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 ABSTRACT This paper proposes the universal information technology for designing the rule bases (RB) with 

the formation of optimal consequents for fuzzy systems (FS) of different types on the basis of ant colony 

optimization (ACO) techniques. The developed ACO-based information technology allows effectively 

synthesizing rule bases of various dimensions both for the MISO and MIMO fuzzy systems taking into account 

the particular features of the RB consequents formation in the conditions of insufficient initial information. In 

order to study and validate the efficiency of the presented information technology the design of the RB for the 

adaptive fuzzy control system of the ship steering device is carried out in this work. The computer simulations 

results show that adaptive control system with developed RB provides achievement of high enough quality 

indicators of rudder angle control. Thus, application of the proposed ACO-based information technology allows 

designing effective RB with optimal consequents by means of minor computational costs that, in turn, confirms 

its high efficiency. 
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I. INTRODUCTION 

URRENTLY, fuzzy logic, fuzzy sets theory and soft 

computing techniques are widely being used when 

designing and researching computer systems of various 

classes [1-3]. After theoretical substantiation in a number of 

fundamental works by L. Zadeh, I. Mamdani, B. Kosko et al. 

[4-6] the mathematical apparatus of fuzzy logic is 

successfully used for solving different tasks in conditions of 

incomplete information and uncertainty. The most expedient 

is the use of fuzzy logic methods and means in the 

development of intelligent control and decision making 

systems for automation of complex nonstationary and 

nonlinear technical plants, in particular, such as ships and 

marine floating structures, unmanned underwater and aerial 

vehicles, mobile robots and drones, industrial robotic 

production lines, chemical reactors, power plants, etc. [7-9].  

Initially fuzzy control systems were built mainly on the 

basis of expert knowledge and assessments that significantly 

limited their applications for automation of non-stationary 

plants or plants with uncertainties, for which there was no 

significant experience of manual control accumulated by 

their operators [5, 10, 11]. Also, fuzzy decision making 

systems used in various fields (medical and technical 

diagnostics, financial management, stock market 

forecasting, etc.) could not always operate enough accurately 

and efficiently, since the process of their design depended 

significantly on the qualifications and experience of 

developers, as well as on a number of other subjective factors 

[12-14]. However, in the past two decades numerous 

approaches, methods and information technologies have 

been propounded to develop highly efficient fuzzy systems 

(FSs) on the basis of certain structural-parametric 

optimization procedures that allow significantly reduce the 

negative influence of subjective factors on the process of 

fuzzy systems development, as well as significantly expand 

the scope of their applications [15-17]. Moreover, modern 

C 
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research in the field of creation and development of fuzzy 

decision making and control systems shows, that due to the 

intensive development and increase in the power of 

computer technology, bioinspired intelligent methods and 

information technologies of global search are quite 

promising for solving problems of synthesis and 

optimization of FSs of various configurations and purposes 

[18-20]. These bioinspired methods are stochastic methods 

of global optimization and have a number of advantages over 

classical search methods [21-23]. For the effective use of all 

the advantages of bioinspired approaches and methods of FS 

synthesis and optimization, it is necessary to develop and 

approbate appropriate advanced information technologies 

for their implementation, which is currently a rather complex 

and relevant issue. 

This paper focuses on the development and research of 

an advanced information technology for solving such an 

urgent and complicated problem as the designing rule bases 

of fuzzy decision making and control systems based on the 

bioinspired intelligent methods, specifically ant colony 

optimization methods. The paper is organized in the 

following way. The statement of the research problem, brief 

literature survey in the studied area and the purpose of this 

work are presented in section 2. Section 3 describes in detail 

the proposed information technology of designing the rule 

bases. Section 4, in turn, presents the results of studying the 

effectiveness of the developed information technology on a 

specific example of an adaptive fuzzy control system for ship 

steering device with a detailed analysis of the computer 

simulation results. 

II. PROBLEM STATEMENT AND RELATED WORKS 

Recently numerous papers have been published with 

examples of designing and successful application of fuzzy 

decision making and control systems of different types in 

various sectors of human activity [24-26]. For instance, in 

modern fuzzy control systems fuzzy inference devices can 

be used as controllers, identifiers, adaptive devices, 

observers, blocks for setting modes of the upper control 

level, etc. [27, 28]. The generalized MIMO (multiple inputs, 

multiple outputs) fuzzy system is shown in Fig. 1, where the 

following notations are accepted: HE is the human expert; 

FU is the fuzzification unit; DFU is the defuzzification unit; 

x1, x2, …, xi, …, xn are the inputs of the fuzzy system; y1, 

y2, …, yj, …, ym are the outputs of the fuzzy system; 

 

 

Figure 1. Structure of the generalized MIMO fuzzy system. 
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PF is the vector that determines the number, types and 

parameters of linguistic terms (LT) of the system input 

variables; RX is the rule base (RB) consequents vector; PFIE 

is the vector that defines the operations of aggregation, 

activation and accumulation of the fuzzy inference engine; 

PDF is the vector that determines the number, types and 

parameters of linguistic terms of the FS output variables, as 

well as the defuzzification method; Z is the vector of output 

variables of the control plant / operating environment used 

in designing process of the given fuzzy system. 

The generalized fuzzy MIMO system shown in Fig. 1, 

implements the nonlinear dependence fFS [29] 
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where X is the vector of input variables x1, x2, …, xi, …, xn; 

Y is the vector of output variables y1, y2, …, yj, …, ym of the 

presented fuzzy system. 

The fuzzification unit determines the membership degree 

for the numerical values of all n variables of the vector X to 

the corresponding input LTs of the considered fuzzy system 

[30]. The fuzzy inference engine, in turn, based on fuzzified 

signals and data received from the rule base, sequentially 

performs aggregation, activation and accumulation 

operations [31]. The rule base consists of a set of rules 

composed of defined antecedents and consequents. So, for 

example, to implement a functional dependence (1) by the 

presented MIMO fuzzy system, one of its rules built on the 

basis of Mamdani type fuzzy inference using the 

corresponding 4 linguistic terms for any variable xi (i = 1…n) 

or yj (j = 1…m) can be represented by the expression (2) [32] 
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where A1, A2, A3, A4, B1, B2, B3, B4 are certain linguistic terms 

of FS inputs and outputs. 

