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 ABSTRACT Pseudo-random number generator is an important mechanism for cryptographic information 

protection. It can be used independently to generate special data or as the most important element of security of other 

mechanisms for cryptographic information protection. The application of transformations in a group of points of 

elliptic and hypereliptic curves is an important direction for the designing of cryptographically stable pseudo-random 

sequences generators. This approach allows us to build  the resistant cryptographic algorithms in which the problem 

of finding a private key is associated with solving the discrete logarithm problem. This paper proposes a method for 

generating pseudo-random sequences of the maximum period using transformations on the elliptic curves. The 

maximum sequence period is provided by the use of recurrent transformations with the sequential formation of the 

elements of the point group of the elliptic curve. In this case, the problem of finding a private key is reduced to 

solving a theoretically complex discrete logarithm problem. The article also describes the block diagram of the device 

for generating pseudo-random sequences and the scheme for generating internal states of the generator. 

 

 KEYWORDS elliptic curve; discrete logarithm problem; pseudo-random sequence generator; maximum period of 

sequences; cryptographic strength.  

 

 
I. INTRODUCTION 

ANDOM and pseudo-random number generators are  

important and extremely powerful cryptographic 

primitives [1–3]. They are used independently (as a source of 

primary entropy, key generators, initialization vectors and 

other special data) or as part of the other mechanisms of 

cryptographic protection (encryption, cryptographic hashing, 

zero-knowledge proof protocols, etc.) [1]. Thus, the analysis of 

known generation techniques, the study of statistical and other 

properties of the generated sequences is an important task of 

modern cryptology.  

The analysis and comparative studies have shown that the 

most effective [1,4], in terms of indistinguishability of 

generated sequences with the implementation of a random 

process, are methods of generating pseudo-random numbers 

based on the use of modular transformations [5–7] or 

transformations in a group of elliptic curve points [1, 4–9]. The 

most promising are considered to be pseudo-random sequence 

generators [10–13], which are constructed using 

transformations in a group of points of an elliptic curve [13–

15].  

At the same time, as studies have shown in [16, 17], the 

main disadvantage of such methods is that they do not allow 

the formation of pseudo-random sequences of the maximum 

period. For example, when using the well-known Dual Elliptic 

Curve Deterministic Random Bit Generator with NIST Special 

Publication 800-90A [18] (in the updated version of the 

standard this algorithm was excluded [19]), the actual length of 

the sequence period is much shorter than expected [16]. As the 

lengths of the parameters increase, this tendency intensifies 

[16]. Indeed, the application of the operation of scalar 

multiplication of points of an elliptic curve and the display of 

the coordinates of the obtained point for the formation of 

pseudo-random numbers does not provide the maximum 

period of the formed sequences. The task of this paper is to 

develop a method for generating pseudo-random numbers 

sequences, due to the additional introduction of recurrent 

transformation in combination with transformations in group 

of points of an elliptic curve it allows generating pseudo-

random sequences of the maximum period. 

The work is structured as follows. In Section 2, we present 

the structure and basic transformations of the well-known Dual 

R 
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Elliptic Curve Deterministic Random Bit Generator. We show 

that the sequence of internal states of the generator depends on 

the basic operations of scalar multiplication in the group of 

elliptic curve points. In fact, there is a looping of internal 

states, due to which the periods of the sequences formed by the 

generator are very small. This is the main drawback that we 

got rid of when developing a new generator.  A description of 

its structure and basic transformations is given in Section 3. 

Finally, Section 4 is devoted to experimental research. In 

particular, we consider a simple example with an elliptical 

curve and the corresponding Dual Elliptic Curve Deterministic 

Random Bit Generator. We show that the periods of the 

sequences formed by the generator are critically small. For the 

same parameters, we investigate the new generator proposed 

by us and show that the periods of all formed sequences are 

maximal. In the final part of the work, we summarize and note 

the benefits gained. 

II. DUAL ELLIPTIC CURVE DETERMINISTIC RANDOM BIT 

GENERATOR 

In 2012, the US National Institute of Standards and 

Technology (NIST) approved the NIST Special Publication 

800-90A [19]. This document defines different approaches to 

generating pseudo-random bits. In particular, Section 10 

provides specifications for pseudo-random number generation 

algorithms using various cryptographic mechanisms: hashing, 

hash-based message authentication code (HMAC), symmetric 

block ciphers, and theoretical-numerical problems. The last 

class includes the Dual Elliptic Curve Deterministic Random 

Bit Generator, which is given in Section 10.3.1. And although 

this generator was excluded from the updated version of the 

standard [20] (due to certain safety deficiencies), its study and 

research of ways to improve is undoubtedly relevant.  

Dual Elliptic Curve Deterministic Random Bit Generator is 

based on the application of two scalar multiplications of the 

points of the elliptic curve and the mapping of the 

corresponding x-coordinates of the results to a non-zero integer 

value [18]. The block diagram of the generator is shown in 

Fig. 1. 

