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 ABSTRACT In manufacturing systems, mixed model assembly lines are used to produce different products to 

deal with the problem of customers’ demands variety, and minimizing the cycle time in such assembly line is a 

critical problem. This paper addresses the mixed model assembly line balancing problem type 2 that consists in 

finding the optimal cycle time for a given number of workstations.  A hybrid Greedy randomized adaptive search 

procedure-Genetic algorithm is proposed to find the optimal assignment of tasks among workstations that 

minimize the cycle. A Ranked Positional Weight heuristic is used in the construction phase of the proposed 

GRASP, and in the local search phase, a neighborhood search procedure is used to ameliorate the constructed 

solutions in the construction phase. The GRASP is executed many times in order to seed the initial population of 

the proposed genetic algorithm, and the results of the executions are compared with the final solutions obtained 

by the hybrid GRASP-GA. In order to test the proposed approaches, a numerical example is used. 

 

 KEYWORDS Mixed model assembly line; Cycle time; GRASP; Genetic Algorithm; RPW; Neighborhood 
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I. INTRODUCTION 

N production systems, traditional or simple assembly lines 

are used to fabricate a single product, and from the 

literature, SALBP for (Simple assembly line balancing 

problem) is a famous problem that is related to this type of 

lines including two different versions SALBP-1 and 

SALPB-2. The SALBP-1 consists to minimize the number 

of workstations for a given cycle time, and the SALBP-2 

consists to minimize the cycle time for a given number of 

workstations [1]. 

Nowadays, the variation of market demands increases 

more and more, thus, to provide models diversity and meet 

customers’ demands in time, many industrial companies 

have changed simple assembly lines by another type known 

by mixed model assembly lines [2]. Unlike simple assembly 

lines, mixed model assembly lines are used to assemble 

different models having similar characteristics [3].  

The difference between models lies in the number of 

tasks, processing time of each task, precedence tasks 

relations and the amount of production [4].  The lot size of 

each model during the production is equal to one as shown 

in Fig. 1 [5]. According to [6], mixed assembly lines are 

better than simple assembly lines in terms of product quality, 

system flexibility and lead time. Mixed model assembly lines 

are used in several industries including for example furniture 

and clothing, automobile industries, aerospace industry, 

refrigerators and washing machines [7, 8]. 
 

 

Figure 1. Mixed model assembly line 

I 
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From the literature, different methods have been 

developed by researchers to solve different problems related 

to mixed model assembly lines. The two famous problems 

are: Mixed Model Assembly Lines Balancing Problem type 

1 (MiMALBP-1) and Mixed Model Assembly Lines 

Balancing Problem type 2 (MiMALBP-2). In MiMALBP-1 

the objective is to minimize the number of workstations for 

a given cycle time, and in MiMALBP-2 the objective is to 

minimize the cycle time for a given number of workstations 

[9]. The MiMALBP is more complex than the SALBP 

because the line must be balanced and in addition, the 

sequence of models must be determined to maximize the line 

efficiency [10]. 

Generally, before solving the MiMALB problem, it can 

be transformed into the simple version (SALBP) by 

combining all precedence graphs of models into a single 

graph as shown in Fig. 2. The final graph is known in the 

literature by the combined precedence graph [5]. 

 

Figure 2. Combined precedence graph 

In this work we propose a hybridization of two 

metaheuristics Greedy randomized adaptive search 

procedure and Genetic algorithm to solve the MiMALBP-2 

and we show the ability of the proposed GA in finding better 

solutions. The adoption of this approach is motivated by that 

the greedy algorithm proved its efficiency to solve some 

optimization problems [11] and from our best knowledge, 

the proposed hybridization GRASP-GA including the RPW 

in the construction phase with the random concept to solve 

the MiMALBP-2 is never used before.  

The rest of the paper is organized as follows. Section 2 

presents related work. Section 3 defines the system model 

and problem formulation. Section 4 details the proposed 

approach. Section 5 represents the numerical example. 

Section 6 evaluates and discusses the obtained results. 

Section 7 concludes the paper and highlight future works. 

II. RELATED WORKS 

Since the first publication of the mathematical formulation 

of the assembly line balancing problem, several methods 

have been developed in order to find feasible solutions. In 

the literature, these methods are classified into two 

categories: exact methods and inexact methods known by 

heuristics [12]. The ALB problem is NP-hard [2], thus exact 

methods are not useful to solve it because they take a long 

time to find an optimal solution especially for problems with 

big sizes. Inexact methods or heuristics are more useful in 

this situation by finding a feasible solution in a reasonable 

time, but there is another problem in heuristics methods 

known by the local optimum which means the solution found 

may not be the optimal one. Other methods known by 

metaheuristics can avoid the local optimum, these methods 

try to improve successively the initial solution towards a 

global optimum [13]. 

