

424 VOLUME 20(3), 2021

Date of publication SEP-30, 2021, date of current version MAY-21, 2021.

www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209

Online ISSN 2312-5381

DOI 10.47839/ijc.20.3.2289

A Hybrid Grasp-genetic Algorithm for

Mixed-model Assembly Line Balancing

Problem Type 2

LAKHDAR BELKHARROUBI, KHADIDJA YAHYAOUI
University of Mascara Algeria, 29000 Mascara,

(e-mail: lakhdar.belkharroubi@univ-mascara.dz, khadidja.yahyaoui@univ-mascara.dz)

Corresponding author: Lakhdar Belkharroubi (e-mail: lakhdar.belkharroubi@univ-mascara.dz).

 ABSTRACT In manufacturing systems, mixed model assembly lines are used to produce different products to

deal with the problem of customers’ demands variety, and minimizing the cycle time in such assembly line is a

critical problem. This paper addresses the mixed model assembly line balancing problem type 2 that consists in

finding the optimal cycle time for a given number of workstations. A hybrid Greedy randomized adaptive search

procedure-Genetic algorithm is proposed to find the optimal assignment of tasks among workstations that

minimize the cycle. A Ranked Positional Weight heuristic is used in the construction phase of the proposed

GRASP, and in the local search phase, a neighborhood search procedure is used to ameliorate the constructed

solutions in the construction phase. The GRASP is executed many times in order to seed the initial population of

the proposed genetic algorithm, and the results of the executions are compared with the final solutions obtained

by the hybrid GRASP-GA. In order to test the proposed approaches, a numerical example is used.

 KEYWORDS Mixed model assembly line; Cycle time; GRASP; Genetic Algorithm; RPW; Neighborhood

search.

I. INTRODUCTION

N production systems, traditional or simple assembly lines

are used to fabricate a single product, and from the

literature, SALBP for (Simple assembly line balancing

problem) is a famous problem that is related to this type of

lines including two different versions SALBP-1 and

SALPB-2. The SALBP-1 consists to minimize the number

of workstations for a given cycle time, and the SALBP-2

consists to minimize the cycle time for a given number of

workstations [1].

Nowadays, the variation of market demands increases

more and more, thus, to provide models diversity and meet

customers’ demands in time, many industrial companies

have changed simple assembly lines by another type known

by mixed model assembly lines [2]. Unlike simple assembly

lines, mixed model assembly lines are used to assemble

different models having similar characteristics [3].

The difference between models lies in the number of

tasks, processing time of each task, precedence tasks

relations and the amount of production [4]. The lot size of

each model during the production is equal to one as shown

in Fig. 1 [5]. According to [6], mixed assembly lines are

better than simple assembly lines in terms of product quality,

system flexibility and lead time. Mixed model assembly lines

are used in several industries including for example furniture

and clothing, automobile industries, aerospace industry,

refrigerators and washing machines [7, 8].

Figure 1. Mixed model assembly line

I

Lakhdar Belkharroubi et al. / International Journal of Computing, 20(3) 2021, 424-432

VOLUME 20(3), 2021 425

From the literature, different methods have been

developed by researchers to solve different problems related

to mixed model assembly lines. The two famous problems

are: Mixed Model Assembly Lines Balancing Problem type

1 (MiMALBP-1) and Mixed Model Assembly Lines

Balancing Problem type 2 (MiMALBP-2). In MiMALBP-1

the objective is to minimize the number of workstations for

a given cycle time, and in MiMALBP-2 the objective is to

minimize the cycle time for a given number of workstations

[9]. The MiMALBP is more complex than the SALBP

because the line must be balanced and in addition, the

sequence of models must be determined to maximize the line

efficiency [10].

Generally, before solving the MiMALB problem, it can

be transformed into the simple version (SALBP) by

combining all precedence graphs of models into a single

graph as shown in Fig. 2. The final graph is known in the

literature by the combined precedence graph [5].