The first scalar multiplication by a fixed (base) point P  is 

performed to generate an intermediate state is , which is 

cyclically updated at each iteration during the operation of the 

corresponding generator. Thus, the value of the state is  

depends on the value of the previous state i-1s  (on the 

previous iteration) and on the value of the base point P : 

 

1i is ( x( s P )) −= ,                                (1) 

 

where x(A)  is a x-coordinate of the point A , ( x )  is a 

function of mapping field elements to non-zero integers. 
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Figure 1. Block diagram Dual Elliptic Curve Deterministic 

Random Bit Generator.  

The initial value of the parameter 0s  is formed using the 

initialization procedure, which includes entering a private key 

(Key), which specifies the initial entropy, and hashing the 

entered key with the formatting of the result to a certain bit 

length. The value Seed  obtained in this way defines the 

initial value of the parameter: 0s Seed= . The second scalar 

multiplication by a fixed (base) point Q  is performed to 

generate an intermediate state ir , which after the appropriate 

transformation sets the value of the generated pseudo-random 

bits. The value of the parameter ir  depends on the parameter 

generated as a result of the first scalar multiplication is  and on 

the value of the base point Q : 

 

i ir ( x( s Q ))= .                            (2) 

 

The obtained value ir is the source for the formation of 

pseudo-random bits, which are generated by reading a block of 

the least significant (right) bits of the number ir . The pseudo-
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random sequence is generated by concatenation of the read bits 

of the formed numbers ir . The values of fixed (base) points 

are set as constants and do not change during the formation of 

the pseudo-random sequence. 

Thus, the considered method of generation of pseudo-

random sequences applies the transformation in the group of 

points of the elliptic curve to the generation of the intermediate 

states is and ir . Moreover, the reverse action, i.e., the 

generation of i-1s by the known is , and / or the generation of 

is  by the known ir  is associated with the solution to a 

theoretically complex elliptic curve discrete logarithm 

problem. The scheme of generation of the intermediate states 

of the generator is given in Fig. 2. 

s0 s1

r1

s2

r2

s3

r3

...

Figure 2. Scheme of generation of the intermediate states of 

the generator. 

According to Fig. 2 the sequence of states … i-1s , is , …

i 1s + … is generated from the initial value 0s Seed= , which is 

formed from the private key data. Each subsequent value is  

depends on the previous value i-1s and is formed by scalar 

multiplication of the base point of the elliptic curve by formula 

(1). Individual bits of the pseudo-random sequence are formed 

by reading the bits of the sequence of numbers … i-1r , ir , i 1r+

,…, i.e., by reading the data obtained by scalar multiplication 

of another base point by the corresponding values of the states 

… i-1s , is , … i 1s + … by formula (2). 

Since the private key (Key), which sets the rule of 

sequence generation, after certain transformations determines 

the initial value of the parameter 0s , the corresponding stability 

of the generator is based on reducing the problem of 

recovering private key data to solve a well-known and 

extremely complex mathematical elliptic curve discrete 

logarithm problem. In addition, individual fragments of a 

pseudo-random sequence are also interconnected by scalar 

multiplication of an elliptic curve point, i.e., in order to 

reconstruct any fragment of a pseudo-random sequence by 

some other known fragment, it is necessary to solve elliptic 

curve discrete logarithm problem. If for the considered 

generator with the known fragment of a pseudo-random 

sequence it is possible to recover another, any unknown 

fragment, or it is possible to recover value of a secret key (or at 

least values of elements of sequence … i-1s , is , … i 1s + …)  it 

means that it is possible to solve discrete logarithm in a group 

of elliptic curve points, i.e., an inverted function (1) or (2). 

The study of the periodic properties of the Dual Elliptic 

Curve Deterministic Random Bit Generator was performed in 

[16]. In particular, this paper shows that the actual length of 

the periods of the formed sequences is much shorter than the 

maximum period. The problem is the early looping of the 

sequence of states. In Fig. 3 the periodicity of the sequence of 

states is schematically shown. 

 

0s , 1s , …, i-1s , is , … i 1s + , …, L-1s , 0s , 1s , … , 

 

and the resulting periodicity of the sequence 

 

0r , 1r , …, i-1r , ir , … i 1r+ , …, L-1r , 0r , 1r , …, 

 

where 0r  is a value that can be obtained by expression (2) 

when substituting as an argument to the function of scalar 

multiplication of points of a number 0s Seed= . 

The states sequence is  formed by scalar multiplication of 

the base point in formula (1) is a periodic sequence (non-

periodicity in this case will mean the infinity of the set of 

states and the corresponding infinity of the set of points of the 

elliptic curve, which contradicts the finiteness of the group). In 

other words, in the set of possible scalars, to which the base 

point P is multiplied in formula (1), there will be such a value 

l L-1k s ==  that 0L-1s s= and all subsequent values of states 

l js + , 1 2j , , ...=  will begin to repeat with the corresponding 

values js . The problem is that such looping starts too early. In 

[16] an example was given when the real period is an order of 

magnitude less than expected and, according to our estimates, 

this tendency also intensifies with increasing key lengths. Free 

from this disadvantage is the proposed new generator on 

elliptical curves. 