Researchers have developed different methods to solve 

the MiMALB problem with aim to minimize the cycle time. 

For example, an IT tool has been developed [2] to help 

engineers in controlling manufacturing resources, and in 

addition to increase the production rate using three 

heuristics: Largest candidate rule (LCR) method, Kilbridge 

and Wester Column (KWC) method and Ranked positional 

weight that combines the strategies of LCR and KWC 

methods. A hybrid genetic algorithm (HGA) has been 

proposed in [9] to solve a robust mixed model ALB problem 

type 2 with uncertain task times. A heuristic method has been 

used in this algorithm to seed the initial population, in 

addition, an adaptive local search and a discrete levy flight 

have been hybridized with this HGA to enhance its 

performance. 

A robotic mixed model assembly line balancing problem 

type 2 has been studied in [14]. In the robotic line, a set of 

robots performs different tasks. One of the objectives aimed 

in this paper is minimizing the cycle time, and to solve the 

general problem two different multi-objective evolutionary 

algorithms have been used. The first algorithm is a multi-

objective particle swarm MOPSO and the second algorithm 

is a non-dominated sorting genetic algorithm NSGA-2. A 

comparison has been carried out shows that the NSGA-2 in 

most cases is better than the MOPSO in terms of 

performance. Another iterative procedure has been proposed 

in [15] for solving mixed model assembly line with parallel 

workstations using a genetic algorithm. The main objective 

is to maximize the production rate of the line for a predefined 

number of operators. In addition, the proposed GA can be 

used to minimize the number of workstations. 

An ant colony optimization approach for solving the 

mixed model assembly line balancing problem with setup 

time between operations have been proposed in [16]. This 

ACO is based in on learning permutations of the operations 

in contrast to previous ACO used for the assembly balancing 

problems. Authors found that the proposed ACO leads to 

excellent results in short times. A reactive generalized 

simulated annealing (GSA) using type 2 fuzzy controller to 

tackle with the MiMALBP-2 have been proposed in [17], the 

fuzzy type 2 controller is used to guide the algorithm to 
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explore the entire search space in early iterations which 

allows the algorithm to achieve higher performance and 

accuracy. Result shows that the fuzzy GSA can obtain better 

solution when compared with the original counterpart and 

hierarchical approach. 

III. PROBLEM DESCRIPTION AND MATHEMATICAL 

FORMULATION 

A. PROBLEM DESCRIPTION 

In the mixed model assembly line. Similar models are 

assembled in the line according to a specific random 

sequence. Each model has a set of tasks and each task has a 

determined processing time (or task time). All tasks are 

regrouped in a graph known as the precedence relations 

graph. All tasks must be assigned to workstations taking into 

consideration precedence relations between these tasks, thus, 

a task cannot be assigned before its predecessors. The sum 

of assigned tasks times to the same workstation must not 

exceed the cycle time (workstation time). The mixed model 

assembly line balancing problem can be transformed into a 

simple assembly line balancing problem by combining all 

precedence relations graphs of models into only one 

precedence graph, and the average task processing time for 

each task is calculated. So, the aim of solving the 

MiMALBP-2 is to find the best assignment of tasks with a 

minimum cycle time for a fixed number of workstations 

respecting the precedence relations. Finding the optimal 

sequence of models is not taken into consideration in this 

paper. 

B. MATHEMATICAL FORMULATION 

The aim is to maximize the production rate that means 

minimizing the cycle time. The following mathematical 

formulation of the problem was proposed by Baybars [18] to 

solve SALBP-2 and is used to solve MiMALBP-2 to find the 

minimum cycle time: 

 

n  number of operations 

 

i  task i where i =1,2, …n 

 

m number of stations 

 

k  station k where k =1,2, …m 

 

𝑡𝑖 processing time of task i 

 

𝑝𝑖  the set of predecessors of task i 

 

𝑋𝑖𝑘 = 1 if the task i is assigned to the workstation k, 

otherwise 𝑋𝑖𝑘 = 0 

 

The main objective is to minimize the cycle time as 

shown in the following equation: 

 

𝐦𝐢𝐧 𝐂  ,           (1) 

 

Under the following constraints: 

∑ 𝐗𝐢𝐤 = 𝟏

𝐦

𝐤=𝟏

 ,    (2) 

 

for i = 1, 2…n          

 

∑ 𝐭𝐢 ∗ 𝐗𝐢𝐤  ≤  𝐂

𝐧

𝐢=𝟏

 , (3) 

 

for k = 1, 2...m         

 

∑ 𝐤 ∗ 𝐗𝐡𝐤  ≤  

𝐦

𝐤=𝟏

∑ 𝐤,∗  𝐗𝐢𝐤 

𝐦

𝐤=𝟏

 , (4) 

 

where h 𝜖 𝑃𝑖      

 

Xik ϵ {0, 1}.  (5) 

 

Equation (2) ensures that each task is affected only once. 