The defuzzification unit transforms the consolidated 

fuzzy inference into a crisp numerical signal for each FS 

output variable [31]. 

It is advisable to implement the design of the presented 

fuzzy system (Fig. 1) in an automated mode using the built-

in designing mechanism. Wherein, the given designing 

mechanism should determine such vectors PF, RX, PFIE and 

PDF, at which a sufficiently effective use of the FS will be 

provided for solving a particular problem (for example, the 

problem of decision-making, automatic control, etc.). In this 

case, the efficiency of the fuzzy system can be estimated 

using a certain objective function J, which is calculated on 

the basis of the obtained values of the vector of measured 

output variables of the control plant or operating 

environment Z [29, 33]. Also, FS design and performance 

evaluation can be carried out on the basis of training samples 

and other experimental data. Herewith, the human expert-

operator sets only the initial values (initial hypotheses) of the 

FS vectors PF0, RX0, PFIE0 and PDF0, that determine the initial 

structure, parameters and rule base. 

The quality and productivity of the fuzzy system 

designing process directly depend on the methods and 

information technologies used to optimize its structure and 

parameters, implemented in the design mechanism [33, 34]. 

In turn, a number of studies at the moment are underway 

towards developing of different approaches, methods and 

information technologies for synthesis, parametric and 

structural optimization of fuzzy systems, the results of which 

are presented in publications [35-37]. In particular, 

information technologies and methods of FSs structural 

optimization on the basis of the optimal selection of the 

linguistic terms membership functions, reduction and 

interpolation of rule bases, procedures of defuzzification, 

etc. are presented in [38-40]. Also, quite many published 

papers are dedicated to the designing methods that include 

optimization of the LT parameters of the Mamdani FSs, and 

finding optimal weighting factors for the rule consequents of 

systems of Takagi-Sugeno type [41-43]. 

The results obtained in recent studies indicate that 

progressive bioinspired intelligent methods and information 

technologies are quite effective and promising for 

conducting design and training of different types fuzzy 

decision making and control systems [44-46]. The given bio-

inspired methods are usually divided into two main groups: 

(a) multi-agent methods, which mimic the social behavior of 

collective animals, insects and microorganisms and include 

methods of ant colony optimization [47], bee colony 

optimization [48], particle swarm optimization [49], 

bacterial foraging optimization [50], etc.; (b) evolutionary 

methods, that model processes of natural selection and 

evolution in nature and to which relate genetic methods [51], 

evolutionary strategies [52], methods of differential 

evolution [53], biogeography based optimization [54], 

artificial immune systems [55] and others. All these 

presented above methods and techniques relate to the 

methods of stochastic global optimization, that have a 

number of advantages compared to the conventional 

optimization approaches: (a) allow effectively optimizing 

large dimension FSs; (b) provide the opportunity for detailed 

search of large, nonsmooth and multimodal search space, 

excluding local optima entrapment; (c) do have any 

restrictions for the training data and FS objective functions 

[18, 21, 22]. 

When applying the given bioinspired methods for solving 

the problem of structural-parametric design of a Mamdani-

type fuzzy decision making and control systems, the task of 

automatic rule base development with the determination of 

optimal consequents at insufficient initial information 

deserves a special attention [29]. 
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The rules antecedents of the RB are various combinations 

of linguistic terms of FS input variables [44, 56]. In turn, the 

rules consequents are the certain sets of LTs of the system 

output variables. Wherein, in each r-th rule of RB (r = 1, 2, 

…, s, where s is the total amount of rules in RB) the 

consequent’s part LTrj that corresponds to each j-th output 

variable (j = 1, 2, …, m) is selected from the corresponding 

j-th set of terms  1 2, ,...,j j vjLT LT LT , which includes all vj 

linguistic terms of the given FS output variable yj 

 

 1 2, ,..., .j j vrj jLT TL LTT L  (3) 

 

For example, for the fuzzy system with three output 

variables (m = 3) the following numbers of linguistic terms 

are chosen for the given output variables: v1 = 3, v2 = 7 and 

v3 = 5. In this case, the following sets of the output variables 

LTs can be formed: 
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where BN is big negative; N is negative; SN is small 

negative; Z is zero; SP is small positive; P is positive; BP is 

big positive. 

The consequents vector RX may be synthesized in various 

ways, thus the task of the consequents optimization is the 

task of selecting the optimal consequents vector Ropt from 

the set of all existing alternative variants that provides high 

(optimal) performance of a fuzzy control or decision making 

system [57]. In general terms the rule base consequents 

vector RX for the x-th alternative variant is represented as 

follows [29]: 
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The task of finding the optimal vector of consequents Ropt 

is a complicated discrete optimization task of large 

dimension, that may be successfully solved by means of an 

effective information technology developed on the basis of 

bioinspired global search algorithm and that takes into 

account all features of the consequents synthesis of the rule 

base at the information uncertainty or/and insufficient initial 

information [29, 57]. Contemporary studies show that ant 

colony optimization methods and algorithms have proven 

themselves to be quite promising and more effective in 

comparison with other bioinspired optimization approaches 

at solving tasks of discrete optimization of large dimension 

[29, 47, 58]. So, a number of published papers considered 

examples of the efficient application of different ant colony 

optimization (ACO) techniques to solve various problems of 

discrete optimization: the traveling salesman challenge [59], 

the problem of graph coloring [47], the scheduling problem 

[60], the problem of optimizing the vehicles routes [61], 

etc. [62, 63]. Also, results of successful implementation of 

ACO techniques for optimizing different types of fuzzy 

systems were given in [64, 65]. In particular, in papers [29, 

64] ACO-based information technologies were developed 

and presented for synthesis and optimization of rule bases for 

MISO (multiple inputs, single output) fuzzy systems. The 

main disadvantage of these information technologies is their 

limited use only for MISO fuzzy systems. Also, with an 

increase in the dimension of the optimized rule bases, the 

computational costs of these technologies increase 

significantly and their applications become impractical. 