Figure 2. Combined precedence graph

In this work we propose a hybridization of two

metaheuristics Greedy randomized adaptive search

procedure and Genetic algorithm to solve the MiMALBP-2

and we show the ability of the proposed GA in finding better

solutions. The adoption of this approach is motivated by that

the greedy algorithm proved its efficiency to solve some

optimization problems [11] and from our best knowledge,

the proposed hybridization GRASP-GA including the RPW

in the construction phase with the random concept to solve

the MiMALBP-2 is never used before.

The rest of the paper is organized as follows. Section 2

presents related work. Section 3 defines the system model

and problem formulation. Section 4 details the proposed

approach. Section 5 represents the numerical example.

Section 6 evaluates and discusses the obtained results.

Section 7 concludes the paper and highlight future works.

II. RELATED WORKS

Since the first publication of the mathematical formulation

of the assembly line balancing problem, several methods

have been developed in order to find feasible solutions. In

the literature, these methods are classified into two

categories: exact methods and inexact methods known by

heuristics [12]. The ALB problem is NP-hard [2], thus exact

methods are not useful to solve it because they take a long

time to find an optimal solution especially for problems with

big sizes. Inexact methods or heuristics are more useful in

this situation by finding a feasible solution in a reasonable

time, but there is another problem in heuristics methods

known by the local optimum which means the solution found

may not be the optimal one. Other methods known by

metaheuristics can avoid the local optimum, these methods

try to improve successively the initial solution towards a

global optimum [13].

Researchers have developed different methods to solve

the MiMALB problem with aim to minimize the cycle time.

For example, an IT tool has been developed [2] to help

engineers in controlling manufacturing resources, and in

addition to increase the production rate using three

heuristics: Largest candidate rule (LCR) method, Kilbridge

and Wester Column (KWC) method and Ranked positional

weight that combines the strategies of LCR and KWC

methods. A hybrid genetic algorithm (HGA) has been

proposed in [9] to solve a robust mixed model ALB problem

type 2 with uncertain task times. A heuristic method has been

used in this algorithm to seed the initial population, in

addition, an adaptive local search and a discrete levy flight

have been hybridized with this HGA to enhance its

performance.

A robotic mixed model assembly line balancing problem

type 2 has been studied in [14]. In the robotic line, a set of

robots performs different tasks. One of the objectives aimed

in this paper is minimizing the cycle time, and to solve the

general problem two different multi-objective evolutionary

algorithms have been used. The first algorithm is a multi-

objective particle swarm MOPSO and the second algorithm

is a non-dominated sorting genetic algorithm NSGA-2. A

comparison has been carried out shows that the NSGA-2 in

most cases is better than the MOPSO in terms of

performance. Another iterative procedure has been proposed

in [15] for solving mixed model assembly line with parallel

workstations using a genetic algorithm. The main objective

is to maximize the production rate of the line for a predefined

number of operators. In addition, the proposed GA can be

used to minimize the number of workstations.

An ant colony optimization approach for solving the

mixed model assembly line balancing problem with setup

time between operations have been proposed in [16]. This

ACO is based in on learning permutations of the operations

in contrast to previous ACO used for the assembly balancing

problems. Authors found that the proposed ACO leads to

excellent results in short times. A reactive generalized

simulated annealing (GSA) using type 2 fuzzy controller to

tackle with the MiMALBP-2 have been proposed in [17], the

fuzzy type 2 controller is used to guide the algorithm to

 Lakhdar Belkharroubi et al. / International Journal of Computing, 20(3) 2021, 424-432

426 VOLUME 20(3), 2021

explore the entire search space in early iterations which

allows the algorithm to achieve higher performance and

accuracy. Result shows that the fuzzy GSA can obtain better

solution when compared with the original counterpart and

hierarchical approach.

