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 ABSTRACT During penetration testing of web applications, different tools are actively used to relieve the tester 

from repeating monotonous operations. The difficulty of the choice is in the fact that there are tools with similar 

functionality, and it is hard to define which tool is best to choose for a particular case. In this paper, a solution of 

the problem with making a choice by creating a Web service that will use a neural network on the server side is 

proposed. The neural network is trained on data obtained from experts in the field of penetration testing. A trained 

neural network will be able to select tools in accordance with specified requirements. Examples of the operation 

of a neural network trained on a small sample of data are shown. The effect of the number of neural network 

learning epochs on the results of work is shown. An example of input data is given, in which the neural network 

could not select the tool due to insufficient data for training. The advantages of the method shown are the simplicity 

of implementation (the number of lines of code is used as a metric) and the possibility of using opinions about 

tools from various experts. The disadvantages include the search for data for training, the need for experimental 

selection of the parameters of the neural network and the possibility of situations where the neural network will 

not be able to select tool that meets the specified requirements. 
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I. INTRODUCTION 

ENETRATION testing is one of the ways to find Web 

application security problems [1]. While conducting 

such testing, tools intended to automate monotonic processes 

are actively used [2]. The problem is that for testing certain 

classes of Web application security problems, tools with 

similar functionality are used, and it is not known which tool 

is better to choose for a particular case. Usually, this is a 

problem of inexperienced testers who do not know the 

features of similar tools. Experienced testers usually have 

sets of tools that contain the most suitable tools for 

themselves. As a rule, one can choose the most suitable tool 

only empirically, that is, it is necessary to apply various 

means in certain conditions, analyze the results and draw 

appropriate conclusions. 

Such comparative experiments are labor-intensive due to 

the large number of existing tools and a wide range of 

possible conditions of use. One of the methods of such 

comparison is the use of various tools on sites with 

previously known vulnerabilities [3]. The analysis of the 

several tools work results on such platform was given in [4]. 

It was found that the vulnerabilities of the Web application 

logic were not detected by any of the tools considered. This 

leads to the fact that the tools cannot do all the work for the 

tester and detect all the vulnerabilities. 

A solution to the problem of choosing tools using a neural 

network is proposed in this paper. This method will allow the 

use of expert opinions about the feasibility of using various 
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tools as training data. The use of neural network models for 

solving such problems is analyzed in [5, 6]. Conclusions that 

can be made are that various types of neural network 

architectures can be used to solve classification problems. 

The most suitable architectures can be determined 

experimentally. 

It is worth noting that artificial intelligence is already 

actively used in solving other problems related to the area of 

cybersecurity. In paper [7] a deep neural network based 

malware detection system was described. Authors of the 

paper [8] conducted an experiment to identify the unknown 

or zero-day malware, as a result of which malware was 

detected with high accuracy rate. Intrusion 

detection/prevention systems [9] may also use the neural 

network approach, as shown in [10]. 

Hence, there is a problem of choice of penetration tools 

for Web applications considering their features and 

requirements to cybersecurity. Besides, it should be taken 

into account that a set of tools is increased and tool 

characteristics are changed.  

The goal of the paper is to describe the process of creating 

a neural network based Web service for choosing tools of 

penetration testing of Web applications. This paper is based 

on [11], in which prerequisites for creating a Web service for 

choosing penetration tools were described. Also, it discusses 

issues related to the implementation of neural network logic 

on the Web server side.  

II. WEB SERVICE ARCHITECTURE 

Fig. 1 shows the architecture of a Web service for choosing 

penetration testing tools. Software stack Linux + Apache + MySQL 

+ PHP is used. Fast Artificial Neural Network (FANN) [12] is a 

library for creating neural networks. All technologies are free and 

often used to create Web applications. 

 

Figure 1. The structure of the neural network 

The main part of the site is available to all users. By 

marking the criteria for the search, users form a vector of 

input data that is transmitted to the server. The neural 

network searches for tools that match the specified criteria, 

then a list of tools that, according to the neural network, 

correspond to the search query, is displayed to the user. 

The control panel is a closed part of the site and is 

accessible only for the service administrator. The main 

functions of the control panel are as follows: 

– Tool management. In the system there is a list of tools 

compiled on the basis of expert's opinions. With this feature, 

new tools can be added and existing ones can be edited or 

deleted. 