Equation (3) obliges that the sum of process times of tasks 

assigned to the same workstation must be less than or equal 

to the cycle time. Equation (4) imposes the precedence 

relations between tasks. If the task h must be performed 

before task i, thus, the index of the station where task h is 

affected must be less than or equal to the index of the station 

where task i affected. Finally, Equation (5) represents the 

constraint of decision variables integrity. The objective 

function (1) can be written as follow: 

 

𝐦𝐢𝐧 𝐦𝐚𝐱 {∑ 𝐭𝐢  ∗  𝐗𝐢𝐤  

𝐧

𝐢

| 𝒌 = 𝟏, 𝟐, … 𝒎},         (6) 

 

Using the equation (6) the formulation no longer 

represents a linear program in integers and the problem 

become easier to solve. 

IV. PROPOSED METHODS TO SOLVE THE MIXED 

MODEL ALB PROBLEM TYPE 2 

In this paper, a hybridization of two metaheuristics, a genetic 

algorithm (GA) and the GRASP (Greedy Randomized 

Adaptive Search Procedure) is proposed to solve the mixed 

model assembly line problem type 2. The GRASP is used to 

seed the initial population of the GA, so each individual is a 

different solution found using GRASP. The proposed 

hybridization is shown in Fig. 3.  
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Figure 3. GA-GRASP hybridization 

A. PROPOSED GENETIC ALGORITHM 

The genetic algorithm is an effective popular metaheuristic, 

it has been used to solve different assembly line balancing 

problems [9]. This metaheuristic starts with initial solutions 

(population), each solution (individual) is evaluated after the 

calculation of its fitness using a fitness function F. Best 

solution are selected to undergo operators (crossover and 

mutation). Finally, generated individuals by the genetic 

operators are evaluated. All these GA steps are repeated for 

a chosen number known as the number of generations [15, 

10]. In the proposed GA we used the Elitism technique [19] 

by keeping 25% best individuals from the total population in 

each generation to undergo GA operators and to guarantee 

that the best solutions remain until the final population. The 

GA stages are described as follows:  

1- Encoding of solutions: 

The sequence of tasks (solution) is created based on the 

precedence graph, and in this paper, the priority-based 

encoding method is used. The value of the gene represents 

the task node, and the position of this node in the sequence 

represents its priority of assignment. 

2- The initial population: 

The initial population is a set of individuals, each 

individual represents the final solution found using the 

Greedy randomized adaptive search procedure.  

3- Fitness function: 

To evaluate individuals, the fitness function is calculated 

for each individual. In this GA the fitness function is based 

on the cycle time because the aim is to maximize the 

production rate. The fitness function is given by  

 

𝐹 = 1/𝐶, 

 

where C represents the cycle time. 

4- Selection: 

In order to select the best individuals, tournament 

selection is used. In each tournament two individuals are 

chosen randomly from the remaining 75% of individuals, 

individual with minimum cycle time is chosen to undergo 

GA operators (crossover and mutation). The process of 

selection is repeated until the required number of individuals 

in the mating pool is reached. 

5- Crossover: 

To generate a new offspring, the one-point crossover is 

used: 

• Step1: from selected individuals in the selection 

operation, two parents are chosen. 

• Step2: one-point crossover is applied between 

two parents to create new offspring as shown in 

Fig. 4. 

• Step3: repeated tasks (genes) in the chromosome 

must be replaced by missing tasks. 

 

 

Figure 4. One-point crossover 

1- Mutation: 

Swap mutation is used in which two genes (tasks) are 

chosen randomly and their values are interchanged. The 

process of mutation is applied on some individuals chosen 

randomly to generate new sequences. In the end, unfeasible 

solutions must be corrected by reordering tasks that don’t 

respect precedence relations. 
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Figure 5. Swap mutation 

B. GRASP ALGORITHM 

The GRASP for Greedy Randomized Adaptive Local Search 

is a metaheuristic that has been used to solve different 

combinatorial problems. In this metaheuristic, each iteration 

consists of two principal phases: the construction phase and 

the local search phase. The role of the construction phase is 

to build a feasible solution, and the local search phase tries 

to find a better neighborhood solution from the solution 

found in the construction phase [11]. 