III. PROBLEM DESCRIPTION AND MATHEMATICAL

FORMULATION

A. PROBLEM DESCRIPTION

In the mixed model assembly line. Similar models are

assembled in the line according to a specific random

sequence. Each model has a set of tasks and each task has a

determined processing time (or task time). All tasks are

regrouped in a graph known as the precedence relations

graph. All tasks must be assigned to workstations taking into

consideration precedence relations between these tasks, thus,

a task cannot be assigned before its predecessors. The sum

of assigned tasks times to the same workstation must not

exceed the cycle time (workstation time). The mixed model

assembly line balancing problem can be transformed into a

simple assembly line balancing problem by combining all

precedence relations graphs of models into only one

precedence graph, and the average task processing time for

each task is calculated. So, the aim of solving the

MiMALBP-2 is to find the best assignment of tasks with a

minimum cycle time for a fixed number of workstations

respecting the precedence relations. Finding the optimal

sequence of models is not taken into consideration in this

paper.

B. MATHEMATICAL FORMULATION

The aim is to maximize the production rate that means

minimizing the cycle time. The following mathematical

formulation of the problem was proposed by Baybars [18] to

solve SALBP-2 and is used to solve MiMALBP-2 to find the

minimum cycle time:

n number of operations

i task i where i =1,2, …n

m number of stations

k station k where k =1,2, …m

𝑡𝑖 processing time of task i

𝑝𝑖 the set of predecessors of task i

𝑋𝑖𝑘 = 1 if the task i is assigned to the workstation k,

otherwise 𝑋𝑖𝑘 = 0

The main objective is to minimize the cycle time as

shown in the following equation:

𝐦𝐢𝐧 𝐂 , (1)

Under the following constraints:

∑ 𝐗𝐢𝐤 = 𝟏

𝐦

𝐤=𝟏

 , (2)

for i = 1, 2…n

∑ 𝐭𝐢 ∗ 𝐗𝐢𝐤 ≤ 𝐂

𝐧

𝐢=𝟏

 , (3)

for k = 1, 2...m

∑ 𝐤 ∗ 𝐗𝐡𝐤 ≤

𝐦

𝐤=𝟏

∑ 𝐤,∗ 𝐗𝐢𝐤

𝐦

𝐤=𝟏

 , (4)

where h 𝜖 𝑃𝑖

Xik ϵ {0, 1}. (5)

Equation (2) ensures that each task is affected only once.

Equation (3) obliges that the sum of process times of tasks

assigned to the same workstation must be less than or equal

to the cycle time. Equation (4) imposes the precedence

relations between tasks. If the task h must be performed

before task i, thus, the index of the station where task h is

affected must be less than or equal to the index of the station

where task i affected. Finally, Equation (5) represents the

constraint of decision variables integrity. The objective

function (1) can be written as follow:

𝐦𝐢𝐧 𝐦𝐚𝐱 {∑ 𝐭𝐢 ∗ 𝐗𝐢𝐤

𝐧

𝐢

| 𝒌 = 𝟏, 𝟐, … 𝒎}, (6)

Using the equation (6) the formulation no longer

represents a linear program in integers and the problem

become easier to solve.

IV. PROPOSED METHODS TO SOLVE THE MIXED

MODEL ALB PROBLEM TYPE 2

In this paper, a hybridization of two metaheuristics, a genetic

algorithm (GA) and the GRASP (Greedy Randomized

Adaptive Search Procedure) is proposed to solve the mixed

model assembly line problem type 2. The GRASP is used to

seed the initial population of the GA, so each individual is a

different solution found using GRASP. The proposed

hybridization is shown in Fig. 3.

Lakhdar Belkharroubi et al. / International Journal of Computing, 20(3) 2021, 424-432

VOLUME 20(3), 2021 427

Figure 3. GA-GRASP hybridization

A. PROPOSED GENETIC ALGORITHM

The genetic algorithm is an effective popular metaheuristic,

it has been used to solve different assembly line balancing

problems [9]. This metaheuristic starts with initial solutions

(population), each solution (individual) is evaluated after the

calculation of its fitness using a fitness function F. Best

solution are selected to undergo operators (crossover and

mutation). Finally, generated individuals by the genetic

operators are evaluated. All these GA steps are repeated for

a chosen number known as the number of generations [15,

10]. In the proposed GA we used the Elitism technique [19]

by keeping 25% best individuals from the total population in

each generation to undergo GA operators and to guarantee

that the best solutions remain until the final population. The

GA stages are described as follows:

1- Encoding of solutions:

The sequence of tasks (solution) is created based on the

precedence graph, and in this paper, the priority-based

encoding method is used. The value of the gene represents

the task node, and the position of this node in the sequence

represents its priority of assignment.