– Criteria management. Each tool has a certain set of 

criteria. The total set of criteria is being edited by using this 

function. 

– Management of opinions. One opinion consists of a set 

of criteria values of a tool. Using this function, administrator 

adds to the system the opinions about the tools received from 

the experts. 

– Training neural network. After making changes to the 

list of opinions, the neural network should be retrained on 

actual data. 

This functionality is due to the fact that the number of 

tools is growing, existing tools are updated, getting new 

functionality. The administrator must be in constant 

interaction with experts to provide a Web service with up-to-

date information, adding it to the system as it becomes 

available. 

All information about the tools is stored in a database. 

When training a neural network, data are being selected from 

the database, transformed into training data and, thus, the 

neural network is trained. The trained neural network is 

stored in a file; this is due to the functionality of the FANN 

library. If the retraining of the neural network is too resource-

intensive, then it can be carried out in the hours of the least 

activity of the Web service so that the retraining does not 

affect the ability of the Web service to function. 

III. BASELINE DATA FOR BUILDING A NEURAL 

NETWORK 

The initial data for training the neural network, as already 

noted, are the opinions of experts in the field of testing 

security of Web applications about the tools that are used in 

penetration testing. These data are presented in the form of a 

table, where the rows are the criteria taken into account for 

tools selection process, and the columns are the tools 

themselves. An example of such data is shown in Table 1. 

The presented dataset is taken from [13], in which authors 

compared known scanners. Three scanners were numbered 

as T1, T2, and T3. 

Table 1. Criteria table example 

Criteria T1 T2 T3 

Server Side Java Script 
injection 

1 0 0 

Reflected Cross Site Scripting 1 1 1 

Persistent Cross Site 

Scripting 
1 1 1 

DOM Cross Site Scripting  1 1 1 

JSON Hijacking 0 1 0 

Server-Side Includes 

Injection 
0 1 1 

Format String Attack 0 1 1 

Code Injection 1 1 0 

XML Injection 0 1 0 
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Forceful Browsing / 

Authentication Bypass 
1 1 1 

Privilege Escalation 0 1 0 

Xml External Entity 1 1 0 

Weak Session Identifier 0 1 1 

Session Fixation 1 1 0 

Cross Site Request Forgery 1 1 1 

 

Traditionally, the structure of a neural network is defined, 

depending on the type of the problem being solved, and the 

set of training data can vary, which entails only a change in 

synaptic weights [14]. In this case, the structure of a neural 

network depends on a set of training data, since the number 

of input neurons is equal to the number of criteria, and the 

number of output neurons is equal to the number of tools that 

are available in the system. 

IV. THE SEQUENCE OF CREATING A NEURAL 

NETWORK 

Consider the process of creating a neural network using the 

training data from Table 1. It is proposed to use a structure 

with two hidden layers of neurons, which will allow 

identifying more complex dependencies than in the case of 

one hidden layer [15]. Such a decision may seem 

unreasonable, but it must be taken into account that in the 

practical application of the service, the number of tools can 

reach up to 100, the number of criteria is not known in 

advance. The possible number of tools in the system is 

justified by information about tools from the source [16], 

which currently contains a list of 43 tools that are often used 

to troubleshoot Web application security problems. The 

amount of training data presented in this work is not 

sufficient for the quality training of the neural network. It is 

impossible to determine how much data is needed to properly 

train a neural network; this is a separate topic for discussion 

and experimentation [17]. The data are shown to demonstrate 

the possibilities of using a neural network to solve the 

problem of choosing penetration testing tools.  

There are no restrictions on the number of neurons in 

hidden layers; there are rules that can be followed when 

creating a neural network structure. One of these rules is the 

“geometric pyramid” rule [18], according to which the 

number of neurons in hidden layers is determined as follows: 

 

= 3
n

r
m

, (1) 

 

= 2

1k mr , (2) 

 

=2k mr , (3) 

 

where n  – the number of input neurons, m  – the number of 

output neurons, 1k  – the number of neurons in first hidden 

layer, 2k  – the number of neurons in second hidden layer. 