To find a feasible solution in the construction phase, 

RPW (ranked positional weight) is used, it is a popular 

heuristic that has been used to solve the assembly line 

balancing problem. In this heuristic, a list is made in which 

tasks are arranged in descending order based on their 

positional weights. The positional weight is calculated by 

adding all other durations attributed to the successors to the 

duration of the chosen task [20]. 

Each iteration in the construction phase is based on two 

lists, the Candidate List (CL) and the Restricted Candidate 

List (RCL) [21]. First, the Candidate List contains all tasks, 

and from this list, the RCL is created by choosing tasks with 

the maximum positional weight and respect all constraints 

(precedence relations and available workstation time). The 

number of elements of the Restricted Candidate List is 

limited by the p elements with the best positional weight. 

From the RCL, a task is chosen randomly for the assignment. 

Chosen task is deleted from the RCL and the CL and the 

workstation time is updated. 

The construction phase stops when all tasks in the CL are 

assigned and the given number of workstations is respected. 

Otherwise, the process of the construction phase restarts 

again until a feasible solution is found with the exact given 

number of workstations. 

The solution found in the construction phase maybe not 

the optimal one, and for this reason, the local search is used 

to ameliorate the constructed solution. Neighborhood search 

is used in the local search phase to find an optimal 

neighborhood solution by changing randomly the positions 

of two tasks in the sequence respecting precedence relations. 

The cycle time of the new sequence is calculated to make a 

comparison with the sequence found in the construction 

phase. This process in the local search phase stops when no 

other best neighborhood solution is found. 

 

 

Figure 6. Adopted GRASP approach for MiMALBP 

resolution 

 

Figure 7. Generation of new neighborhood solution 

V. NUMERICAL EXAMPLE 

The proposed hybrid method is implemented with Python 

3.7.3 on a PC with intel(R) Core (TM) i3-4005U CPU 1.70 

GHz, and tested on an example that represents a mixed 

model problem with two models A and B. Each model has 

its precedence relations between tasks, and each task may 
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have a different processing time in each model. Table (1) and 

table (2) represent models A and B data respectively. 

The first column represents the task number, the second 

column represents the task time and in the last column, 

represents immediate predecessors. For each model, some 

tasks are not included in the assemblage. 

Table 1. Model A data 

Task number Task Time 
Immediate 

predecessors 

1 9 - 

2 21 - 

3 25 - 

4 14 1 

5 23 2 

6 12 3 

7 11 4, 5 

8 7 5 

9 20 5, 6 

10 4 7, 8 

Table 2. Model B data 

Task number Task Time 
Immediate 

predecessors 

1 3 - 

2 25 - 

4 19 1 

5 17 2 

7 7 4, 5 

8 15 5 

9 8 5 

10 13 7, 8 

11 17 9 

12 13 11 

 

To solve this mixed model assembly line problem, we 

transformed it into a simple problem by combining graphs of 

models A and B in one graph as shown in Fig. 8. For each 

common task between models, the average processing time 

is calculated and unnecessary relations are deleted. The 

problem contains 12 tasks and 12 precedence relations that 

must be respected during the assignment of tasks into 

workstations. As shown in Fig. 8, Values inside circles are 

tasks number and T is the average processing time. So, the 

aim is to find the minimum cycle time based on the number 

of workstations. In this example, the number of workstations 

is 4. 

 

 

Figure 8. Combined precedence graph 

Table 3. GRASP-GA parameters 

 Parameters Values 

Grasp 
RCL (number of elements) 3 

Number of iterations 10 

GA 

Number of generations 100 

Population size 20 

Crossover probability 0.5 

Mutation Probability 0.15 

Elitism 25% 

VI. RESULTS AND DISCUSSION 

Fig. 9 represents the application of the GRASP on the 

proposed example. In order to create the initial population, 

the GRASP has been executed 20 times, and the result of 

each execution is a different feasible solution.  

As shown each solution includes the solution found in the 

construction phase and its best neighborhood generated by 

the local search procedure. 8 best solutions (S1, S5, S7, S9, 

S10, S12, S14, S17) have been found with cycle time  

(c = 47.5). In some cases (S7, S11, S13, S18), no better 

neighborhood solutions were detected in the local search 

phase. 