2- The initial population:

The initial population is a set of individuals, each

individual represents the final solution found using the

Greedy randomized adaptive search procedure.

3- Fitness function:

To evaluate individuals, the fitness function is calculated

for each individual. In this GA the fitness function is based

on the cycle time because the aim is to maximize the

production rate. The fitness function is given by

𝐹 = 1/𝐶,

where C represents the cycle time.

4- Selection:

In order to select the best individuals, tournament

selection is used. In each tournament two individuals are

chosen randomly from the remaining 75% of individuals,

individual with minimum cycle time is chosen to undergo

GA operators (crossover and mutation). The process of

selection is repeated until the required number of individuals

in the mating pool is reached.

5- Crossover:

To generate a new offspring, the one-point crossover is

used:

• Step1: from selected individuals in the selection

operation, two parents are chosen.

• Step2: one-point crossover is applied between

two parents to create new offspring as shown in

Fig. 4.

• Step3: repeated tasks (genes) in the chromosome

must be replaced by missing tasks.

Figure 4. One-point crossover

1- Mutation:

Swap mutation is used in which two genes (tasks) are

chosen randomly and their values are interchanged. The

process of mutation is applied on some individuals chosen

randomly to generate new sequences. In the end, unfeasible

solutions must be corrected by reordering tasks that don’t

respect precedence relations.

 Lakhdar Belkharroubi et al. / International Journal of Computing, 20(3) 2021, 424-432

428 VOLUME 20(3), 2021

Figure 5. Swap mutation

B. GRASP ALGORITHM

The GRASP for Greedy Randomized Adaptive Local Search

is a metaheuristic that has been used to solve different

combinatorial problems. In this metaheuristic, each iteration

consists of two principal phases: the construction phase and

the local search phase. The role of the construction phase is

to build a feasible solution, and the local search phase tries

to find a better neighborhood solution from the solution

found in the construction phase [11].

To find a feasible solution in the construction phase,

RPW (ranked positional weight) is used, it is a popular

heuristic that has been used to solve the assembly line

balancing problem. In this heuristic, a list is made in which

tasks are arranged in descending order based on their

positional weights. The positional weight is calculated by

adding all other durations attributed to the successors to the

duration of the chosen task [20].

Each iteration in the construction phase is based on two

lists, the Candidate List (CL) and the Restricted Candidate

List (RCL) [21]. First, the Candidate List contains all tasks,

and from this list, the RCL is created by choosing tasks with

the maximum positional weight and respect all constraints

(precedence relations and available workstation time). The

number of elements of the Restricted Candidate List is

limited by the p elements with the best positional weight.

From the RCL, a task is chosen randomly for the assignment.

Chosen task is deleted from the RCL and the CL and the

workstation time is updated.

The construction phase stops when all tasks in the CL are

assigned and the given number of workstations is respected.

Otherwise, the process of the construction phase restarts

again until a feasible solution is found with the exact given

number of workstations.

The solution found in the construction phase maybe not

the optimal one, and for this reason, the local search is used

to ameliorate the constructed solution. Neighborhood search

is used in the local search phase to find an optimal

neighborhood solution by changing randomly the positions

of two tasks in the sequence respecting precedence relations.

The cycle time of the new sequence is calculated to make a

comparison with the sequence found in the construction

phase. This process in the local search phase stops when no

other best neighborhood solution is found.

Figure 6. Adopted GRASP approach for MiMALBP

resolution

Figure 7. Generation of new neighborhood solution

V. NUMERICAL EXAMPLE

The proposed hybrid method is implemented with Python

3.7.3 on a PC with intel(R) Core (TM) i3-4005U CPU 1.70

GHz, and tested on an example that represents a mixed

model problem with two models A and B. Each model has

its precedence relations between tasks, and each task may

Lakhdar Belkharroubi et al. / International Journal of Computing, 20(3) 2021, 424-432

VOLUME 20(3), 2021 429

have a different processing time in each model. Table (1) and

table (2) represent models A and B data respectively.