By applying the formulas (1)-(3) to calculate the number 

of neurons in hidden layers, the parameters of the neural 

network are the following: 

– the number of input neurons n  – 15 (corresponds to 

the number of tools criteria); 

– the number of output neurons m – 3 (corresponds to 

the number of tools); 

– the number of hidden layers – 2; 

– the number of neurons in hidden layers 1k  and 2k  – 9 

and 6 accordingly.  

A graphical representation of the neural network 

structure is shown in Figure 2. In this case, the network is 

fully connected, i.e., sparseness coefficient is one.  

 

Figure 2. The structure of the neural network 

One of the characteristics of the neural network is the 

activation function [19]. In this case, the sigmoid activation 

function is used, since it is often used in solving 

classification problems and has an output value in the range 

from zero to one.  

V. TRAINING AND TESTING THE NEURAL NETWORK 

The neural network is trained using the error propagation 

reverse method. In this paper, the Resilient Propagation 

(Rprop) algorithm is used, which is adaptive and does not 

require the denotation of training speed [20]. When learning, 

the number of learning epochs or the acceptable error value 

and the maximum number of learning epochs can be 

indicated if the value of the acceptable error was not reached 

in the learning process. As a rule, these parameters can only 

be determined experimentally. 

The untrained network produces unstable results due to 

the initialization of synaptic weights with random values. If 

an increase in the number of epochs of learning does not lead 

to the required results, then, most likely, the reason of this is 

an insufficient amount of data for learning. 

Let us transform values from Table 1 into training 

examples of a neural network. The result of the conversion 

is shown in Table 2. At the moment, one tool is characterized 

by one set of input data, since in each output data there is 

only one “1” in the corresponding position. 
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Table 2. Data for training 

№ Input data Output data 

1 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1 1, 0, 0 

2 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 0, 1, 0 

3 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1 0, 0, 1 

 

The neural network is tested using three examples, shown 

in Table 3. 

Table 3. Test cases 

№ Input data Expected 

output data 

1 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1 1, 0, 0 

2 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1, 0, 0 

3 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1, 1, 1 

 

In the first example, the input data matches one of the 

training examples, so the neural network should only select 

the first tool. In the second example, the neural network 

should select only the first tool, since the criteria 

corresponding to the first position of the input vector, which 

is present only in the first tool. The third example illustrates 

the search by the criterion that is present in all three tools. 

To select the number of learning epochs, several training 

cycles and network testing will be conducted, increasing 

each time the number of learning epochs. The results 

obtained at 5000 epochs of learning are shown in Table 4. 

The higher the output value is, the higher the confidence of 

the neural network in the correct choice. As a rule, in 

practice, some limit value is used, for example, 0.8 or 0.9. If 

the output value is greater than the boundary value, then it is 

considered that the choice of a neural network can be trusted. 

For this particular case, the boundary value of 0.9 will be 

used. 

Table 4. The results of work with 5000 epochs of study 

Launch 

number 

Sample 

number 
Result 

1 

1 0.9938, 0.0000, 0.0055 

2 0.7782, 0.0001, 0.0873 

3 0.0519, 0.0054, 0.7701 

2 

1 0.9927, 0.0000, 0.0062 

2 0.7566, 0.0006, 0.0383 

3 0.0438, 0.0187, 0.5787 

3 

1 0.9922, 0.0062, 0.0000 

2 0.2827, 0.0179, 0.0254 

3 0.0046, 0.0475, 0.8524 

 

In the first example, in all three launches the neural 

network made the right choice of tool (the first tool was 

chosen). In the second example, the highest output values 

also corresponded to the first tool, however, these values 

were not close to 1. In the third run of the second example, 

the minimum output value of 0.2827 was found, which 

indicates an insufficient number of learning epochs. In all 

launches of the third example, there is a tendency to choose 

the third tool, but the output values are not close to 1, i.e., do 

not exceed the boundary value. 

The number of learning epochs was increased to 50000, 

the test results are shown in Table 5. 

Table 5. The results of work with 50000 

epochs of study 

Launch 

number 

Sample 

number 
Result 

1 

1 0.9974, 0.0025, 0.0007 

2 0.9965, 0.0025, 0.0008 

3 0.8146, 0.0060, 0.0071 

2 

1 0.9985, 0.0013, 0.0009 

2 0.9585, 0.0060, 0.0032 

3 0.0523, 0.0244, 0.0690 

3 

1 0.9992, 0.0000, 0.0006 

2 0.9436, 0.0000, 0.0077 

3 0.0287, 0.0022, 0.6091 

 

In all the tests of the first and second examples, it is clear 

that the result is stable and exceeds the boundary value. In 

the third example, the result remains unstable. Let us 

increase the number of learning epochs to 500000, the test 

results are shown in Table 6. 

