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 ABSTRACT Application-Specific Instruction-Set Processors (ASIPs) have established their processing power 

in the embedded systems. Since energy efficiency is one of the most important challenges in this area, coarse-

grained reconfigurable arrays (CGRAs) have been used in many different domains. The exclusive program 

execution model of the CGRAs is the key to their energy efficiency but it has some major costs. The context-

switching network (CSN) is responsible for handling this unique program execution model and is also one of the 

most energy-hungry parts of the CGRAs. In this paper, we have proposed a new method to predict important 

architectural parameters of the CSN of a CGRA, such as the size of the processing elements (PEs), the topology 

of the CSN, and the number of configuration registers in each PE. The proposed method is based on the high-

level code of the input application, and it is used to prune the design space and increase the energy efficiency of 

the CGRA. Based on our results, not only the size of the design space of the CSN of the CGRA is reduced to 

10%, but also its performance and energy efficiency are increased by about 13% and 73%, respectively. The 

predicted architecture by the proposed method is over 97% closer to the best architecture of the exhaustive 

searching for the design space. 
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I.  INTRODUCTION 

he complexity of software applications grew 

exponentially in the last decades. Based on the wide 

range of those application domains, designing an energy-

efficient and high-performance general-purpose processor 

is out of the question. In embedded systems, a lot of 

different processing architectures have been presented to 

increase both the processing and the energy efficiency of 

processing platforms. Application-Specific Instruction-Set 

Processors (ASIPs) are one of the most efficient processing 

platforms that are used in many different application 

domains, such as numerical and scientific computing, 

digital signal processing, data security, artificial 

intelligence, etc. [1-4]. 

In most application source codes of the embedded 

systems, the biggest part of the execution time is due to 

execute a small part of the code. ASIP processors, by 

reducing the energy consumption and execution time of that 

part, optimize the performance of their processing 

platforms. Many different architectures were proposed to 

improve the performance of the process-intensive part of 

the application, such as custom instructions extraction [5], 

using field-programmable gate arrays (FPGAs) or coarse-

grained reconfigurable arrays (CGRAs) as a coprocessor [1] 

or using a graphics processing unit (GPU) to parallelize the 

loops [1]. CGRAs established their power in both high-

performance and low-power domains [1, 6].  

The efficiency of the ASIP processors is strongly related 

to the extracted properties of the input applications that 

have been extracted by application analysis strategies like 

application profiling [7]. The extracted properties of the 

T 
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input programs lead the ASIP processor to the best 

architectural parameters. Usually, several parameters have 

been indicated by those properties and some others not. In 

those conditions, design-space exploring is the best strategy 

to find the best ASIP processor architecture [8].  

Not only the design-space exploration technique is a very 

time-consuming process but also its execution time is 

growing fast by the number of architectural parameters. In 

the past, a huge number of researchers had presented 

techniques to reduce the design-space exploration (DSE) 

time by using application properties [9].   

Many different pieces of research to optimize the DSE 

algorithms of the ASIP processor were presented. Based on 

the history of the FPGA- or GPU-based ASIP processors, in 

this paper, we have focused on the CGRA-based ASIPs. In 

this paper, we propose a graph-based modeling technique 

(context-switching graph) to extract important properties of 

the input application source code to reduce the DSE 

searching time. By using the proposed model, the 

exploration time needed to find the best CGRA 

architectural parameters for the input group of applications 

can be decreased.  

Our main contributions in this paper are as follows: 

- Our proposed model can describe the behavior of the 

input application without profiling. 

- Our proposed model can estimate several architectural 

parameters of the CGRA without compilation nor 

mapping the input high-level language program to the 

CGRA context. 

- Our proposed model can improve the efficiency of the 

execution time and energy together with less DSE 

searching time. 

- Our proposed model can decrease the design-space 

exploration time up to 80x. 