The first column represents the task number, the second

column represents the task time and in the last column,

represents immediate predecessors. For each model, some

tasks are not included in the assemblage.

Table 1. Model A data

Task number Task Time
Immediate

predecessors

1 9 -

2 21 -

3 25 -

4 14 1

5 23 2

6 12 3

7 11 4, 5

8 7 5

9 20 5, 6

10 4 7, 8

Table 2. Model B data

Task number Task Time
Immediate

predecessors

1 3 -

2 25 -

4 19 1

5 17 2

7 7 4, 5

8 15 5

9 8 5

10 13 7, 8

11 17 9

12 13 11

To solve this mixed model assembly line problem, we

transformed it into a simple problem by combining graphs of

models A and B in one graph as shown in Fig. 8. For each

common task between models, the average processing time

is calculated and unnecessary relations are deleted. The

problem contains 12 tasks and 12 precedence relations that

must be respected during the assignment of tasks into

workstations. As shown in Fig. 8, Values inside circles are

tasks number and T is the average processing time. So, the

aim is to find the minimum cycle time based on the number

of workstations. In this example, the number of workstations

is 4.

Figure 8. Combined precedence graph

Table 3. GRASP-GA parameters

 Parameters Values

Grasp
RCL (number of elements) 3

Number of iterations 10

GA

Number of generations 100

Population size 20

Crossover probability 0.5

Mutation Probability 0.15

Elitism 25%

VI. RESULTS AND DISCUSSION

Fig. 9 represents the application of the GRASP on the

proposed example. In order to create the initial population,

the GRASP has been executed 20 times, and the result of

each execution is a different feasible solution.

As shown each solution includes the solution found in the

construction phase and its best neighborhood generated by

the local search procedure. 8 best solutions (S1, S5, S7, S9,

S10, S12, S14, S17) have been found with cycle time

(c = 47.5). In some cases (S7, S11, S13, S18), no better

neighborhood solutions were detected in the local search

phase.

Fig. 10 shows the result obtained by the hybridization of

the two proposed metaheuristics (GRASP and Genetic

algorithm). All neighborhood solutions found in the 20

executions using GRASP were used as an initial population

in the genetic algorithm, and after 100 generations, 8 better

solutions (S1, S2, S3, S4, S5, S11, S15, S17) have been

found with cycle time (c= 45). Best found solutions differ in

the sequence of tasks as shown in Table 4.

 Lakhdar Belkharroubi et al. / International Journal of Computing, 20(3) 2021, 424-432

430 VOLUME 20(3), 2021

Figure 9. Obtained solutions using GRASP

Figure 10. Obtained Solutions using GRASP-GA

Table 4. Best sequences found in the final population

Solutions Sequences

S1 2 5 3 6 1 9 11 12 8 4 7 10

S2 2 5 1 3 6 9 11 12 4 7 8 10

S3 3 6 1 2 5 9 11 12 4 8 7 10

S4 2 5 1 3 6 9 11 12 8 4 7 10

S5 2 5 1 3 6 9 11 12 4 8 7 10

S11 2 5 3 1 6 9 11 12 4 7 8 10

S15 3 6 1 2 5 9 11 12 8 4 7 10

S17 2 5 3 1 6 9 11 12 8 4 7 10

Any solution from the 8 best solutions found in the final

population can be chosen as a final solution because there is

no difference between them only in the order of tasks. The

first solution is chosen randomly as the final solution, and

the table below shows the assignment of tasks to

workstations according to the chosen solution.

Table 5. Assignment of tasks to workstations

Workstation Task

1 2, 5

2 3, 6, 1

3 9, 11, 12

4 8, 4, 7, 10

Based on the chosen assignment, the workload can be

calculated for each model, thus, for each workstation the sum

of processing times of assigned tasks is calculated to find the

workload, and like there is difference in processing times of

common tasks between models, the workloads will be

different, so the utilization of workstations during the

production is not stable due to the variety of products.