Thus, development of a universal information technology 

based on the ACO methods that will make it possible to 

effectively synthesize rule bases of various dimensions both 

for the MISO and MIMO fuzzy systems considering the 

main features of the RB consequents formation in the 

conditions of insufficient initial information is a rather 

urgent task. 

The purpose of this work is development and research of 

the universal information technology for designing rule 

bases with optimal consequents forming for different types 

fuzzy systems based on ant colony optimization techniques. 

III. ACO-BASED INFORMATION TECHNOLOGY FOR 

DESIGNING RULE BASES  

The methods of ant colony optimization are based on 

modeling the social behavior of ants, that belong to one large 

colony, in the process of the collective solving the problem 

of finding the shortest path to the foraging source [29, 47, 

65]. The real ants in the colony are simulated by interacting 

agents of the joint self-organizing system that travel along 

the graph of the problem solutions with the aim of finding 

the best (optimal) solution [58, 64]. The length of the 

traversed path of each artificial ant is expressed by a certain 

value of the objective (cost) function J that measures the 

performance of the developed solution to the problem. Thus, 

the ACO methods can be effectively applied to solve the 

problems described by a graph consisting of nodes and edges 

connecting the nodes [47]. The idea of applying the ACO 

principles in the information technology for designing rule 

base is to represent the structure of the fuzzy system RB as a 

specific graph, on the edges and nodes of which the agents-

ants will move [29]. The route of every z-th agent of the 

colony runs through certain edges and nodes of the given 

graph at every separate iteration with number N. After each 

z-th agent passes through the whole graph at every N-th 
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iteration the corresponding RB of fuzzy system with a certain 

consequents vector Rz(N) (z = 1, …, zmax; N = 1, …, Nmax) is 

formed. The route length that a certain ant has travelled in 

the current iteration depends on the value of the FS objective 

function J z(N). 

In previous studies [29, 64], the following concept of 

graph construction for RB development with optimal 

consequents for MISO fuzzy systems was used. The RB 

graph (Fig. 2) include one zero layer, which has only one 

node – the point of the route starting for all zmax colony ants, 

and s main layers. In turn, every main layer has a serial 

number r and determines the corresponding r-th rule (r = 1, 

2, …, s) of the rule base. Moreover, every r-th layer of the 

graph has v nodes, that correspond to all rules consequents 

and, respectively, to all linguistic terms of the fuzzy system 

single output. Every rγ-th node of the r-th layer determines 

γ-th consequent (r = 1, 2, …, s; γ = 1, 2, …, v) that can be 

selected for the r-th rule of the developed fuzzy rule base 

[29]. In addition, every node in each layer (except zero layer) 

of the given RB graph is connected by edges with every node 

of the previous and subsequent layers. As for the only node 

of the zero layer, it is connected only with each node of the 

first layer. 

 

 

Figure 2. Rule Base Graph of the RL-type. 

Since, in this graph each r-th rule of the rule base 

corresponds to a specific r-th layer, the concept of 

constructing a graph of such type can be called "Rule-Layer", 

and the graph itself – a RL-type graph, in turn.  

Being that, in ACO algorithms most of the operations 

(movement of ants, pheromone increasing, evaporation and 

updating) at each iteration are performed with the edges of 

the graph, the number of edges in the graph significantly 

affects the computational complexity and speed of these 

algorithms. Therefore, the number of edges q for the graph 

of the RL-type can be calculated by the following equation 

 

( )2 1 .q v s v= − +  (6) 

 

So, for instance, for a certain FS with a rule base of small 

dimension with 25 rules (s = 25) and with 7 LTs (v = 7) that 

its output variable has, the edges number of the graph 

according to equation (6) is equal to 1183. In this case, for 

such a number of graph edges (q = 1183), the implementation 

of information technology for designing RB based on such a 

concept will already require significant computational and 

time costs.  

When using this concept of graph constructing for 

designing RB of the MIMO fuzzy systems with m output 

variables the number of edges q will be calculated by the 

equation (7) 

 

( )2

1

1

1 .
m

j

j

q v s v
=

= − +  (7) 

 

In this case, for a similar fuzzy system with 25 rules (s = 

25) in the rule base that has 3 outputs (m = 3) with 7 linguistic 

terms for each (v1 = 7, v2 = 7, v3 = 7), the number of graph 

edges according to equation (7) is equal to 3535. With such 

number of graph edges q and grater, the usage of the given 

ACO-based information technology will require excessive 

computational and time costs, which in some cases will be 

inappropriate.  
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Thus, the application of the developed in previous works 

[29, 64] "Rule-Layer" concept of constructing the RB graph 

does not allow effectively using the ACO-based approach 

when developing MIMO fuzzy systems. Moreover, when 

developing rule bases of a sufficiently large dimension, the 

computational costs can be so significant that the application 

of this concept even for MISO FSs will no longer be 

advisable. 

To significantly reduce the number of edges q in the 

graph, which will substantially decrease the computational 

costs of information technology and, accordingly, increase 

its performance, this paper proposes the new concept for 

constructing a rule base graph, which can be called "Rule-

Node". Application of this concept in conjunction with the 

principles of ACO-based search gives the opportunity to 

create the universal information technology that allows 

synthesizing rather complex rule bases for both MISO and 

MIMO fuzzy systems with rather high efficiency.  