III. NEW PSEUDO-RANDOM SEQUENCE GENERATOR ON 

ELLIPTIC CURVES 

The generation of sequences of the maximum period is solved 

by the additional introduction of recurrent transformations. 

The block diagram of the new generator is shown in Fig. 4. 

The basis of our proposal is the above Dual Elliptic Curve 

Deterministic Random Bit Generator (from the previous 

version of the standard NIST SP 800-90). The newly 

introduced elements are highlighted in Fig. 4. 
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Figure 3. Scheme of formation of periodic sequences of the states of the generator 
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Figure 4. Block diagram of the new generator. 

 

The first scalar multiplication to a fixed (base) point, P  as 

in the Dual Elliptic Curve Deterministic Random Bit 
Generator, is performed to generate an intermediate state is , 
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which is cyclically updated at each iteration during the 

operation of the corresponding generator. But the fundamental 

difference is the process of generating this intermediate state.  

To ensure the maximum period of the sequences  

 

… i-1s , is , … i 1s + … 

 

in our method it is proposed to use a recurrent transformation, 

which is initiated by the entered secret key (Key). 

Thus, each subsequent value of the state depends not only 

on the value of the previous state i-1s  (on the previous 

iteration) and on the value of the base point P , but also on the 

result of the recurrent transformation (denote it by LRR( y ) ), 

i.e., 

 

1i is ( x(( s   LRR( y ))P )) −= + , 

 

where x(A)   is the x-coordinate of the point A , ( x )  is a 

function of mapping field elements to non-zero integers. 

The recurrent transformation can be constructed in 

different known ways, in particular, through the simplest 

variant using a chain of linear recurrent registers (LRR) with 

feedback (see Fig. 5) [20, 21], the taps of which are given by 

the polynomial coefficients 

 
2

0 1 2

m

mg( x ) g g x g x ... b x= + + + + . 

 

...

Feedback function

0x

ix
 

а) 

Feedback function

...

0x

ix  
b) 

Figure 5. Structural linear registers in Fibonacci configuration 

(a) and in Galois configuration (b) 

If the polynomial g( x ) is primitive over a finite field 

2mGF( ) , then the sequence formed by the LRR with the 

corresponding feedback logic has a maximum period equal to 

2 1m − . The value of the private key (Key), which initiates the 

work LRR( y ) , is written in the LRR as the initial value of 

the register. 

Fig. 5 shows the general scheme of construction of such 

devices in the Fibonacci configuration (Fig. 5.a) and in the 

Galois configuration (Fig. 5.b) [20, 21]. 

The initial value of the parameter 0s , as in Dual Elliptic 

Curve Deterministic Random Bit Generator, is formed using 

the initialization procedure, which includes entering a private 

key (Key), which sets the initial entropy (uncertainty), and 

hashing the entered key with formatting the result to a certain 

bit length. The value obtained in this way sows (initiates) the 

initial value of the parameter: 0s Seed= . 

The second scalar multiplication by a fixed (base) point Q  

is performed to form an intermediate state ir , which after the 

appropriate transformation sets the value of the generated 

pseudo-random bits.  

Since each subsequent state value is depends on the result 

of the recurrent transformation LRR( y ) , which provides the 

maximum period of the generated sequences, then the value of 

the parameter ir  depends on the parameter is  and the value of 

the base point Q : 

 

i ir ( x( s Q ))=  

 

will depend on the result of the recurrent transformation

LRR( y ) , i.e., the generated sequence of states … i-1r , ir , 

i 1r+ ,…  will have a maximum period. 

The obtained value ir is a source for generation of pseudo-

random bits, which are formed by reading the block from the 

least significant (right) bits of the number ir . The pseudo-

random sequence is generated by concatenation of the bits of 

the formed numbers ir . The values of fixed (base) points are 

set as constants and they do not change during the formation of 

the pseudo-random sequence.  

Thus, the periodic properties of the states of the proposed 

generator are determined by the periodic properties of the 

additionally introduced recurrent transformation LRR( y ) . 

Let us denote the original sequence of transformation 

LRR( y ) by  … i-1y , iy , … i 1y + … and schematically show 

the influence of the periodicity of this sequence on the 

periodicity of the sequences … i-1s , is , … i 1s + … and … i-1r , 

ir , i 1r+ ,…. We use the scheme shown in Fig. 6.
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Figure 6. Scheme of generation of the sequences of the generator states with the maximum period 

 

 Because the periodic properties of the sequences … i-1s , 

is , … i 1s + … and … i-1r , ir , i 1r+ ,… directly depend on the 

properties of the sequence … i-1y , iy , … i 1y + …, the use of 

recurrent transformation LRR( y ) with the maximum period 

of the original sequences provides the maximum period of the 

original sequence. 

Generation of pseudo-random sequences using linear 

recurrent registers (denoted by LRR) can be represented as 

follows. 

