller. However, considering the number of 

parameters that must be managed, the MAE of AlexNet and 

VGG-9 are not quite encouraging. Fig. 6 shows the 

comparison of the file size of the trained model (in .h5 

format) between the three CNN models. It appears that the 

trained P3MNet_V3 model is extremely more efficient in 

storage, which is not the case with AlexNet and VGG-9. 

Both of them require storage that is 7 times larger than 

P3MNet_V3. For the sake of developing portable devices, 

this condition is not favorable.  

Table 3. The MAE comparison of the five architectures 

used in the experiment  

Architecture 
MAE 

(�̅� ± 𝒔) 

P3MNet_1 
Training 0.0038 ± 0.0002  

Validation 0.0035 ± 0.0003 

P3MNet_2 
Training 0.0047 ± 0.0001 

Validation 0.0035 ± 0.0002 

P3MNet_3 
Training 0.000778 ± 0.0005 

Validation 0.000817 ± 0.0007 

ALexNet 
Training 0.000633 ± 0.0034 

Validation 0.000598 ± 0.0044 

VGG-9 
Training 0.000592 ± 0.0041 

Validation 0.000588 ± 0.0040 

 

Figure 6. The MAE comparison of P3MNet_3, AlexNet 

and VGG-9 together with their trained models file size. 

It can be concluded that increasing the number of 

convolution layers does not make predictions significantly 

better. This behavior is also in line with the theory that with 

the limited number of samples, the complexity of CNN 

cannot be too high [31]. Therefore, P3MNet_3 was chosen 

as the best model to represent the relationship between 10 

channels of leaf image and their photosynthetic pigment 

contents. 

Fig. 7 shows the performance of P3MNet_3 for each 

pigment. It appears that for the 3 pigments, the correlation 

between observed pigment content and estimated pigment 

content is very good; it is positive and the correlation 

coefficient (R) is close to one. This result is also superior 

when compared to the non-destructive technique developed 

by Gitelson et al. [32]. Using a spectrum measured with a 

spectrometer, Gitelson et al. have created indices that are 

claimed to be very good at predicting chlorophyll, 

carotenoid, and anthocyanin content of plant leaves non-

destructively. The indices are (Chl) RI (Chlorophyll 

Reflectance Index), CRI (Carotenoid Reflectance Index), 

and ARI (Anthocyanin Reflectance Index). Each index gives 

a correlation value (R) of 0.959, 0.969, and 0.967, 

respectively. This data show that the use of 2D-CNN with a 

10 channels digital image can replace the use of the 

reflectance index with the reflectance spectrum data 

(measured with a spectrometer). Both are proven to provide 

almost the same accuracy.  

However, when examined in more detail, we found little 

differences in the MAE. Fig. 8 depicts a boxplot of the 

validation MAE for all three pigments. Anthocyanin seems 

to be more predictable. It can be seen from its MAE which 

is lower compared to those for the other two pigments. 

Furthermore, the fluctuation in MAE values for anthocyanin 

is also the lowest. It is an indicator that P3MNet_3 can 

provide better consistency in anthocyanin prediction. Of the 

three pigments, chlorophyll’s MAE is the worst, its 

fluctuation also appears to be greater than anthocyanin. 

Meanwhile, the behavior of carotenoid’s MAE tends to be 

more similar to that of chlorophyll This phenomenon occurs 

since the reflectance by chlorophyll (especially in the green 
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spectral range) can be reduced in the presence of 

anthocyanin. This is usually found on leaves that contain 

both these pigments. Huang [33] also reported a similar 

phenomenon for the prediction of chlorophyll in sweet 

potatoes using spectral reflectance data and developed a new 

index to fix it. However, the method to deal with the same 

phenomenon for multispectral digital images remains 

unknown. This issue will be the focus of our next research 

project. 

 

 

Figure 7. Performance of the P3MNet_3 for each pigment 

 

Figure 8. Boxplot of the validation MAE of P3MNet_3 for 

each pigment 

IV. CONCLUSION 

In this study, we compared 5 2D-CNN architectures to 

predict the content of photosynthetic pigments in a plant leaf 

using its multispectral image. Of the five architectures, 3 of 

them are our original models named P3MNet. We found that 

the P3MNet_3 architecture is the best among all with 

training MAE = 0.000778 ± 0.0005 and validation MAE = 

0.000817 ± 0.0007 (data range 0–1). In the input layer, there 

was a digital image of a plant leaf consisting of 10 channels. 

Each channel represents the reflectance of leaf sample to 

light at wavelengths 350, 400, 450, 500, 550, 600, 650, 700, 

750, and 800 nm respectively. The P3MNet_3 was trained 

using the Adadelta optimization method, run in 1000 epochs. 

Three main photosynthetic pigments, i.e., chlorophyll, 

carotenoid, and anthocyanin have been successfully 

predicted with high accuracy. However, there is a slight 

difference in the prediction performance for each of the three 

pigments. P3MNet_3 tends to give a smaller MAE value for 

anthocyanin compared to carotenoid and chlorophyll.  

Based on these positive results, we have shown that a 

multispectral digital image along with 2D-CNN can be used 

as a good non-destructive tool for photosynthetic pigment 

content measurement in plant leaves. Its accuracy can 

compete with other non-destructive instruments that have 

been developed by previous researchers.  
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