The generalized RB graph built on the basis of the 

concept "Rule-Node" is presented in Fig. 3. In a graph of the 

RN-type built according to this concept, each r-th rule will 

correspond to m sequentially connected nodes with the 

numbers: r1, r2, …, rj, …, rm. In general, for the MIMO 

fuzzy system with m outputs, each of which has vj (j = 1, 2, 

…, m) linguistic terms, the given rule base graph will have 

one zero node, that is a point for route starting of all ants, and 

sm main nodes, sequentially connected by means of edges 

(arcs). In turn, each rj-th node (r = 1, 2, …, s; j = 1, 2, …, m) 

is connected to the next node on the right r(j + 1) by means 

of vj+1 arcs, that correspond to all vj+1 LTs of the fuzzy system 

output yj+1 with the number j + 1. Thus, each γ-th linguistic 

term (γ = 1, 2, …, vj) of the j-th FS output variable (j = 1, 2, 

…, m) that can be chosen as a consequent’s part for the r-th 

RB rule (r = 1, 2, …, s) corresponds to rγj-th arc of the graph. 

 

 

Figure 3. Rule Base Graph of the RN-type. 

In this case, the total number of edges q in the RN-type 

graph is determined by the sum of linguistic terms of all m 

output variables of the system multiplied by the total number 

of rules s  

 

1

.
m

j

j

q v s
=

=  (8) 

 

For the given above example of the MIMO fuzzy system 

with 25 rules and 3 outputs with 7 linguistic terms for each, 

the number of RN-type graph arcs will be equal to 525, 

which is more than 6 times less than for RL-type graph built 

for this system. Also, using the "Rule-Node" concept at the 

graph building for the RB of MISO fuzzy system, each rule 

corresponds to only one node and not to a layer of nodes as 

in the RL-type graph. 

Thus, in this work, at developing the universal 

information technology for designing RB of both MISO and 

MIMO fuzzy systems with enough high efficiency, the 

proposed "Rule-Node" concept of constructing the rule base 

graph is used. Next, let us consider the main operations of 

the ACO method used in this information technology for RB 

development. 

 During the movement of all the ants along the graph, the 

probability ( )γ
z

r jP N  of the z-th agent passing along the rγj-

th arc from the node with number r(j–1) to the rj-th node (

 1,..., ;r s   1,..., ;jv   1,...,j m ) in the N-th 

iteration (N = 1, …, Nmax) is calculated based on the 

equation [29]: 
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 (9) 

 

where τrγj(N) is the pheromone intensity on the rγj-th arc at 

the iteration N; ηrγj is an inverse of the relative length Drγj of 

the rγj-th arc; α is an adjustable parameter which determines 

the importance of the pheromone trace considering on the 

arc; β is the parameter that regulate importance of the relative 

length Drγj of the rγj-th arc.  

The parameter ηrγj is calculated as follows 
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γ

γ

1
η .r j
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In turn, the value of the relative length Drγj for each  

rγj-th arc can be set based on the knowledge of experts or 

any preliminary known information (if available) about the 

system or the problem being solved. In this case, the more 

appropriate the given rγj-th linguistic term is considered for 

the j-th variable in the r-th rule, the smaller the value of the 

arc relative length Drγj is set. In the absence of any 

preliminary information the values of the relative length for 

all arcs can be set randomly or in some other way.  

After each z-th agent travels through certain graph arcs 

of all sm nodes on every N-th iteration, the path length of the 

given agent for synthesized consequents vector Rz(N) is then 

calculated that corresponds to the certain value of the 

objective function Jz(N) for the fuzzy system. For example, 

if the rule base of a given system is designed on the basis of 

a training sample, consisting of certain sets of values of input 

and output variables the mean squared error (MSE) may be 

used as an objective function that measures the average of 

the squares of the errors between the estimated and actual 

output values of the FS. In the case of the designing RB for 

the fuzzy control system the objective function may be 

presented as an integral quadratic error of control or the 

integral quadratic deviation between the outputs of the 

reference model and the real control plant [29]. In turn, for 

the fuzzy decision making system the objective function may 

be calculated as the percentage of wrong decisions obtained 

for the test dataset. 

The amount of pheromone left on each rγj-th arc by the 

z-th agent at the N-th iteration, is calculated using the current 

value of the objective function Jz(N) [64] according to the 

following expression:  

 

( )
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( )

( ) ( )

γ

γ

     

          

τ , at γ ;
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where Q is the constant that impact on the amount of 

pheromone that will be left by an ant on its route; Hz(N) is a 

set of arcs that z-th ant has already passed at the N-th 

iteration. In turn, the value of the parameter Q is usually set 

to be of one order with the optimal value of the objective 

function Jopt. The pheromone amount ( )z

r j N  left by z-th 

agent on the arc rγj at the N-th iteration inversely 

proportional depends on the objective function value Jz(N). 

For instance, if the objective function is small, then the 

pheromone has a high concentration, and vice versa. 

When the pheromone values ( )z

r j N , left by each z-th 

ant on each rγj-th arc of the graph, are calculated based on 

the equation (11), they are used for increasing the pheromone 

total amount on the graph’s arcs [29] based on the equation 

(12) 

( ) ( ) ( )
max

γ γ γ

1

τ τ 1 ρ τ ,
z

z

r j r j r j

z

N N N
=

= − +     (12) 

 

where ρ is the coefficient that enhances the pheromone 

amount left by ants on their routes (in most cases it is set in 

the range 0…1). 

In order to increase the convergence speed of the search 

process in the proposed information technology it is 

advisable to implement the elite strategy, due to to which 

elite ants are used in the search process [29, 47]. According 

to this strategy an additional pheromone increasing is 

implemented at each iteration to these arcs, which are parts 

of the best route at the current iteration, that provide the least 

objective function Jmin(N). The given pheromone amount 

that is left on each arc of the best route at N-th iteration, is 

calculated on the basis of equation (13) using the number of 

elite ants e and the objective function value Jmin(N) 

 

( )
( )min

τ .e

e Q
N

J N


 =   (13) 

 

After pheromone increasing using equations (12) and 

(13) at each N-th iteration for each rγj-th arc of the graph the 

operation of pheromone evaporation [29] is applied in 

accordance with expression  

 

( ) ( ) ( )γ γτ τ 1 ρ ,r jF r jN N=  −   (14) 

 

where τrγjF(N) is a final amount of the pheromone on the rγj-

th arc in the end of N-th iteration after implementation of the 

procedure of evaporation.  