Private key: Key; 

Constants: P, Q are points of the EC with order n; Initial 

state:   

 

0 0  x  = Key, y  = Key ; 

 

 Cycle function:  

 

(f(x  LRR(y)))  ((x  LRR(y))P) + = + , 

 

1 2 m i j i-j i

j

LRR(y {u , u , , u }): u   - a u   u=  = + , 

where 1 2 m{u , u , , u }  is a LRR state, 1 2 m{a , a , , a }  

are the coefficients that define the LRR feedback function; 

i( P' ) is a  conversion of point coordinates i nP' EC  (for 

example, reading the value of one of the point iP'  

coordinates). Generated pseudo-random sequence: 

0 1 i(b , b , , b , )  , 

where ib  is the least significant bit (parity bit) of the number 

iz , 

 

i i-1 i-1

i-1 i-1

z (f'( ((x LRR(y ))P)))

( ((x LRR(y ))P)Q),

 

 

= + =

= +
i i - 1y   LRR(y )= . 

 

Thus, due to the additional introduction of recurrent 

transformations, which are implemented, for example, by 

LRR, it is possible to generate pseudo-random sequences of 

the maximum period. 

IV. EXPERIMENTAL STUDY OF PERIODIC PROPERTIES 

To confirm the conclusions about the periodic properties of 

pseudo-random sequence generators, we conduct the following 

experimental studies. 

A. DUAL ELLIPTIC CURVE DETERMINISTIC RANDOM BIT 

GENERATOR 

According to the specification of the generator, which is given 

in the standard NIST SP 800-90 [19], it is recommended to use 

an elliptic curve defined over a finite prime field ( )GF p , i.e., 

a set of pairs of numbers ( )x, y , ( )x, y GF p that satisfy 

the identities:  

 
2 3y x ax b (mod p ) + + , 

 

where ( )a,b GF p  and the condition is met 

 
3 24 27 0a b (mod p )+  . 

 

According to the NIST SP 800-90 [19] specification, it is 

recommended to use 3a = −  both parameters b , p and 

values of coordinates of points P and Q from the 

corresponding field ( )GF p , the bit size of the base of which 

is 256, 384 or 521 bits. To simplify, consider the case of using 

an elliptic curve over ( )7GF , which is given by the equation  

 
2 3 3 4 7y x x (mod ) − + , 

and the condition is fulfilled 

 
3 24 27 2 7 0 7a b (mod ) (mod )+ =  . 
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Substituting into the equation of the curve all possible pairs 

of numbers ( )x, y , ( )7x, y GF  we choose those that 

satisfy identities. We obtain a set of solutions to the equation – 

a set of nonzero points of the curve (Table 1). Thus, the order 

of the elliptic curve E (the number of all points of the curve, 

together with the zero point O) is equal to m = 10. It should be 

noted that the points listed in Table 1 have the following 

properties: point P1 (0,2) is a negation of point P2 (0,5), and 

vice versa. Similarly, points P3 (1,3) and P4 (1,4), P5 (3,1) and 

P6 (3,6), P8 (5,3) and P9 (5,4) are negations of each other. Thus, 

we have:  

P1(0,2) = – P2(0, – 5), 

P3(1,3) = – P4(1, – 4), 

P5(3,1) = – P6(3, – 6), 

P8(5,3) = – P9(5, –4). 
 

Point P7 (4,0) is a self-negation, i.e., P7 (4,0) = – P7 (4,0). 

In accordance with the above provisions we have: 

1 20 2 0 5( x( P( , ))) ( x( P ( , ))) = ; 

3 41 3 1 4( x( P( , ))) ( x( P ( , ))) = ; 

5 63 1 3 6( x( P ( , ))) ( x( P ( , ))) = ; 

8 95 3 5 4( x( P( , ))) ( x( P ( , ))) = . 

 

We will use formulas for implementation of operations of 

addition and doubling of points, we will construct the 

corresponding Cayley table for all elements of group ECH  (see 

Table 2).  

Find all cyclic subgroups generated by the elements of the 

group and calculate the order of these elements (each point of 

the elliptic curve) and the corresponding cycles. To do this, 

take in turn each of the non-zero elements of the group, and 

begin to perform a group operation on this element with itself, 

that is, we begin to perform the addition of each point iP  with 

itself any number of times.  

The set of formed elements  

iP , 2 iP , 3 iP , …, i ik P O=  

is a subgroup (loop) in the group of points ECH generated by 

the element iP , the number ik  is the order of the element iP , 

and the corresponding subgroup. The results are summarized 

in Table 3.  

In Table 3 it is seen that the group of elliptic curve points 

ECH of order 10m =  contains three cycles of order 10, 

which are generated by points 1P , 5P  and 6P , accordingly. 

These cyclic subgroups are equal to the group ECH . 

But the group ECH  also contains four cycles of order 5, 

which are generated by points 3P , 4P , 8P  and 9P accordingly, 

and two cycles of order 2, which are generated by points 2P  

and 7P , respectively. Obviously, the condition of dividing the 

whole order of the group ECH into the orders of its cyclic 

subgroups is also fulfilled. 