Fig. 11 and Fig. 12 shows the workload for model A and

B respectively, and Fig. 13 represents avreage workload.

Also overload time and lead time were calculated.

Lakhdar Belkharroubi et al. / International Journal of Computing, 20(3) 2021, 424-432

VOLUME 20(3), 2021 431

Figure 11. Model A workload

Figure 12. Model B workload

Figure 13. Average workload

The reader can observe that the cycle time is exceeded in

workstation 2 for model A and in workstation 4 for model B,

this problem results due to the variety of models and can

influence the line efficiency, so to deal with this problem in

mixed model assembly lines, the best sequence of product

that can minimize the work overload must be determined.

This problem is known in the literature by mixed model

sequencing problem [22].

From the results, it is clear that the proposed greedy

randomize adaptive search procedure was trapped in the

local optima in different executions with (c = 47.5) in this

example, and in some cases the local search procedure did

not found a neighborhood solution that minimizes the cycle

time. After the hybridization of the GRASP with the

proposed GA by starting with all neighborhood solutions

found using GRASP as the initial population, better solutions

were found with a minimum cycle time (c = 45).

In solving the proposed numerical example, the genetic

algorithm played an important role in finding new solutions

that cannot be found using the proposed GRASP, and due to

the existence of precedence relations constraints, the

neighborhood search method was restricted because for each

solution found by the construction phase, a neighborhood

solution that differs only on positions of two tasks must be

found, but with genetic algorithm operators (crossover and

mutation) during generations, the possibility of finding new

solutions becomes greater.

VII. CONCLUSION

In this paper, the mixed model assembly line balancing

problem type 2 is addressed, and the objective is to find the

best assignment of tasks among workstations to minimize the

cycle time. A Greedy randomized adaptive search procedure

based Ranked positional weight heuristic is proposed in

order to seed the initial population of the genetic algorithm,

and a numerical example that represents a mixed model

assembly line that assembles two different products is used

to test the proposed hybridization. Results show the

efficiency of the proposed hybridization by improving the

solutions found by GRASP using the GA. In the first stage,

the proposed GRASP was trapped in the local optimal due to

the usage of a fixed alpha value which cannot help the

GRASP to expand the search space, but in the second stage,

the genetic algorithm starts with the solutions found by the

GRASP as an initial population to tackle with the GRASP

drawback and as results avoid the local optimal problem.

In future work, the proposed approach can be developed

using for example one from the GRASP enhancements such

as the Reactive version, cost perturbations, bias functions,

memory and learning, and local search on partially

constructed solutions or using other local search methods in

the local search phase of the GRASP that can avoid the local

optimal problem. Also, using the main idea of the proposed

approach, other versions of the Mixed-model assembly line

balancing problem can be solved, for example, Mixed-Model

Two-sided ALBP, Mixed-Model U-shaped ALBP, Mixed-

Model Robotic ALBP and so on.

References
[1] P. Sivasankaran and P. Shahabudeen, “Literature review of assembly

line balancing problems,” Int J Adv Manuf Technol, vol. 73, no. 9–12,
pp. 1665–1694, 2014. https://doi.org/10.1007/s00170-014-5944-y.

[2] D. Krenczyk, B. Skolud, and A. Herok, “A heuristic and simulation

hybrid approach for mixed and multi model assembly line balancing,”
Intelligent Systems in Production Engineering and Maintenance,

vol. 637, pp. 99–108, 2018. https://doi.org/10.1007/978-3-319-64465-

3_10.
[3] A. Yadav, P. Verma, and S. Agrawal, “Mixed model two-sided

assembly line balancing problem: an exact solution approach,” Int J

Syst Assur Eng Manag, vol. 11, no. S2, pp. 335–348, 2020.
https://doi.org/10.1007/s13198-020-00956-1.