At transition to the iteration N+1 from the N-th iteration 

(N = 1, …, Nmax) on each rγj-th graph’s arc (  1,..., ;r s  

 1,..., ;jv   1,...,j m ), the amount of pheromone is 

updated using equation (15) 

 

( ) ( )γ γτ 1 τ .r j r jFN N+ =   (15) 

 

Thus, the proposed ACO based information technology 

for the designing rule bases with formation of optimal 

consequents for FSs of different types consists of the next 

successive stages. 

Stage 1. The ACO based information technology 

initialization. At this stage, the RN-type graph is formed, 

structure of which corresponds to the RB of the designed 

fuzzy system. In turn, the graph consists of one zero node 

and sm main nodes, sequentially connected by arcs, the total 

number of which q is determined by the sum of linguistic 

terms of all m output variables multiplied by the total number 

of rules s. In this case, rule base can be full with the number 

of rules s corresponding to all possible combinations of 

linguistic terms of the n input variables, or reduced. At 

developing the RB antecedents automatically, the number of 
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rules s will be full. In turn, at composing the rule base 

antecedents on the basis of the experts’ knowledge some 

antecedents can be previously excluded if there is 

preliminary information about their insignificant effect on 

the system operation, and, in this case, the RB will be 

reduced. Also at this stage, the objective function J and its 

optimal value Jopt are set. Moreover, an ant colony is created 

and the main adjustable parameters of the ACO algorithm 

are set: the number of ants in the colony zmax, coefficients α, 

β, Q, ρ, maximum iterations number Nmax, as well as the 

number of elite ants e. Moreover, the values of the relative 

lengths D and initial small amount of the pheromone τ are 

set for all arcs before the ants begin to move at this stage. 

Stage 2. Ants movement along the graph nodes of the 

fuzzy system RB. Moving of every z-th ant of the colony, 

which is created at Stage 1, starts from the zero node and is 

sequentially performed through all sm main graph’s nodes 

from left to right. The transitions number for every z-th ant 

is the same as total number of nodes sm of the graph. If z-th 

ant is placed at the node r(j–1), then the probability ( )γ
z

r jP N  

of its transition to the node rj through the rγj-th arc is 

calculated by means of the expression (9). In turn, the inverse 

ηrγj of the relative length Drγj of the rγj-th arc is calculated 

based on equation (10). Stage 2 continues until every z-th ant 

of the colony passes all sm main nodes of the graph. 

Stage 3. Estimation of the generated vectors of the RB 

consequents. At this stage the fuzzy system objective 

function Jz(N) is calculated for each consequents vector of 

the RB rules Rz(N), generated by every z-th ant in the colony 

(z = 1, …, zmax) during its moving at Stage 2. 

Stage 4. Checking for completion of the design process. 

At this stage, the best vector of RB consequents Rbest(N), 

generated by the ants routes at Stage 2, is selected, that has 

the least objective function Jmin(N) of fuzzy system. For this 

best vector of RB consequents Rbest(N) the design process 

completion is checked, that is determined by achieving the 

objective function optimal value (Jmin(N) ≤ Jopt) or by 

implementation of the maximum possible number of 

iterations Nmax. The optimization process can be also 

considered to be complete if the fuzzy system objective 

function J does not decrease during a certain (previously set) 

number of iterations. In case of the positive check, the 

transition to Stage 8 is carried out. Otherwise, transition is 

done to Stage 5. 

Stage 5. Pheromone increasing on the graph arcs of the 

fuzzy system RB. At this stage, the pheromone amount, left 

by every z-th ant (z = 1, …, zmax) during moving at Stage 2 

on every rγj-th arc, is calculated based on (11) using 

objective function values Jz(N), calculated at Stage 3. The 

calculated values of the pheromone amount ( )z

r j N , left 

by each z-th ant on each rγj-th arc when moving, are used for 

pheromone increasing on the graph arcs on the basis of 

equation (12). Also, the elite strategy is used for the 

additional pheromone increasing at this stage for the arcs, 

that are parts of the best route at the current iteration with the 

least objective function value Jmin(N). The given additional 

amount of pheromone value is determined by the expression 

(13). 

Stage 6. Pheromone evaporation on the RB graph arcs. 

For every rγj-th arc of the RB graph the evaporation 

procedure is implemented based on equation (14) and the 

final value of pheromone τrγjF(N) is determined. 

Stage 7. Moving to the next iteration. Return of all zmax 

ants of the colony to the graph’s zero node and pheromone 

updating on every rγj-th arc is carried out on the basis of 

equation (15). Then, transition to Stage 2 is performed. 

Stage 8. Completion of the process of designing RB. 

After completing the design of RB, the fuzzy system 

parametric optimization as well as development of necessary 

software and hardware for its further implementation and 

application may be conducted. 

The Fig. 4 shows a block diagram of the proposed ACO 

based information technology for the designing RBs with 

finding the optimal consequents for different types fuzzy 

systems. 

 

Figure 4. Block diagram of the ACO based information 

technology for RB design.  
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The effective study of the developed information 

technology is performed in this work on a specific example, 

in particular, when developing the adaptive fuzzy control 

system for ship steering device. 

IV. DESIGN OF THE RULE BASE FOR ADAPTIVE FUZZY 

CONTROL SYSTEM OF SHIP STEERING DEVICE  

Ship steering device is a complicated, nonlinear, time-

varying, multi-variable hydro-mechatronics system, which 

performance has a significant influence on the ship normal 

navigation in various conditions and vitality in whole [66, 

67]. One of the most important tasks of automatic control of 

the steering machine is the tracking control of the ship’s 

rudder angle φ by a certain degree. According to the 

requirements of the Maritime Register the rudder shift time 

from 0º to 35º should be not more than 14 seconds. Thus, the 

automatic control system of the steering device must provide 

high quality indicators of the rudder shift angle φ control, in 

particular, high speed with minimal overshoot [66]. 