Table 6. The results of work with 500000 

epochs of study 

Launch 

number 

Sample 

number 
Result 

1 

1 0.9999, 0.0000, 0.0000 

2 0.9934, 0.0017, 0.0000 

3 0.0160, 0.1621, 0.0052 

2 

1 0.9999, 0.0001, 0.0000 

2 0.9181, 0.0000, 0.4310 

3 0.0003, 0.0002, 0.9991 

3 

1 0.9999, 0.0001, 0.0001 

2 0.9941, 0.0009, 0.0004 

3 0.0137, 0.0116, 0.0936 

 

The first and second examples work stably, the third 

example continues to produce unstable results. Hence, the 

conclusion can be drawn that an increase of the number of 

learning epochs cannot solve the problem of the instability 

of work results. With the current training data set, the neural 

network cannot produce a stable result for the input data 

from the third example. It is necessary to expand the training 

examples number.  

VI. FURTHER TRAINING OF THE NEURAL NETWORK 

Let us assume that a new expert opinion has appeared about 

the second tool. The expert indicated the criteria inherent to 

this tool. A new training example is shown in Table 7. 

Table 7. New training example 

Input data Output data 

0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 0, 1, 0 

 

Let us train the network taking into account the new 

example and see how the result of the neural network 

operation will change in the third example. The number of 
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learning epochs is 500000, the test results are given in Table 

8. 

Due to the added training example, the neural network 

began to produce a stable result in the third test example. 

This can be explained by the fact that the second tool has 2 

expert opinions about the availability of the required criteria, 

and the first and third tools have one expert opinion. In equal 

conditions it was impossible to determine which of the tools 

meets the specified requirements. 

Table 8. The results of work with 500000 epochs of 

learning with the new training example 

Launch 

number 

Sample 

number 
Result 

1 

1 0.9997, 0.0001, 0.0003 

2 0.9994, 0.0001, 0.0003 

3 0.0000, 0.9987, 0.0005 

2 

1 0.9997, 0.0001, 0.0003 

2 0.9997, 0.0001, 0.0003 

3 0.0000, 0.9973, 0.0001 

3 

1 0.9997, 0.0001, 0.0003 

2 0.9996, 0.0002, 0.0003 

3 0.0003, 0.9971, 0.0000 

 

Examples given above show that increasing the quantity 

of learning epochs does not always lead to stable results. 

Overfitting of the neural network may also occur and it will 

entail the loss of network generalization possibility. 

In practice, a large number of training examples are used 

to train a neural network. Cross-validation is used to evaluate 

the operation of a neural network on data that are not in the 

training set. During cross-validation, a lot of training data is 

divided into k identical blocks, at each iteration one of k 

blocks remains for model testing and k-1 blocks are used as 

training data [21]. The process is repeated k times, and each 

of the blocks is used once as a test set. The obtained data are 

combined to calculate an overall score. 

VII. CONCLUSION 

In this paper, the possibilities of using neural networks when 

choosing tools for penetration testing of Web applications 

are shown. The results of the neural network and their 

dependence on learning parameters are shown. The 

described mechanism is used on the Web server side and the 

FANN library is also used. The application of neural 

networks allows the use of expert opinions when choosing 

testing tools. 

The advantage of using neural networks is the simplicity 

of implementation in comparison with deterministic 

algorithms; the number of lines of code is used as metrics 

parameter. The opinions of various experts are taken for 

training, thus avoiding the subjectivity of opinions. There 

may be a situation where some opinions will be 

contradictory. In such circumstances, the neural network 

may not select a tool that meets the search requirements. The 

disadvantages include the need for experimental selection of 

neural network parameters. It is also difficult to find data for 

training due to the high requirements for experts who provide 

training data for the neural network. 

Further research may be related to the accumulation and 

processing of information from experts as the set of analyzed 

tools expands. In addition, cases should be investigated when 

a neural network makes a decision that this set of tools does 

not allow them to be selected according to specified criteria. 
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