The rest of the paper is organized as follows. In Section 

II, a short description of the basic CGRA architecture is 

given. An overview of the related work is reviewed in 

Section III. In Section IV, our proposed graph model is 

presented. Section V describes the proposed method to 

reduce the design-space exploration time. The experimental 

results are shown in Section VI. Finally, a conclusion of our 

proposed method is presented in the last section. 

II. PRELIMINARIES  

CGRA is an ASIP processor based on the input 

applications, many different parameters can be changed 

along the CGRA design process. Since in this section, we 

have presented both the CGRA architecture and the 

properties of the chosen benchmarks. 

A. CGRA ARCHITECTURE 

A lot of different architectures were proposed for the 

CGRAs in the last decades [6]. Based on the 

reconfiguration phase of CGRAs, they can be categorized 

into three different groups. In the first group CGRAs, the 

CGRA has been configured at the beginning, and then the 

CGRA goes to the execution phase, such as PACT XPP III 

[6]. The second group of CGRAs refers to those that have 

been reconfigured along with the execution phase. In these 

CGRAs, the mode of the CGRA changes periodically 

between execution and reconfiguration, such as REMUS 

[6]. The last group of CGRAs is the hybrid ones who have 

some statically configured parts and some dynamically 

reconfigured processing units, such as ADRES [6].  

Generally, the area cost of the first category is higher 

than of the others, but its execution time is less. On the 

other hand, the flexibility of the last category is much more 

than the previous ones. Besides their reconfiguration 

strategy, all CGRAs are constructed by four independent 

networks that are working together: processing element 

(PE) network, data-transferring network (DTN), context-

switching network (CSN), and controlling-network (CN), 

as depicted in Figure 1.  

Each CGRAs can work only in the reconfiguration mode 

or on the execution mode. In the reconfiguration mode, the 

PEs of the CGRA will be reconfigured to execute a 

different job. To do that, the PEN, CSN, and CN should be 

worked together. In the execution mode, input data will be 

proceeded by moving along PEs. In another word, the 

reconfiguration mode prepares the CGRA to execution of 

the input algorithm on the input data.  

 

Figure 1. A generic CGRA architecture 

A CGRA has a big design space with an enormous 

number of architectural parameters and considering all 

those parameters to be optimized in a project is 

unthinkable. Since the reconfiguration time and energy of a 

CGRA is strongly related to its reconfiguration strategy [6], 

we have selected only those who have been working in the 

reconfiguration mode.  

Table 1 shows some important architectural parameters 

of a CGRA based on implemented ones [6]. The bold 

options in Table 1 are the fixed parameters that they do not 

add to the DSE process. But, lines with no bold option 

present the important parameters that should be added to 

the design space of the CGRA. Based on Table 1, the size 

of the PEN, the topology of the CSN, and the number of 

configuration registers in each PE will be considered in the 

DSE process of the CGRA. 
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Table 1. Design-space of a CGRA 

 Parameters Options 

PEN 

Execution model Single-cycle / Multicycle / Pipelined 
Instruction-Set RISC / CISC  

Granularity Atomic / Clustered 
Similarity Homogeneous / Heterogeneous 

Topology 
NoC / Mesh / Bus / Crossbar / Fully 

connected / Hybrid 
Size 4×4 / 5×5 / 6×6 / 8×8 / 4×N / … 

DTN 

Topology 
Bus / NoC / Fully connected / Nearest 

Neighbor 
Granularity  Central / Distributed 

Latency 
Single-cycle / Fixed multicycle / 

Variable 

CSN 

Topology 
Fully connected / Bus / Nearest 

Neighbor 
Reconfiguration 

model 
Static / Dynamic  

Granularity  
Reg in each PE / Cache in each 

cluster / Central memory 
Number of CRs 1, 2, 4, 8 

CN 
Topology  Fully connected / Bus 

Flow control Token passing 

B. SELECTED BENCHMARKS 

Since the efficiency of the CGRAs is strongly related to the 

group of applications, we have selected 20 different 

applications in four groups to test the efficiency of our 

proposed methods in different situations. Table 2 shows the 

main properties of the selected benchmarks. The columns 

of Table 2 are the name of the benchmark suite, its domain 

of application, the number of selected benchmarks from 

that suite, the number of the different basic blocks (BBs), 

the number of memory accesses (MAs) in the innermost 

loop, and the number of different contexts needed to map 

the 3AC format [10] of the applications of that group onto 

the 4×4 CGRA architecture respectively. 