Let us analyze the operation of a pseudo-random sequence 

generator that uses transformations in the considered group 

ECH . Assume that points of maximum order are used as basis 

points P and Q , for example, points 5P P= and 6Q P= . 

Construct a sequence of internal states (1) and (2) and estimate 

the periodicity of these sequences. For simplicity, we assume 

that the function ( x )  of mapping field elements x  to 

nonzero integers is given as. 1( x ) x = + . 

This assumption does not impose certain restrictions on the 

number of possible different display results, because by 

definition we have a functional relationship of the argument 

(field elements) and the value of the function ( x )  (some 

integer), i.e., the map is bijective and can be represented as a 

regular permutation of field elements.  

Adding a unit eliminates the formation of a zero value, the 

occurrence of which translates the operation of the generator 

into a degenerate state (a deterministic sequence of only zero 

values is formed). 

The obtained results of the generator (values of internal 

states) for all possible initial values 0s Seed= are given in 

Table 4.  

The values of the states are given before the first iteration, 

because the remaining values are a cycle of the values given in 

the table. The last column shows the period of the generated 

state sequences, i.e., the smallest number of sequence elements 

through which the repetition begins.  

As it can be seen in Table 4 data periodic properties of the 

pseudo-random sequence generator are unsatisfactory. Indeed, 

the resulting sequences have very small values of periods, in 

most sequences the period is equal to 2L = , one of the 

sequences has a period 1L = , i.e., at the output of the 

generator the same value is formed.  

Even for such a simple example, the shortcomings of the 

considered generator are obviously revealed. It is 

unsatisfactory periodic properties.  

Thus, in the course of research the necessity of improving 

the methods of pseudo-random sequences generation for keys 

formation at maintenance of safety of telecommunication 

systems and technologies is proved. 

 

Table 1. The set of the elliptic curve points 

i 1 2 3 4 5 6 7 8 9 

(xi, yi) P1(0,2) P2(0,5) P3(1,3) P4(1,4) P5(3,1) P6(3,6) P7(4,0) P8(5,3) P9(5,4) 
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Table 2. Cayley table for the operation of adding elements in a group of the elliptic curve points 

+ O P1 P2 P3 P4 P5 P6 P7 P8 P9 

O O P1 P2 P3 P4 P5 P6 P7 P8 P9 

P1 P1 P4 O P2 P6 P3 P8 P9 P7 P5 

P2 P2 O P3 P5 P1 P9 P4 P8 P6 P7 

P3 P3 P2 P5 P9 O P7 P1 P6 P4 P8 

P4 P4 P6 P1 O P8 P2 P7 P5 P9 P3 

P5 P5 P3 P9 P7 P2 P8 O P4 P1 P6 

P6 P6 P8 P4 P1 P7 O P9 P3 P5 P2 

P7 P7 P9 P8 P6 P5 P4 P3 O P2 P1 

P8 P8 P7 P6 P4 P9 P1 P5 P2 P3 O 

P9 P9 P5 P7 P8 P3 P6 P2 P1 O P4 

Table 3. Cyclic subgroups of a group of  elliptic curve points and the corresponding orders of the curve points  

k 1 2 3 4 5 6 7 8 9 10 Orders of points 

kP1 P1 P4 P6 P8 P7 P9 P5 P3 P2 O 10 

kP2 P2 O         2 

kP3 P3 P9 P8 P4 O      5 

kP4 P4 P8 P9 P3 O      5 

kP5 P5 P8 P1 P3 P7 P4 P2 P9 P6 O 10 

kP6 P6 P9 P2 P4 P7 P3 P1 P8 P5 O 10 

kP7 P7 O         2 

kP8 P8 P3 P4 P9 O      5 

kP9 P9 P4 P3 P8 O      5 

Table 4. Internal states of the generator on the elliptic curves 

0s \ i  i  1 2 3 4 5  L 

0s 1=  
si

 4 2 6 2   2 

ri
 2 6 2 6   2 

0s 2=  
si

 6 2 6    2 

ri
 2 6 2    2 

0s 3=  
si

 1 4 2 6 2  2 

ri
 4 2 6 2 6  2 

0s 4=  
si

 2 6 2    2 

ri
 6 2 6    2 

0s 5=  
si

 5 5     1 

ri
 5 5     1 

0s 6=  
si

 2 6 2    2 

ri
 6 2 6    2 

0s 7=  
si

 1 4 2 6 2  2 

ri
 4 2 6 2 6  2 

0s 8=  
si

 6 2 6    2 

ri
 2 6 2    2 

0s 9=  
si

 4 2 6 2   2 

ri
 2 6 2 6   2 

B. NEW PSEUDO-RANDOM SEQUENCE GENERATOR ON 

ELLIPTIC CURVES 

When setting up the experiment, we use the same initial data 

as in Section 4.1. The main element of the new generator, 

which distinguishes it from the prototype, is the introduced 

recurrent transformation (see Fig. 4). It is used to generate a 

sequence of internal states iy . Also in the scheme in Fig. 4, the 

operation of addition is introduced.  