The mathematical model of the steering device consists 

of the following main equations [66]:  

 
2

MT MT
FR S MT L HC S P2

;
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where mΣ is the total reduced mass of all moving parts of the 

hydraulic drive and mechanical transmission of the rudder; 

YMT and YP are the linear displacements of the mechanical 

transmission of the rudder and hydraulic drive plunger; kFR 

is the friction coefficient; cS is the coefficient of stiffness of 

the connection of the plunger with the mechanical 

transmission; PL is the pressure drop in the cavities of the 

hydraulic cylinder due to the action of the loading force FL; 

SHC is the working area of the hydraulic cylinder plunger; QV 

is the value of the working fluid flow through the hydraulic 

drive valve; υ0 is the fluid volume contained in the left or 

right cavity of the hydraulic cylinder; 
'

HCE  is the reduced 

elasticity modulus of the hydraulic cylinder with an elastic 

support; P1 and P2 are the pressure values in the left and right 

cavities of the hydraulic cylinder; 
'

Vk is the specific 

conductivity of the valve windows; xV is the valve linear 

displacement; Pin and Pout are the input and output pressure 

values of the hydraulic drive; μV is the valve flow coefficient; 

dV is the valve diameter; kf is the coefficient of completeness 

of the use of the valve perimeter by its windows; ρl is the 

density of the working fluid of the hydraulic drive; MRS is the 

load moment on the rudder stock; SR is the rudder area; VS is 

the ship speed in knots; RR is the rudder tiller radius. 

The given equations describe hydraulic drive, 

mechanical transmission and the rudder itself as the main 

parts of the steering device. In turn, the hydraulic drive valve 

is controlled by the signal uC and has the following transfer 

function WV (s) 

 

( )
( )

( )
V V

V 2 2

C V V

s
s ,

s s 2ζ s 1

x k
W

u T T
= =

+ +
  (24) 

where kV, TV and ζ are gain, time constant and damping 

factor of the electrically operated valve, determined by the 

parameters of its servo drive. 

As can be seen from the above equations, the ship’s speed 

VS, as well as the set value of the rudder angle φS, 

significantly affect the quality indicators of the steering 

device control. Thus, the use of conventional control laws in 

the angle control system will not ensure the achievement of 

sufficiently high quality indicators, in particular, in terms of 

its speed and overshoot. In turn, to provide high quality 

indicators of the rudder angle control, as well as to comply 

with the requirements for speed and overshoot it is advisable 

to implement adaptive control laws, that take into account 

change of the ship’s speed and angle set values in rather wide 

ranges. The functional structure of the adaptive control 

system for the steering machine with fuzzy adaptive device 

is presented in Fig. 5, where the following notations are 

accepted: CCS is the control system of the ship’s course; 

ACB is the rudder angle control block; FAD is the fuzzy 

adaptive device of the angle control system; MB1 and MB2 

are the multiplication blocks; SD is the steering device; HD 

is the hydraulic drive; RMT is the rudder and mechanical 

transmission; φS and φR are set and real values of the rudder 

angle; εφ is the angle control error; kP and kD are proportional 

and differential coefficients, which are subsequently 

multiplied by the control error and its derivative; uC is the 

control signal. 
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Figure 5. Control system of steering machine with fuzzy adaptive device 

The control signal uC of the given system is calculated by 

the following equation 

 

( ) ( )φ

C φ P S S D S S

ε
ε φ , φ , .

d
u k V k V

dt
= +   (25) 

 

The fuzzy adaptive device should calculate the optimal 

values of the proportional and differential coefficients kP and 

kD depending on the taken modulo set angle value φS of the 

rudder and the current value of the ship’s speed VS. In turn, 

it is the MIMO fuzzy system that has 2 inputs: |VS| and |φS|, 

as well as 2 outputs: kP and kD. 

Development of the given FAD for the steering device 

automatic control system by means of the proposed ACO-

based information technology is carried out in this paper for 

the ship with the following parameters: length and water 

tonnage of the ship are 150 m and 37000 tons, hydraulic 

drive power is 160 kWt, maximum steering angle of the 

rudder is 35º, maximum ship’s speed is 20 knots.  

The designing rule base of the given FAD by means of 

the presented ACO-based information technology is 

conducted on the basis of a training sample (Table 1), 

consisting of sets of values of input variables φS and VS and 

output variables kP and kD.  

Table 1. Training sample for designing RB 

# 
Input variables Output variables 

VS, kn φS,º kP  kD 

1 2 7 6.32 1.93 

2 4 7 6.76 2.12 

3 6 7 7.01 2.57 

4 8 7 7.62 2.68 

5 10 7 7.87 3.69 

6 12 7 8.21 5.03 

7 14 7 8.65 5.67 

8 16 7 9.14 8.03 

9 18 7 10.52 9.62 

10 20 7 11.69 10.74 

11 2 14 6.65 2.28 

12 4 14 7.12 2.43 

13 6 14 7.44 2.97 

14 8 14 8.01 3.13 

15 10 14 8.38 4.01 

16 12 14 8.76 5.61 

17 14 14 9.13 6.12 

18 16 14 9.69 8.64 

19 18 14 11.08 10.09 

20 20 14 12.21 11.23 

21 2 21 7.13 3.07 

22 4 21 7.61 3.27 

23 6 21 8.02 3.59 

24 8 21 8.54 3.69 

25 10 21 8.95 4.64 

26 12 21 9.32 6.13 

27 14 21 9.68 6.88 

28 16 21 10.29 9.37 

29 18 21 11.63 10.74 

30 20 21 12.76 11.85 

31 2 28 7.64 3.54 

32 4 28 8.12 3.87 

33 6 28 8.51 4.04 

34 8 28 9.03 4.37 

35 10 28 9.47 5.12 

36 12 28 9.87 6.72 

37 14 28 10.35 7.34 

38 16 28 10.87 10.02 

39 18 28 12.02 11.57 

40 20 28 13.11 12.46 

41 2 35 8.08 3.96 

42 4 35 8.45 4.19 

43 6 35 8.86 4.35 

44 8 35 9.32 4.95 

45 10 35 9.89 5.87 

46 12 35 10.13 7.21 

47 14 35 10.93 8.92 

48 16 35 11.23 10.68 

49 18 35 12.14 12.08 

50 20 35 13.54 13.22 

 
The given values of the coefficients kP and kD (presented 

in Table 1) are previously obtained using parametric 

optimization techniques [42] for each separately specified 

value of set angle φS of the rudder and ship's speed VS.  