Table 2. The selected benchmarks 

Name Domain Apps BBs MAs Contexts 
Livermore 

Loops 
Math. 

7 23 33 34 

Array Sorting Memory 5 29 18 31 
Image 

Processing 
Matrix 

3 9 27 21 

BDTi Kernels DSP 5 13 18 22 

  Sum: 74 98 108 

 

The first group is the Livermore Loops benchmark suite 

[11]. These applications have a small number of branches 

and memory accesses, but they have a lot of computations. 

The second group is a set of five well-known sorting 

algorithms [12]. These applications do not have many 

mathematical operations, but they have a lot of memory 

accesses and conditional branches. The third group of 

applications is three well-known image processing kernels 

[13]. These applications not only have a lot of mathematical 

operations but also have many memory accesses. The 

fourth group of applications is selected from the BDTi 

kernels [14]. They have a little of all (mathematical 

operations, memory access, and branches).  

III. RELATED WORKS 

Based on the big design space of a CGRA, finding the most 

fitting parameters to its input application is an NP-complete 

problem. Hence, researchers focused only on one of the 

CGRA networks. Previous researches on the efficiency of 

the CGRA can be divided into two main groups: DSE 

methods and optimizing only one particular component of 

it.  

The design-space exploration works generally are 

proposed for a particular CGRA for finding the best 

tradeoff. However, there are few papers ([15-17]) dealing 

with research of a specific component of the CGRA, and 

their results can be used for other CGRAs. In [15], authors 

focused on the CN and they showed that the token-passing 

protocol is the best flow control protocol for the CGRAs. In 

[16], they searched the PEN design space to find the best 

topology for the PEN. They applied different topologies to 

the ADRES architecture. In [17], they proposed a new 

ultra-low-power method for near-sensor CGRAs. They also 

did run an exhaustive search on the size of the PEN to find 

the best performance and energy of the CGRA. Since the 

size of the PEN has a major impact on the performance and 

the energy of the CGRA, finding the best size of the PEN 

has always been an important concern in the design-space 

exploration ([16, 18, 19]).  

In the second group of research works, optimizing a 

CGRA component is used as a solution to enhance the 

energy efficiency and performance of the CGRAs. Some 

researchers focused on the DTN of the CGRA ([20-22]). In 

[20], they proposed a hierarchical memory architecture to 

reduce the energy of the DTN. A reconfigurable DM 

network is proposed in [21] to decrease the energy. In [22], 

they used non-unified memory access (NUMA) architecture 

for the DTN and they proposed a new mapping algorithm to 

increase the performance of the CGRA by mapping the 

memory accessing PEs near the data memory unit. 

Optimizing the CSN is a popular way to improve the 

efficiency of CGRAs. Chung and et al ([23]) coded the 

most frequent patterns in the contexts with a small code and 

stored it in a register inside the PE (configuration word). By 

using that technique, they succeeded to reduce the number 

of data transactions on the CSN. In [24, 25], the 

configuration words were reordered to make groups of 

similar configuration words and stored only one of them in 

the context memory using an address translator to find the 

reordered configuration words. In [2], the size of the 

context memory was reduced by eliminating the duplicate 

configuration words of the contexts. In [19, 26], they 

proposed a dynamic decompression method to reduce the 

number of configuration bits that are stored/transferred 

to/from the context memory.  
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In [27], they proposed a new method to reduce the 

energy of the context switching process by decreasing the 

number of active lines of the context memory and also 

reducing the number of transition bits on the CSN. In [28], 

they used the differential loading technique to reduce the 

number of transition bits on the CSN. But, Kim and 

Mahapatra [29, 30] neither stored nor transmitted the 

unnecessary bits of the configuration words to reduce the 

energy of the CGRA.  