The sequence of internal states iy  has a maximum period; 

it is generated by a recurrence rule, for example, using a linear 

recurrence register with feedback. This should provide the 

maximum period of the initial sequences, i.e., the maximum 

period of states ir . This position will be checked during 

experimental research.  
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We set the rule for the formation of a recurrent 

transformation in the form of a linear register in Galois 

configuration (see Fig. 5.b). The feedback function, which 

defines the taps of the shift register, is given by the coefficients 

of the primitive polynomial
4 1g( x ) x x= + + .  Such a 

polynomial generates a sequence of the maximum period, i.e., 

the states of the register give a cycle of length 15: 
 

{1, 2, 4. 8, 3, 6, 12, 11, 5, 10, 7, 14, 15, 13, 9}.  
 

The initiation vector 0y  determines the initial value entered 

in the shift register.  

According to the block diagram of the new generator (Fig. 

4), the other transformations are not changed, i.e., when 

conducting experimental calculations we use the same basic 

points of maximum order, i.e., 
 

5P P=  and 6Q P= . 

 

The obtained results of the generator (values of internal 

states) for all possible initial values 0s Seed= are given in 

Table 5 – 13.  

Table 5. Initial values: s0 = 1, P = P5, Q = P6 

i 
The value of internal states 

si yi si+yi (si+yi)P siQ ri 

0 1 1 2 P(5,3) P(3,6) 4 

1 6 2 8 P(5,4) P(1,3) 2 

2 6 4 10 P(0,0) P(1,3) 2 

3 1 8 9 P(3,6) P(3,6) 4 

4 4 3 7 P(0,5) P(1,4) 2 

5 1 6 7 P(0,5) P(3,6) 4 

6 1 12 13 P(0,2) P(3,6) 4 

7 1 11 12 P(5,3) P(3,6) 4 

8 6 5 11 P(3,1) P(1,3) 2 

9 4 10 14 P(1,3) P(1,4) 2 

10 2 7 9 P(3,6) P(5,4) 6 

11 4 14 18 P(5,4) P(1,4) 2 

12 6 15 21 P(3,1) P(1,3) 2 

13 4 13 17 P(0,5) P(1,4) 2 

14 1 9 10 P(0,0) P(3,6) 4 

15 1 1 2 P(5,3) P(3,6) 4 

The sequence period is equal to L = 15 

Table 6. Initial values: s0 = 2, P = P5, Q = P6 

i 
The value of internal states 

si yi si+yi (si+yi)P siQ ri 

0 2 2 4 P(1,3) P(5,4) 6 

1 2 4 6 P(1,4) P(5,4) 6 

2 2 8 10 P(0,0) P(5,4) 6 

3 1 3 4 P(1,3) P(3,6) 4 

4 2 6 8 P(5,4) P(5,4) 6 

5 6 12 18 P(5,4) P(1,3) 2 

6 6 11 17 P(0,5) P(1,3) 2 

7 1 5 6 P(1,4) P(3,6) 4 

8 2 10 12 P(5,3) P(5,4) 6 

9 6 7 13 P(0,2) P(1,3) 2 

10 1 14 15 P(4,0) P(3,6) 4 

11 5 15 20 P(0,0) P(4,0) 5 