Fig. 10 shows the result obtained by the hybridization of 

the two proposed metaheuristics (GRASP and Genetic 

algorithm). All neighborhood solutions found in the 20 

executions using GRASP were used as an initial population 

in the genetic algorithm, and after 100 generations, 8 better 

solutions (S1, S2, S3, S4, S5, S11, S15, S17) have been 

found with cycle time (c= 45). Best found solutions differ in 

the sequence of tasks as shown in Table 4. 
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Figure 9. Obtained solutions using GRASP 

 

 

Figure 10. Obtained Solutions using GRASP-GA 

Table 4. Best sequences found in the final population 

Solutions Sequences 

S1 2  5  3  6  1  9 11 12  8  4  7 10 

S2 2  5  1  3  6  9 11 12  4  7  8 10 

S3 3  6  1  2  5  9 11 12  4  8  7 10 

S4 2  5  1  3  6  9 11 12  8  4  7 10 

S5 2  5  1  3  6  9 11 12  4  8  7 10 

S11 2  5  3  1  6  9 11 12  4  7  8 10 

S15 3  6  1  2  5  9 11 12  8  4  7 10 

S17 2  5  3  1  6  9 11 12  8  4  7 10 

 

Any solution from the 8 best solutions found in the final 

population can be chosen as a final solution because there is 

no difference between them only in the order of tasks. The 

first solution is chosen randomly as the final solution, and 

the table below shows the assignment of tasks to 

workstations according to the chosen solution. 

Table 5. Assignment of tasks to workstations 

Workstation Task 

1 2, 5 

2 3, 6, 1 

3 9, 11, 12 

4 8, 4, 7, 10 

 
Based on the chosen assignment, the workload can be 

calculated for each model, thus, for each workstation the sum 

of processing times of assigned tasks is calculated to find the 

workload, and like there is difference in processing times of 

common tasks between models, the workloads will be 

different, so the utilization of workstations during the 

production is not stable due to the variety of products. 

Fig. 11 and Fig. 12 shows the workload for model A and 

B respectively, and Fig. 13 represents  avreage workload. 

Also overload time and lead time were calculated.  
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Figure 11. Model A workload 

 

 

Figure 12. Model B workload 

 

 

Figure 13. Average workload 

The reader can observe that the cycle time is exceeded in 

workstation 2 for model A and in workstation 4 for model B, 

this problem results due to the variety of models and can 

influence the line efficiency, so to deal with this problem in 

mixed model assembly lines, the best sequence of product 

that can minimize the work overload must be determined. 

This problem is known in the literature by mixed model 

sequencing problem [22]. 

From the results, it is clear that the proposed greedy 

randomize adaptive search procedure was trapped in the 

local optima in different executions with (c = 47.5) in this 

example, and in some cases the local search procedure did 

not found a neighborhood solution that minimizes the cycle 

time. After the hybridization of the GRASP with the 

proposed GA by starting with all neighborhood solutions 

found using GRASP as the initial population, better solutions 

were found with a minimum cycle time (c = 45).  

In solving the proposed numerical example, the genetic 

algorithm played an important role in finding new solutions 

that cannot be found using the proposed GRASP, and due to 

the existence of precedence relations constraints, the 

neighborhood search method was restricted because for each 

solution found by the construction phase, a neighborhood 

solution that differs only on positions of two tasks must be 

found, but with genetic algorithm operators (crossover and 

mutation) during generations, the possibility of finding new 

solutions becomes greater. 

VII. CONCLUSION 

In this paper, the mixed model assembly line balancing 

problem type 2 is addressed, and the objective is to find the 

best assignment of tasks among workstations to minimize the 

cycle time. A Greedy randomized adaptive search procedure 

based Ranked positional weight heuristic is proposed in 

order to seed the initial population of the genetic algorithm, 

and a numerical example that represents a mixed model 

assembly line that assembles two different products is used 

to test the proposed hybridization. Results show the 

efficiency of the proposed hybridization by improving the 

solutions found by GRASP using the GA. In the first stage, 

the proposed GRASP was trapped in the local optimal due to 

the usage of a fixed alpha value which cannot help the 

GRASP to expand the search space, but in the second stage, 

the genetic algorithm starts with the solutions found by the 

GRASP as an initial population to tackle with the GRASP 

drawback and as results avoid the local optimal problem.  

In future work, the proposed approach can be developed 

using for example one from the GRASP enhancements such 

as the Reactive version, cost perturbations, bias functions, 

memory and learning, and local search on partially 

constructed solutions or using other local search methods in 

the local search phase of the GRASP that can avoid the local 

optimal problem. Also, using the main idea of the proposed 

approach, other versions of the Mixed-model assembly line 

balancing problem can be solved, for example, Mixed-Model 

Two-sided ALBP, Mixed-Model U-shaped ALBP, Mixed-

Model Robotic ALBP and so on.   
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