In all aforementioned methods, the efficiency of the 

CGRA was improved by affecting one or two architectural 

parameters of the CGRA. In this paper, we propose a new 

method to find a good tradeoff based on three major 

effective parameters of the CGRA: the granularity of the 

CSN, the size of the PEN, and the best number of the 

configuration registers in each PE. The proposed method is 

based on a graph model of the input application, called 

context-switching graph.  

IV. CONTEXT-SWITCHING GRAPH 

The context-switching graph models the behavior of the 

input application in the CS process based on the standard 

three-address code (3AC) format of the input program [27]. 

We have described the context-switching graph based on 

the control flow graph (CFG) of the program because 

extracting the CFG is well known. Using the context-

switching graph is the key to predict the number of 

different contexts of the input program based on the 

context-switching graph of the input program without 

compiling it. 

Suppose a simple program (Figure 2.a) and its 3AC 

format (Figure 2.b) which it has to be compiled and mapped 

onto a CGRA. The CFG of the input program can be easily 

drawn by mapping the basic blocks (BBs) to the nodes of 

the graph and their relations to the edges. If each BB is 

compiled into a single context, each edge of the graph 

indicates the next BB which has to be fetched in the 

context-switching process. In the context-switching graph, 

each node contains four different sets information about the 

BB: ID, pipelined or straight, number of instructions, and 

number of the memory accesses. The ID field is the unique 

number of the BB. If the BB contains a whole loop (like 

BB2), it is supposed to be a pipelined BB and takes “Y” in 

the “is pipelined?” field otherwise it takes “N”. Both 

numbers of instructions and memory accesses are 

calculated based on the 3AC format of the program. The 

final context-switching graph is shown in Figure 2.c.  

As it is shown in Figure 2.c, some nodes have more than 

one output-edges. In many cases, the probability of using 

one of those output-edges is higher than others, such as 

loops, as they have been marked by a star in Figure 2.c. The 

marked edges are predicting the next fetching context to the 

CGRA. We have used the predicted next fetching context 

as the successor context in the next section to optimize the 

context-switching of the CGRA. 

V. PRUNING THE DESIGN-SPACE 

To prune the design space of the CGRA, its important 

architectural parameters should be modeled by some high-

level factors that are extracted from the input application 

program. Predicting the number of different contexts based 

on the context-switching graph is the first step.  

A. PREDICTING THE NUMBER OF DIFFERENT 

CONTEXTS 

The number of different contexts has a strong impact on the 

number of context-switching processes, and consequently, 

it has a great effect on both the energy and performance of 

the CGRA. To the best of our knowledge, there is no 

method to predict the number of contexts of an input 

program without going through its compilation.  

In the 3AC format of the input program, the BBs are 

separated with branches, and each branch is equal to a 

context switching process. So, the bottom limit of the 

number of contexts of an input program is equal to the 

number of its BBs. In addition to those, there are three main 

reasons to break a BB into more than one context: a big 

number of instructions, too many memory accesses, and 

complex variable usages. 

 
Figure 2. Input high-level program 

We have predicted the number of different contexts (Ci) 

of each basic block (BBi) based on the size of the PEN (S), 

the number of the instructions (Ni), and memory accesses 

(Mi) of that basic block. Finding the exact value of the Ci is 

generally impossible because it is related to many other 

parameters which are not in the scope of this paper; for 

example, the ISA of the CGRA, the efficiency of the 

compiler, the programming model, etc. However, we can 

indicate the lower bound of the Ci based on Ni, S, and Mi as 

it is shown in equations (1)-(3). 