12 1 13 14 P(1,3) P(3,6) 4 

13 2 9 11 P(3,1) P(5,4) 6 

14 4 1 5 P(4,0) P(1,4) 2 

15 5 2 7 P(0,5) P(4,0) 5 

16 1 4 5 P(4,0) P(3,6) 4 

17 5 8 13 P(0,2) P(4,0) 5 

18 1 3 4 P(1,3) P(3,6) 4 

The sequence period is equal to L = 15 

Table 7. Initial values: s0 = 3, P = P5, Q = P6 

i 
The value of internal states 

si yi si+yi (si+yi)P siQ ri 

0 3 3 6 P(1,4) P(0,5) 1 

1 2 6 8 P(5,4) P(5,4) 6 

2 6 12 18 P(5,4) P(1,3) 2 

3 6 11 17 P(0,5) P(1,3) 2 

4 1 5 6 P(1,4) P(3,6) 4 

5 2 10 12 P(5,3) P(5,4) 6 

6 6 7 13 P(0,2) P(1,3) 2 

7 1 14 15 P(4,0) P(3,6) 4 

8 5 15 20 P(0,0) P(4,0) 5 

9 1 13 14 P(1,3) P(3,6) 4 

10 2 9 11 P(3,1) P(5,4) 6 

11 4 1 5 P(4,0) P(1,4) 2 

12 5 2 7 P(0,5) P(4,0) 5 

13 1 4 5 P(4,0) P(3,6) 4 

14 5 8 13 P(0,2) P(4,0) 5 

15 1 3 4 P(1,3) P(3,6) 4 

16 2 6 8 P(5,4) P(5,4) 6 

The sequence period is equal to L = 15 

Table 8. Initial values: s0 = 4, P = P5, Q = P6 

i 
The value of internal states 

si yi si+yi (si+yi)P siQ ri 

0 4 4 8 P(5,4) P(1,4) 2 

1 6 8 14 P(1,3) P(1,3) 2 

2 2 3 5 P(4,0) P(5,4) 6 

3 5 6 11 P(3,1) P(4,0) 5 

4 4 12 16 P(1,4) P(1,4) 2 

5 2 11 13 P(0,2) P(5,4) 6 

6 1 5 6 P(1,4) P(3,6) 4 

7 2 10 12 P(5,3) P(5,4) 6 

8 6 7 13 P(0,2) P(1,3) 2 

9 1 14 15 P(4,0) P(3,6) 4 

10 5 15 20 P(0,0) P(4,0) 5 

11 1 13 14 P(1,3) P(3,6) 4 

12 2 9 11 P(3,1) P(5,4) 6 

13 4 1 5 P(4,0) P(1,4) 2 

14 5 2 7 P(0,5) P(4,0) 5 

15 1 4 5 P(4,0) P(3,6) 4 

16 5 8 13 P(0,2) P(4,0) 5 

17 1 3 4 P(1,3) P(3,6) 4 

18 2 6 8 P(5,4) P(5,4) 6 

19 6 12 18 P(5,4) P(1,3) 2 

20 6 11 17 P(0,5) P(1,3) 2 

21 1 5 6 P(1,4) P(3,6) 4 

The sequence period is equal to L = 15 

Table 9. Initial values: s0 = 5, P = P5, Q = P6 

i 
The value of internal states 

si yi si+yi (si+yi)P siQ ri 

0 5 5 10 P(0,0) P(4,0) 5 

1 1 10 11 P(3,1) P(3,6) 4 

2 4 7 11 P(3,1) P(1,4) 2 

3 4 14 18 P(5,4) P(1,4) 2 

4 6 15 21 P(3,1) P(1,3) 2 

5 4 13 17 P(0,5) P(1,4) 2 

6 1 9 10 P(0,0) P(3,6) 4 

7 1 1 2 P(5,3) P(3,6) 4 

8 6 2 8 P(5,4) P(1,3) 2 

9 6 4 10 P(0,0) P(1,3) 2 

10 1 8 9 P(3,6) P(3,6) 4 

11 4 3 7 P(0,5) P(1,4) 2 

12 1 6 7 P(0,5) P(3,6) 4 

13 1 12 13 P(0,2) P(3,6) 4 

14 1 11 12 P(5,3) P(3,6) 4 

15 6 5 11 P(3,1) P(1,3) 2 

16 4 10 14 P(1,3) P(1,4) 2 

17 2 7 9 P(3,6) P(5,4) 6 

18 4 14 18 P(5,4) P(1,4) 2 

The sequence period is equal to L = 15 
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Table 10 Initial values: s0 = 6, P = P5, Q = P6 