When developing the fuzzy adaptive device, five 

linguistic terms of a trapezoidal type are selected for its first 

|VS| and second |φS| inputs. In turn, for |VS|: VL – very low; L 

– low; M – middle; H – high; VH – very high. For |φS|: VS – 

very small; S – small; M – middle; B – big; VB – very big. 
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As for FAD outputs, seven terms of a trapezoidal type are 

selected for kP and kD: VS – very small; S – small; LM – less 

than middle; M – middle; MM – more than middle; B – big; 

VB – very big. The appearance of selected LTs with the set 

vertices is presented in Fig. 6. 

 

 

Figure 6. FAD linguistic terms and their parameters.  

In this case, the FAD rule base will be full with the 

number of rules s = 25 that corresponds to all possible 

combinations of linguistic terms of the two input variables 

|VS| and |φS|. The given RB consequents vector RX for the x-

th alternative variant is represented as follows 

 





 

 

11 12 1 2

251 252

1 2

, ;...; , ;...;

, ,

, VS,S,LM,M,MM,B,VB ,

1,2,...,25 .

X X X Xr Xr

X X

Xr Xr

LT LT LT LT

LT LT

LT LT

r

=



=

R

  (26) 

 

One of the rules of the FAD rule base is represented by 

the following expression  
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At stage 1 of the proposed information technology the 

RN-type graph is formed, which structure corresponds to the 

designed rule base of the FAD. The graph consists of one 

zero node and 50 main nodes (sm = 50), sequentially 

connected by arcs, the total number of which is 350 (q = 

350). In turn, each node is connected to the next one on the 

right by 7 arcs. As the FAD objective function J the MSE is 

selected, that is calculated as follows 

 

( ) ( )
50 50

* F 2 * F 2

P P D D

1 1

1 1
,

50 50
g g g g

g g

J k k k k
= =

= − + −    (28) 

 

where 
*

Pgk  and 
*

Dgk  are the coefficients actual values from 

the Table 1; 
F

Pgk  and 
F

Dgk  are the coefficients values 

obtained from the FAD outputs at the given values of its 

inputs; g is the line number of the training sample (Table 1), 

g = 1, 2, …, 50.  

The objective function optimal value is also selected: Jopt 

= 0.9.  

To study the effectiveness of the proposed ACO-based 

information technology at its initialization stage, 4 separate 

colonies with the same number of main ants zmax = 25 and a 

different number of elite ants e are created: 1) e = 2; 2) e = 

8; 3) e = 12; 4) e = 15. In turn, the designing RB with optimal 

consequents formation is carried out alternately with the help 

of each separate colony 5 times (totally 20 experiments) with 

subsequent selecting the best obtained results. Moreover, for 

all generated colonies, the same coefficients α, β, Q and ρ are 

set, that have the following values: α = 3, β = 1, Q = 0.8, ρ = 

0.5. The values of the relative lengths D for all arcs are set 

randomly.  

All sequential procedures of the design process of the 

rule base (ant movement, estimation of generated RB 

vectors, checking for design completion, pheromone 

increasing, evaporation and updating) are performed in 

accordance with the main stages of the proposed information 

technology. In particular, the objective function (28) 

calculation is performed using all training data from Table 1 

at each iteration. The design process completion is 

determined by the achievement of the maximum number of 

iterations Nmax = 100. 

The results of all 20 experiments obtained for all ants 

colonies during designing RB for the fuzzy adaptive device 

are given in Table 2, where the following notations are 

accepted: NJopt is the total number of iterations required to 

achieve the optimal value of the objective function Jopt; Jmin 

is the minimal value of the objective function achieved by a 

colony in 100 iterations when implementing the information 

technology; NJmin is the total number of iterations required to 

attain the minimal objective function value Jmin. In turn, in 
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Table 2 best cases for each colony are highlighted in bold. 

Table 2. Obtained experimental results.  

# 
Colony 

number 

Parameters of Experiments  

 e NJopt Jmin NJmin 

1 1 2 - 1.64 55 

2 1 2 - 1.72 78 

3 1 2 - 1.64 67 

4 1 2 - 1.55 79 

5 1 2 - 1.41 64 

6 2 8 81 0.88 81 

7 2 8 92 0.86 92 

8 2 8 74 0.84 74 

9 2 8 - 1.12 76 

10 2 8 77 0.85 93 

11 3 12 82 0.66 93 

12 3 12 58 0.54 71 

13 3 12 73 0.59 73 

14 3 12 64 0.62 97 

15 3 12 72 0.81 72 

16 4 15 94 0.82 94 

17 4 15 97 0.79 97 

18 4 15 - 1.04 54 

19 4 15 94 0.76 94 

20 4 15 98 0.87 98 

 

Fig. 7 shows the changing curves of the objective 

function (28) for best cases for each colony (convergence 

curves) during the process of designing RB with optimal 

consequents formation for the FAD based on the proposed 

information technology. 

 

 

Figure 7. Changing curves of the objective function (28) 

best values during the design process of RB. 

As Table 2 and Fig. 7 show, at small value of the elite 

agents (e = 2) the optimal objective function value has not 

been reached even once in 100 iterations. At the same time, 

for large enough values of elite ants (e = 15), the optimal 

value of the objective function Jopt has been reached 4 times 

out of 5, but the search process looped in suboptimal 

solutions for large enough number of iterations and, 

therefore, more computational costs have been required, than 

with smaller numbers of elite agents (e = 12). Thus, the 

larger the number of elite ants e in the colony, the faster the 

FS objective function J decreases at the beginning of the 

optimization process. So, in general, at increasing the 

number of elite ants e, the convergence rate of the search 

process also significantly increases, but this number should 

not be too large to avoid frequent hits in local minima. Thus, 

analyzing the above results, it may be concluded that e = 12 

is the most suitable value of the elite ants for the colony in 

this specific case, as it allowed attaining the smallest 

objective function value (Jmin = 0.54) in the smallest value of 

iterations (NJmin = 71). Also, for this number of elite ants, the 

optimal value of the objective function Jopt is achieved in the 

smallest value of iterations (NJopt = 58). 