Each CGRA has S×S PEs in its PEN. Hence, if the 

number of instructions of the input basic block (Ni) is more 

for(i=0;i<100;i++)

    for(j=0;j<100;j++)

A[i][j] = B[i][j] + C[i][j];

i = 0;

L0: if(i == 100) exit();

j = 0;

t0 = i * 100;

L1: if(j == 100) goto 

L2;

t0 = t0 + j;

t1 = B[t0];

t2 = C[t0];

t3 = t2 + t1;

A[t0] = t3;

j = j + 1;

goto L1;

L2: i = i + 1;

goto L0;

(a)

(c) (b)

P
N

#
M

#: ID of the BB
P: is pipelined? Y/N
N: number of instructions
M: number of memory accesses

N
1

0
0
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than the number of PEs, it will have to be fragmented into 

multiple contexts. By fragmenting a BB into multiple 

contexts, one branching instruction (per context) will be 

added to the Ni. On the other hand, based on the efficiency 

of the CGRA compiler, some PEs in the PEN cannot be 

mapped and they will be idle [28]. Thus, we have added a 

new parameter for that effect, called α. Equation (1) 

calculates the number of different contexts for a BB based 

on its number of instructions 

 

C1i =  ⌈
N + C1i

S × S × α
⌉. (1) 

 

On the other hand, based on the topology of the DTN, if 

the number of the memory accesses of a BB (Mi) is greater 

than the size of the PE array (S), the basic block will be 

broken into more than one context. Equation (2) calculates 

the minimum number of the required contexts based on the 

number of the memory accesses in the B: 

 

C2i =  ⌈
Mi

S
⌉. 

(2) 

 

The lower bound of the number of different contexts of 

an input basic block (Ci) should be greater than or equal to 

the maximum value of the C1i and C2i. Equation (3) 

calculates the lower bound of the number of different 

contexts for a given BB: 

 

Ci = max{𝐶1𝑖, 𝐶2𝑖}. (3) 

 

As mentioned before, there are three reasons to break a 

BB into more than one context. We have modeled the first 

two parameters, but the third one, the complex variable 

usage, cannot be modeled by equations.  

To validate the predicted Ci, we have compiled all 

applications on all CGRA sizes in our design space and 

found the smallest possible “Ci” manually. However, 

between 20 chosen applications, only one application could 

not be mapped to the calculated number of contexts by 

Equation (3).  

B. PREDICTING THE SIZE OF THE PEN 

Not only, the number of PEs in the PEN has a strong impact 

on the number of different contexts of the input program, 

but also it has a great effect on almost all other architectural 

parameters of the CGRA. Based on the previously 

implemented CGRAs, as it is shown in Table 1, we have 

considered all sizes in the range of 4×4-8×8 for the size of 

the PEN in the design space (only square PENs).  

To reduce the execution time and the energy of the 

CGRA through optimizing its CSN, we have decreased the 

number of fetching configuration words through the 

context-switching processes. Equation (4) calculates the 

number of the transferred configuration words (CW) based 

on the predicted number of different contexts for the input 

program: 

 

𝐶𝑊 ≈  𝑆 × 𝑆 × ∑ 𝐶𝑖

𝐵

𝑖=0
. (4) 

 

By changing the size of the PEN, a new value for the 

CW is calculated. By increasing S, the number of occurring 

context-witching processes due to execute input program 

and consequently the number of the transferring 

configuration word will be decreased. Hence, the minimum 

CW indicates the upper bound of the best size of the PEN. 

By using Equation (4), we have pruned 74% of the CGRA 

design-space on average. 

C. PREDICTING THE NUMBER OF CRS IN EACH PE 

The number of configuration registers (CRs) in each PE has 

a strong effect on the number of the transferred 

configuration words and consequently on the number of 

accesses to the context memory. Having enough CRs in 

each PE to store all configuration words of the program 

innermost loop can reduce the number of context-switching 

processes dramatically. 