i 
The value of internal states 

si yi si+yi (si+yi)P siQ ri 

0 6 6 12 P(5,3) P(1,3) 2 

1 6 12 18 P(5,4) P(1,3) 2 

2 6 11 17 P(0,5) P(1,3) 2 

3 1 5 6 P(1,4) P(3,6) 4 

4 2 10 12 P(5,3) P(5,4) 6 

5 6 7 13 P(0,2) P(1,3) 2 

6 1 14 15 P(4,0) P(3,6) 4 

7 5 15 20 P(0,0) P(4,0) 5 

8 1 13 14 P(1,3) P(3,6) 4 

9 2 9 11 P(3,1) P(5,4) 6 

10 4 1 5 P(4,0) P(1,4) 2 

11 5 2 7 P(0,5) P(4,0) 5 

12 1 4 5 P(4,0) P(3,6) 4 

13 5 8 13 P(0,2) P(4,0) 5 

14 1 3 4 P(1,3) P(3,6) 4 

15 2 6 8 P(5,4) P(5,4) 6 

16 6 12 18 P(5,4) P(1,3) 2 

The sequence period is equal to L = 15 

Table 11. Initial values: s0 = 7, P = P5, Q = P6 

i 
The value of internal states 

si yi si+yi (si+yi)P siQ ri 

0 7 7 14 P(1,3) P(0,2) 1 

1 2 14 16 P(1,4) P(5,4) 6 

2 2 15 17 P(0,5) P(5,4) 6 

3 1 13 14 P(1,3) P(3,6) 4 

4 2 9 11 P(3,1) P(5,4) 6 

5 4 1 5 P(4,0) P(1,4) 2 

6 5 2 7 P(0,5) P(4,0) 5 

7 1 4 5 P(4,0) P(3,6) 4 

8 5 8 13 P(0,2) P(4,0) 5 

9 1 3 4 P(1,3) P(3,6) 4 

10 2 6 8 P(5,4) P(5,4) 6 

11 6 12 18 P(5,4) P(1,3) 2 

12 6 11 17 P(0,5) P(1,3) 2 

13 1 5 6 P(1,4) P(3,6) 4 

14 2 10 12 P(5,3) P(5,4) 6 

15 6 7 13 P(0,2) P(1,3) 2 

16 1 14 15 P(4,0) P(3,6) 4 

17 5 15 20 P(0,0) P(4,0) 5 

18 1 13 14 P(1,3) P(3,6) 4 

The sequence period is equal to L = 15 

Table 12. Initial values: s0 = 8, P = P5, Q = P6 

i 
The value of internal states 

si yi si+yi (si+yi)P siQ ri 

0 8 8 16 P(1,4) P(5,3) 6 

1 2 3 5 P(4,0) P(5,4) 6 

2 5 6 11 P(3,1) P(4,0) 5 

3 4 12 16 P(1,4) P(1,4) 2 

4 2 11 13 P(0,2) P(5,4) 6 

5 1 5 6 P(1,4) P(3,6) 4 

6 2 10 12 P(5,3) P(5,4) 6 

7 6 7 13 P(0,2) P(1,3) 2 

8 1 14 15 P(4,0) P(3,6) 4 

9 5 15 20 P(0,0) P(4,0) 5 

10 1 13 14 P(1,3) P(3,6) 4 

11 2 9 11 P(3,1) P(5,4) 6 

12 4 1 5 P(4,0) P(1,4) 2 

13 5 2 7 P(0,5) P(4,0) 5 

14 1 4 5 P(4,0) P(3,6) 4 

15 5 8 13 P(0,2) P(4,0) 5 

16 1 3 4 P(1,3) P(3,6) 4 

17 2 6 8 P(5,4) P(5,4) 6 

18 6 12 18 P(5,4) P(1,3) 2 

19 6 11 17 P(0,5) P(1,3) 2 

20 1 5 6 P(1,4) P(3,6) 4 

The sequence period is equal to L = 15 

Table 13. Initial values: s0 = 9, P = P5, Q = P6 

i 
The value of internal states 

si yi si+yi (si+yi)P siQ ri 

0 9 9 18 P(5,4) P(3,1) 4 

1 6 1 7 P(0,5) P(1,3) 2 

2 1 2 3 P(0,2) P(3,6) 4 

3 1 4 5 P(4,0) P(3,6) 4 

4 5 8 13 P(0,2) P(4,0) 5 

5 1 3 4 P(1,3) P(3,6) 4 

6 2 6 8 P(5,4) P(5,4) 6 

7 6 12 18 P(5,4) P(1,3) 2 

8 6 11 17 P(0,5) P(1,3) 2 

9 1 5 6 P(1,4) P(3,6) 4 

10 2 10 12 P(5,3) P(5,4) 6 

11 6 7 13 P(0,2) P(1,3) 2 

12 1 14 15 P(4,0) P(3,6) 4 

13 5 15 20 P(0,0) P(4,0) 5 

14 1 13 14 P(1,3) P(3,6) 4 

15 2 9 11 P(3,1) P(5,4) 6 

16 4 1 5 P(4,0) P(1,4) 2 

17 5 2 7 P(0,5) P(4,0) 5 

18 1 4 5 P(4,0) P(3,6) 4 

The sequence period is equal to L = 15 

 

The values of the states in Tables 5-13 are given for the 

first repetition, because the remaining values are a cycle of 

values given in the table. The last line shows the period of 

formed states sequences, i.e., the smallest number of elements 

of sequences, through which the duplicates begin.  

As can be seen from the above data, the periodic properties 

of the new generator are significantly improved compared to 

the prototype (see Table 4). Indeed, all the resulting sequences 

have the maximum order 15L = . This order is determined by 

the periodic properties of the additionally introduced 

sequences of internal states iy . In comparison with the 

prototype, an increase of almost an order of magnitude in the 

length of the generated source sequences is achieved.  

Thus, in the course of experimental research, the general 

theoretical conclusion is confirmed that the pseudo-random 

sequences formed by the new generator have improved 

periodic properties. Even for the given simple example there is 

a significant increase in the length of the period and with 

increasing length of the seed vector this improvement 

increases.  

V. CONCLUSIONS 

Using cryptographic transformations in a group of elliptic 

curves points, it is possible to design efficient generators of 

pseudo-random sequences. However, it is known that the 

deterministic random number generator of the double elliptic 

curve (which is described in the standard NIST SP 800-90) has 

a significant disadvantage. The cyclic function of the generator 

does not provide the maximum period of the generated 

sequence of internal states and the corresponding points of the 

elliptic curves. This is due to the existence of an early cycle. 

Because of this, the real period of pseudo-random sequences is 

much smaller than expected. 

This article describes a new method that allows you to 

generate sequences of generator states with the maximum 

period. It uses recurrent transformations (implemented, for 

example, using linear recurrent registers with feedback). The 

generated sequences of the elliptic curve points also have a 

maximum period. Thus, the proposed method eliminates the 
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disadvantages of the deterministic random bit generator of the 

double elliptic curve with respect to the periodic properties of 

the generated pseudo-random sequences. 
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