[4] M. M. Razali, M. F. F. Ab. Rashid, and M. R. A. Make, “Mathematical

modelling of mixed-model assembly line balancing problem with

https://doi.org/10.1007/s00170-014-5944-y
https://doi.org/10.1007/978-3-319-64465-3_10
https://doi.org/10.1007/978-3-319-64465-3_10
https://doi.org/10.1007/s13198-020-00956-1

 Lakhdar Belkharroubi et al. / International Journal of Computing, 20(3) 2021, 424-432

432 VOLUME 20(3), 2021

resources constraints,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 160, p.

012002, 2016. https://doi.org/10.1088/1757-899X/160/1/012002.

[5] J. I. van Zante-de Fokkert and A. G. de Kok, “The mixed and multi
model line balancing problem: a comparison,” European Journal of

Operational Research, vol. 100, no. 3, pp. 399-412, 1997.

https://doi.org/10.1016/S0377-2217(96)00162-2.
[6] O. Banjo, D. Stewart, and M. Fasli, “Optimising mixed model

assembly lines for mass customisation: A multi agent systems

approach,” Advances in Manufacturing Technology, vol. 3, pp. 337-
342, 2016.

[7] T. Ziarnetzky, L. Mönch, and A. Biele, “Simulation of low-volume

mixed model assembly lines: Modeling aspects and case study,”
Proceedings of the 2014 Winter Simulation Conference, 2014, pp.

2101-2112. https://doi.org/10.1109/WSC.2014.7020055.

[8] B. Yuan, C. Zhang, X. Shao, and Z. Jiang, “An effective hybrid honey
bee mating optimization algorithm for balancing mixed-model two-

sided assembly lines,” Computers & Operations Research, vol. 53, pp.

32–41, 2015. https://doi.org/10.1016/j.cor.2014.07.011.
[9] J.-H. Zhang, A.-P. Li, and X.-M. Liu, “Hybrid genetic algorithm for a

type-II robust mixed-model assembly line balancing problem with

interval task times,” Adv. Manuf, vol. 7, pp. 117-132, 2019.
https://doi.org/10.1007/s40436-019-00256-3.

[10] P. Su and Y. Lu, “Combining genetic algorithm and simulation for the

mixed model assembly line balancing problem,” Proceedings of the
Third International Conference on Natural Computation, 2007, pp.

314-318. https://doi.org/10.1109/ICNC.2007.306.

[11] M. G. C. Resende and C. C. Ribeiro, “Greedy randomized adaptive
search procedures,” HandBook of Metaheuristics, vol. 272, pp. 169-

220, 2003. https://doi.org/10.1007/978-3-319-91086-4_6.

[12] G. Abdul-Nour, H. Beaudoin., P. Ouellet, R. Rochette, S. Lambert, “A
reliability based maintenance policy: a case study,” Computers and

Industrial Engineering, vol. 35, no. 3- 4, pp. 591-594, 1998.

https://doi.org/10.1016/S0360-8352(98)00166-1.

[13] P. R. McMullen, & G. V. Frazier, “A heuristic for solving mixed-

modelline balancing problems with stochastic task durations and

parallel stations,” International Journal Production Economics, vol.
51, pp. 177-190. 1997. https://doi.org/10.1016/S0925-

5273(97)00048-0.

[14] M. Rabbania, Z. Mousavia, and H. Farrokhi-Aslb, “Multi-objective
metaheuristics for solving a type II robotic mixed-mode assembly line

balancing problem,” Journal of Industrial and Production

Engineering, vol. 33, no. 7, pp. 472-482, 2016.
https://doi.org/10.1080/21681015.2015.1126656.

[15] A. S. V. Raj, J. Mathew, P. Jose, and G. Sivan, “Optimization of cycle

time in an assembly line balancing problem,” Procedia Technology,
vol. 25, pp. 1146–1153, 2016.

https://doi.org/10.1016/j.protcy.2016.08.231.