The number of different contexts of the innermost loop 

depends on the PEN size (Equations (4)). Subsequently, the 

number of different contexts of the innermost loop and the 

number of CRs can be calculated by Equation (3). The 

calculated value of the CRs is the upper bound of its best 

value in the CGRA design space. Hence, the calculated 

values for different benchmarks reduce the design space by 

about 37.3% (on average). 

D. PREDICTING THE TOPOLOGY OF THE CSN 

As it is shown in Table 1, there are three major topologies 

for the CSN of a CGRA: fully connected or Point-to-Point 

(P2P), bus (B), and nearest neighbor (NN). In the P2P 

topology, there is a dedicated channel between the context 

memory and each PE, so the reconfiguration phase will be 

completed in one clock cycle and it has the minimum 

overhead on the execution time for the input program. In 

the B topology, there is a shared bus for each row/column 

of the PEN, consequently, the reconfiguration phase of the 

B topology takes S clock cycles long. In the NN topology, 

the configuration words will be shifted through the CRs of 

the PEs in each row/column. Then, its reconfiguration 

phased delay is S clock cycles, i.e., the same as the B 

topology. 

The topology of the CSN affects the energy of the 

CGRA by two factors: the amount of the wiring capacities 

and the number of the transition bits in those wires. The 

amount of the wiring capacities can be modeled by the 

number of required non-local links in the CSN. On the 

other hand, the number of transition bits can be modeled by 

the number of different CWs that will be shifted through 
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the CSN due to the context-switching phase. Hence, for 

each reconfiguration process, the number of transition bits 

in the P2P topology can be modeled by the number of 

different CWs of each PE with its predecessor CW. 

Equation (5.a) models the energy of the CSN for the P2P 

topology: 

 

𝑃2𝑃 ≈  ∑ 𝐷𝑖 × 𝐶𝑆×𝑆
𝑖=1 , (5.a) 

 

where Di is the number of the different bits of two 

following configuration words and C is the capacitance of 

the P2P link between the context memory and the PE. On 

the other hand, when the topology of the CSN is B or NN, 

the configuration words should be sequentially shifted 

through the bus or the PEs. Equation (5.b) models the 

energy of the CSN for the B and the NN topologies: 

 

𝐵𝑁𝑁 ≈  ∑ 𝑖 × 𝐷𝑖 × 𝐶𝑆×𝑆
𝑖=1 , (5.b) 

 

where Di is the number of the different bits of two adjacent 

PEs in a row/column. In the B topology, the CWs are 

shifted via a link and C is the capacity of that link, but in 

the NN topology, C is the capacity of the reconfiguration 

part of each PE. Predicting the topology of the CSN reduces 

the size of the design space by about 35% (on average). 

E. PRUNING THE DESIGN-SPACE 

As discussed before, the delay and the energy of the CGRA 

are dependent on the architectural parameter of the CGRA. 

We have predicted the upper/lower bound of those 

parameters based on the input application programs in the 

previous subsections. In this subsection, we will reduce the 

size of the design space by using the pruning method based 

on the predicted boundaries.  

As shown in Table 1, some of the architectural 

parameters of the CGRA are not fixed: the PEN size (from 

4×4 to 8×8), the CSN topology (P2P, B, and NN), and the 

number of the CRs in each PE (1 to 8). To do an exhaustive 

search in the design space of the CSN, 120 (5×3×8) 

different architectures should be simulated for each 

application.  

As discussed in the previous section, the predicted values 

for the architectural parameters of the CGRA are the 

upper/lower bounds to the best value. By applying those 

boundaries to the design space, a big part of it will be 

pruned. Figure 3 shows the effect of the pruning process on 

the size of the design space.  

 
Figure 3. Effect of pruning the size of the design space. 