In turn, the optimal vector of consequents Ropt 

synthesized using the third colony with 12 elite ants (the best 

variant) has the form: 

 

Ropt = (VS, VS; VS, VS; S, S; S, S; LM, S; S, VS; S, S; 

LM, S; LM, S; LM, LM; S, S; LM, LM; LM, LM; M, M; M, 

M; LM, M; M, M; M, M; M, MM; MM, MM; MM, MM; B, 

B; B, B; B, VB; VB, VB). 

 

Moreover the obtained rule base of FAD with the given 

consequents vector Ropt is presented in Table 3. 

Table 3. RB synthesized by means of the 3rd colony  

Rule 

number 

Input and output variables 

VS, kn φS,º kP  kD 

1 VL VS VS VS 

2 VL S VS VS 

3 VL M S S 

4 VL B S S 

5 VL VB LM S 

6 L VS S VS 

7 L S S S 

8 L M LM S 

9 L B LM S 

10 L VB LM LM 

11 M VS S S 

12 M S LM LM 

13 M M LM LM 

14 M B M M 

15 M VB M M 

16 H VS LM M 

17 H S M M 

18 H M M M 

19 H B M MM 

20 H VB MM MM 

21 VH VS MM MM 

22 VH S B B 

23 VH M B B 

24 VH B B VB 

25 VH VB VB VB 

 

To evaluate the efficiency of the rudder angle adaptive 

control system, as well as the proposed ACO-based 

information technology for synthesizing the rule base of its 

FAD, the rudder shift transients have been simulated at 

different modes. In particular, Fig. 8 and 9, respectively, 

show the rudder shift transients from 0º to 35º for two 

different cases.  
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Figure 8. Rudder shift transients for conventional control 

system.  

 

Figure 9. Rudder shift transients for adaptive control system 

with FAD.  

In turn, in the first case (Fig. 8) the control system with 

conventional proportional-differential control law is applied 

(the coefficients kP and kD are optimally tuned for the rudder 

angle set value φS = 35º and the ship’s speed VS = 2 kn.). 

In the second case (Fig. 9) the developed adaptive control 

system with FAD (Fig. 5) is used, whose rule base is 

designed by means of the proposed ACO-based information 

technology. For both cases (Fig. 8 and 9), the simulation 

results are obtained for three different values of the ship's 

speed: 1) VS = 2 kn; 2) VS = 10 kn; 3) VS = 20 kn. 

Fig. 8 shows that the conventional control system cannot 

provide high enough quality indicators of control at the 

values of the ship's speed VS = 10 kn and VS = 20 kn. Namely, 

the rudder shift time from 0º to 35º is 14.9 seconds at VS = 10 

kn and more than 20 seconds at VS = 20 kn that does not meet 

the requirements of the Maritime Register. In turn, the results 

presented in Fig. 9 show that developed adaptive control 

system with FAD allows achieving high enough quality 

indicators of rudder angle control. In particular, the rudder 

shift time is less than 14 seconds for all values of the ship's 

speed VS at zero overshoot. Moreover, the transients graphs 

change insignificantly with a significant change in the ship's 

speed (from 2 kn to 20 kn), which indicates the high robust 

properties of the developed adaptive system with FAD. Also, 

to find the optimal consequents vector Ropt of the rule base 

for the given fuzzy adaptive device using the proposed ACO-

based information technology, minor computational costs 

were required that confirms its high efficiency. 

In turn, if there is a need for additional improvement of 

the control quality indicators of the given rudder adaptive 

control system, after designing of the FAD rule base with the 

optimal consequents vector Ropt using the proposed 

information technology, it is possible to perform further 

parametric optimization of its linguistic terms by means of 

specific optimization techniques [36, 42]. 

V. CONCLUSIONS 

The development and research of the universal information 

technology for designing RBs with the formation of optimal 

consequents for different types of FSs based on ant colony 

optimization techniques is presented in this work. The 

proposed ACO-based information technology allows 

effectively synthesizing rule bases of various dimensions 

both for the MISO and MIMO fuzzy systems taking into 

account the particular features of the RB consequents 

formation in the conditions of insufficient initial 

information. It uses the "Rule-Node" concept for 

constructing the rule base graph in the optimization 

propocess, that gives the opportunity to spend insignificant 

computational and time costs when developing fairly 

complex RBs. 

To evaluate the effectiveness of the presented ACO-

based information technology the design of the rule base for 

the fuzzy adaptive device of the control system for the ship 

steering machine is carried out in this work. Herewith, to 

study the peculiarities of this information technology the 

design of the FAD rule base with the optimal consequents 

vector Ropt is conducted at different number of elite ants e in 

the colony. The analysis of the experiment results showes 

that e = 12 is the most suitable value of the elite ants in the 

colony for this specific case, as it allows finding the best 

solution (Jmin = 0.54) at the lowest computational costs (NJmin 

= 71). In turn, the computer simulations results of the rudder 

shift transients show that adaptive control system with 

developed FAD provides achievement of enough high 

quality indicators of rudder angle control (rudder shift time 

is less than 14 seconds at zero overshoot) at significant 

change in the ship’s speed (from 2 kn to 20 kn). Thus, the 

application of the proposed ACO-based information 

technology, in this case, allows designing effective RB with 

optimal consequents vector Ropt by means of minor 

computational and time costs that, in turn, confirms its high 

efficiency. 

Further research should be related towards the 

application of the proposed ACO-based information 

technology for designing hierarchical fuzzy systems of 

various configurations. 
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