[16] D. Thiruvady, A. Nazari, and A. Elmi, “An ant colony optimisation
based heuristic for mixed-model assembly line balancing with setups,”

Proceedings of the 2020 IEEE Congress on Evolutionary

Computation (CEC), Glasgow, United Kingdom, 2020, pp. 1–8.
https://doi.org/10.1109/CEC48606.2020.9185757.

[17] M. Lalaoui and A. E. Afia, “A versatile generalized simulated

annealing using type-2 fuzzy controller for the mixed-model assembly

line balancing problem,” IFAC-PapersOnLine, vol. 52, no. 13, pp.
2804–2809, 2019. https://doi.org/10.1016/j.ifacol.2019.11.633.

[18] I. Baybars, “A survey of exact algorithms for the simple assembly line

balancing problem,” Management Science, vol. 32, no. 8, pp 909-932,
1986. https://doi.org/10.1287/mnsc.32.8.909.

[19] H. Du, Z. Wang, W. Zhan and J. Guo, “Elitism and distance strategy

for selection of evolutionary algorithms,” IEEE Access, vol. 6, pp.
44531-44541, 2018. https://doi.org/10.1109/ACCESS.2018.2861760.

[20] R. O. Edokpia and F. U. Owu, “Assembly line re-balancing using

ranked positional weight technique and longest operating time
technique: A comparative analysis,” AMR, vol. 824, pp. 568–578,

2013. https://doi.org/10.4028/www.scientific.net/AMR.824.568.

[21] R. Martí, M. G. C. Resende, and P. M. Pardalos, Handbook of
Heuristics, Springer, pp. 741-758, 2018. https://doi.org/10.1007/978-

3-319-07124-4.

[22] N. Boysen, M. Kiel, and A. Scholl, “Sequencing mixed-model
assembly lines to minimise the number of work overload situations,”

International Journal of Production Research, vol. 49, no. 16, pp.

4735–4760, 2011. https://doi.org/10.1080/00207543.2010.507607.

Belkharroubi Lakhdar Is pursuing his
Ph.D. in Information and communication
technologies at University Mustapha
Stambouli of Mascara, Algeria. Previously,
he received a Master’s degree in Networks
and systems from University Abd Elhamid
Ibn Badis of Mosatagnem, Algeria, in 2019.
His research interests include
Optimization, Artificial Intelligence,
complex Assembly lines and
Manufacturing Systems, Industry 4.0.

Yahyaoui Khadidja is an Associate
Professor at University Mustapha
Stambouli, Mascara, Algeria, she is
currently a research member of the
computer science laboratory at Mascara
University. She received an engineering
degree in industrial computing from Oran
university computer science department,
Algeria, in 2000 and 2006, respectively.
She received a Ph.D. degree in computer
science in 2013 from Oran University,

Algeria. Her main research interests include optimization, artificial
intelligence, manufacturing System, Next-generation networking, 5G
networks, and Information-Centric Networking.

https://doi.org/10.1088/1757-899X/160/1/012002
https://doi.org/10.1016/S0377-2217(96)00162-2
https://doi.org/10.1109/WSC.2014.7020055
https://doi.org/10.1016/j.cor.2014.07.011
https://doi.org/10.1007/s40436-019-00256-3
https://doi.org/10.1109/ICNC.2007.306
https://doi.org/10.1007/978-3-319-91086-4_6
https://doi.org/10.1016/S0360-8352(98)00166-1
https://doi.org/10.1016/S0925-5273(97)00048-0
https://doi.org/10.1016/S0925-5273(97)00048-0
https://doi.org/10.1080/21681015.2015.1126656
https://doi.org/10.1016/j.protcy.2016.08.231
https://doi.org/10.1109/CEC48606.2020.9185757
https://doi.org/10.1016/j.ifacol.2019.11.633
https://doi.org/10.1287/mnsc.32.8.909
https://doi.org/10.1109/ACCESS.2018.2861760
https://doi.org/10.4028/www.scientific.net/AMR.824.568
https://doi.org/10.1007/978-3-319-07124-4
https://doi.org/10.1007/978-3-319-07124-4
https://doi.org/10.1080/00207543.2010.507607