VI. EXPERIMENTAL RESULTS 

In this paper, we have not only proposed a new method to 

predict a near-best (or the best) value of multiple important 

architectural parameters of the CGRA but also, we have 

reduced the size of its design space by using the proposed 

method. In this section, the effect of the proposed method 

will be discussed in terms of delay and the energy of the 

CGRA. Then, we will prune its design space to find the best 

architecture for a given application without searching all 

the design space. Finally, a comparison in terms of the 

delay and the energy of the CGRA will be presented in 

some future works. 

In this section, we have used the smallest CGRA (PEN 

size = 4, the number of CRs = 1, and the CSN topology= B) 

as the basic CGRA (CGRA0) to compare the efficiency of 

our proposed method. 

A. DELAY ANALYSIS 

The execution of an application can be divided into three 

different phases: initial phase, reconfiguration phase, and 

running phase. The contexts and data of the input 

application should be transferred into the context and data 

memory of the CGRA in the initial phase. Since the initial 

phase is occurring only once, its run-time can be ignored. 

The delay of the running phase is related to the number of 

occupied PEs and their type (pipelined or not). Hence, it 

can be considered independent of the CGRA architectural 

parameters. On the other hand, the cost of the 

reconfiguration phase is the main concern of this paper. 

The delay of the reconfiguration phase is strongly related 

to the predicted parameters. For each reconfiguration 

process, the delay of the reconfiguration phase is 1 (for the 

P2P CSN) or S (for the B and NN CSNs). The number of 

the required reconfiguration processes is related to the 

number of the different contexts, the number of loops in the 

CSG, and the efficiency of the compiler. Hence, we have 

modeled the delay of the reconfiguration phase by Equation 

(7). 

 

𝐷𝑒𝑙𝑎𝑦 ≈  𝐷 × ∑ (𝐶𝑖 + ∑ 𝐿 × 𝐶𝑖 × 𝐶𝑗
𝐵
𝑗=0 )𝐵

𝑖=0 , (7) 

 

where D is the delay of each reconfiguration process, L is a 

binary variable for indicating the loop BBs (1 for loops and 

0 for other basic blocks). Figure 4 shows the delay 



M. H. Sargolzaei / International Journal of Computing, 20(4) 2021, 519-527  

VOLUME 20(4), 2021 525 

reduction ratio of the predicted CGRA compared with the 

CGRA0. 

 
Figure 4. Delay and energy reduction ratio. 

As it is shown in Figure 4, the delay in some cases with 

the predicted architecture is the CGRA0, hence, there is no 

delay reduction in those cases.  

B. ENERGY ANALYSIS 

As it is discussed in the previous subsection, there are three 

different phases of a CGRA application execution process. 

The energy of the initial and running phases can be ignored 

as well as their delay. But, the energy of the reconfiguration 

phase of the CGRA is considered in this paper. 

The energy of the reconfiguration phase of the CGRA is 

related to the size of the PEN (the number of PEs), the CSN 

topology (the number of channels in the CSN), and the 

number of CRs in each PE (the number of the needed 

reconfiguration processes). Hence, the energy of the CGRA 

can be modeled by Equation (8). 

 

𝐸𝑛𝑒𝑟𝑔𝑦 ≈  𝑆 × 𝑆 × 𝐸5/𝐶𝑅, (8) 

 

where S is the size of the PEN, E5 is the output of Equation 

5 (5.a for the P2P and 5.b for the B/NN topology), and CR 

is the number of CRs in each PE. Based on the previously 

calculated parameters (by equations (3) to (5)), the 

minimum output of Equation (8) is the best architecture. 

The effect of applying the predicted parameters on the 

energy of the CGRA for each application is shown in 

Figure 4.  

Based on our results, the energy of the application 

execution can be reduced by more than 58% (or on average 

73%) compared with the CGRA0 architecture. 

C. THE ERROR OF THE PREDICTED ARCHITECTURE 

The goal of this paper is to design an efficient CSN for the 

CGRA without exhaustive searching for its design space. 

We have proposed a model to predict the important 

parameters of the CSN and use them as an upper/lower 

bound of those parameters to prune the design space. Using 

a pruning algorithm to reduce the size of the design space 

might result in losing the best architecture, but it can find 

an acceptable one. Thus, the difference between the delay 

and the energy of the predicted architecture and the best 

one (who can be found by exhaustive search) should be 

analyzed. 

A semi-best predicted architecture might increase the 

delay and the energy of the CGRA due to the application 

execution  based on our results, there are only two (out of 

20) mismatches between the best architecture of the 

exhaustive search and our predicted ones. However, the 

delay and the energy of the predicted CGRA is about 99% 

(on average, and 97% for the worse case) close to the best 

CGRA results. 

D. MORE OPTIMIZATION WITH THE CUC METHOD 

We have proposed a configuration compression method to 

reduce the energy of the CGRA through decrease in its 

reconfiguration phase costs in our previous work [27]. To 

gain more energy efficiency, we have applied the CUC 

method to the context of the input applications and 

examined its effect on our new proposed method. Figure 5 

shows the effect of our proposed method on the energy and 

the delay of the CGRA w/ and w/o applying the CUC. 

 
Figure 5. Comparison of the results w/ and w/o using the 

CUC. 

As it is shown in Figure 5, using the CUC method along 

with our proposed prediction method improves by 3% and 

6% the delay and the energy of the CGRA respectively.  

E. COMPARISON WITH PREVIOUS WORKS 

We have examined the efficiency of our proposed method 

in two terms individually in the previous subsection. 

However, we will compare the energy efficiency, area 

overhead, and performance improvement of our proposed 

method with some previous works. Table 3 shows the area 

overhead, the performance improvement, and the energy 

efficiency of each method. The starred numbers in the last 

column are for the energy efficiency of the CM module and 

not for the whole CGRA. The first six selected works in 

Table 3 are some context compression methods that are 

only working on a particular architecture of a CGRA. The 

next four chosen works are some design-space exploration 

works whose method can be used on the other CGRA 

architectures just like our proposed method. Finally, the last 

two lines are the results of our proposed method for the 

normal and the CUC version of the CGRA, respectively.  
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Table 3. Comparison of results with previous works. 

 Area (%) Delay (%) Energy (%) 

[29] 10.35 0 38.5* 

[25] 2-3 0 36.85* 

[27] 10.5 0 19.34 (81*) 

[19] 6 -49.07 17.26 

[2] 8 0 70* 

[26] 9.7 0 50* 

[30] 395.21 80 - 

[17] - 18.6 22.3 

[16] - 25 5-20 

w/o CUC 1.77 13.15 73.07 

w/ CUC 7.68 16.1 79.11 

 

As shown in Table 3, our proposed method not only 

improves the energy efficiency of the CGRA but also 

shows a better performance. By using our proposed 

method, the energy consumption and the delay of the 

CGRA can be reduced about 73% and 13% respectively. 

On the other hand, by using our design-space pruning 

method, the design-space exploration time will be reduced 

more than by 90%. 

VI. CONCLUSIONS 

In this paper, we proposed a new method to design an 

energy- and delay-efficient CGRA without running an 

exhaustive search for the best architectural parameters of 

the CGRA. We modeled the 3AC format of the input 

program by a graph, the context-switching graph (CSG). 

We also predicted the different number of contexts of an 

application, without performing any compilation or 

application mapping. The best architecture of the context 

switching network of the CGRA was predicted based on the 

proposed CSG and the predicted number of contexts. Based 

on our proposed method, the best architecture can be found 

10× (on average) faster than the exhaustive search on 

average, with more than 97% of its accuracy in energy 

prediction. Based on our results, using a context 

compression method can increase the efficiency of the 

prediction method by up to 19%. Using the context 

compression method improves the processing performance 

and the energy efficiency of the CGRA by 13% and 73% on 

average. 
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