

VOLUME 20(4), 2021 543

Date of publication DEC-31, 2021, date of current version OCT-19, 2021.

www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209

Online ISSN 2312-5381

DOI 10.47839/ijc.20.4.2442

Aspects of the Study of Genetic

Algorithms and Mechanisms for their

Optimization for the Travelling Salesman

Problem

NATALIYA BOYKO, ANDRIY PYTEL
Lviv Polytechnic National University, Lviv 79013, Ukraine (e-mail: Nataliya.I.Boyko@lpnu.ua, pytelandriy@gmail.com)

Corresponding author: Nataliya Boyko (e-mail: Nataliya.I.Boyko@lpnu.ua).

 ABSTRACT Lately, artificial intelligence has become increasingly popular. Still, at the same time, a stereotype

has been formed that AI is based solely on neural networks, even though a neural network is only one of the

numerous directions of artificial intelligence. This paper aims to bring attention to other directions of AI, such as

genetic algorithms. In this paper, we study the process of solving the travelling salesman problem (TSP) via genetic

algorithms (GA) and consider the issues of this method. The genetic algorithm is a method for solving both

constrained and unconstrained optimization problems that are based on natural selection, the process that drives

biological evolution. One of the common problems in programming is the travelling salesman problem. Many

methods can be used to solve it, but we are going consider genetic algorithms. This study aims at developing the

most efficient application of genetic algorithms in the travelling salesman problem.

 KEYWORDS genetic algorithms; cross-breeding; crossover; mutation; generations; individuals; selection;

evolution; travelling salesman problem; city; route.

I. INTRODUCTION

NE of the common problems in programming is the

travelling salesman problem. Many methods can be

used to solve it, but we are going consider genetic

algorithms. This study aims to design the most efficient

application of genetic algorithms in the travelling salesman

problem [1, 2].

Lately, artificial intelligence has been becoming

increasingly popular. Still, at the same time, a stereotype has

been formed that AI is based solely on neural networks, even

though a neural network is only one of the numerous

directions of artificial intelligence. This paper aims to bring

attention to other directions of AI, such as genetic algorithms

[3, 4].

We study the process of solving the travelling salesman

problem (TSP) via genetic algorithms (GA) and consider this

method’s issues.

II. LITERATURE ANALYSIS

The origin of the travelling salesman problem is unclear. A

handbook for travelling salesmen, published in 1832,

mentions the problem and includes examples of tours in

Germany and Switzerland, but contains no mathematical

treatment [5-7].

It was first considered mathematically in the 1930s by

Merrill M. Flood, trying to solve a school bus routing

problem. Hassler Whitney at Princeton University

introduced the name travelling salesman problem soon after

[8, 9].

There are many methods of solving this problem. Some

of them give exact results, others only approximate. One of

the most interesting methods is the method of route

optimization with the use of genetic algorithms [10, 11].

Nils Aall Barricelli conducted the first experiments,

which involved simulated evolution, in 1945. Later the

O

mailto:nataliya.i.boyko@lpnu.ua
mailto:nataliya.i.boyko@lpnu.ua

 Nataliya Boyko et al. / International Journal of Computing, 20(4) 2021, 543-550

544 VOLUME 20(4), 2021

experiments were also conducted by Nils Aall Barricelli,

Ingo Rechenberg and Hans-Paul Schwefel. Thanks to

artificial evolution a well-known optimization method

appeared [1].

The article “Development, a new mutation operator, to

solve the travelling salesman problem by the aid of genetic

algorithms” of Murat Albayrak, Novruz Allahverdi [12]

deals with the study of the method of Greedy Sub Tour

Mutation for solving the Traveling Salesman Problem. The

developed GSTM operator was tested with simple GA

mutation operators. Two different greedy search methods

and a component that provides distortion in this new operator

are directly considered. The application of this GSTM

operator gives much more effective results regarding the best

and average error values.

In “Genetic algorithms for the travelling salesman

problem”, Jean-Yves Potwin [13] considers a classic

combinatorial optimization problem that is easy to formulate

but very difficult to solve. The problem is to find the shortest

tour through a set of N vertices so that each vertex is visited

exactly once. It is known that this problem is NP-complex

and cannot be solved exactly in polynomial time. In this

paper, the author uses a particular problem structure to

develop complex crossover and mutation operators to encode

the matrix chromosome. These operators are designed to

support the ability to implement the solution during the

search.

III. MATERIAL AND METHODS

A. TRAVELLING SALESMAN PROBLEM

The travelling salesman problem is a problem of finding the

fastest (most efficient) route between n cities where the way

must go once through every city. If the problem is presented

in the form of a graph, then the answer will be the shortest

Hamiltonian cycle.

The travelling salesman problem can be presented as in

[4, 14]:

• Graph. In this form, the represented cities are displayed

as vertices, and edges represent the criteria of

profitability (distance, time).

• Asymmetric and symmetric problems. The catch in the

asymmetric problem is that the profitability between

the cities is dependent on the direction of edges,

whereas, in the symmetric problem, the law has no role.

There are two main groups of methods for solving the

travelling salesman problem, which can be combined [3, 15,

16]:

• Precise — they find the precise optimal solution to the

problem but take a long time to calculate.

• Heuristic — they give an approximation of the optimal

route but take notably less time to calculate.

Genetic algorithms are generally more efficient than the

complete vocabulary as there is no need to go through all the

possible combinations. At the same time, genetic algorithms

are heuristic that does not guarantee a precise solution, but

only the best possible approximation with the given amount

of time (iterations) [17, 18].

B. GENETIC ALGORITHMS

The genetic algorithm is a method for solving both

constrained and unconstrained optimization problems that

are based on natural selection, the process that drives

biological evolution.

Genetic algorithms can be broken down into the

following steps [19, 20]:

1. Creation of the base population.

2. Iterations of the same actions (Evolution)

− Rating.

− Selection.

− Cross-breeding and/or mutation.

− Formation of the new generation in the case the

result was not achieved.

3. Obtaining the resulting generation presented in

Fig. 1.

Figure 1. Stages of the genetic algorithm

During the creation of the base, population individuals

are generated with mostly randomized parameters. Each

parameter is a specific gene, and a set for those parameters

form a chromosome. In our case, the most efficient type of

data to store in a chromosome are route options. For instance,

we have 5 cities A, B, C, D and E; inside the chromosome-

specific routes, e.g., ABCDE, BADCE, BDCEA.

With the base population ready, we can start a cyclic

process for the goal of creating a population that would

become more and more optimized with each iteration.

The first step is for the population to go through a rating

process where a specific adaptability score is assigned for

each individual.

Now we can commence our selection. We do this by

selecting the best-fitted individuals for their cross-breeding

and/or mutation [6, 21].

To improve the level of adaptivity of the population in

classic genetic algorithms, the best individuals are bred or

mutated and sometimes both.

Nataliya Boyko et al. / International Journal of Computing, 20(4) 2021, 543-550

VOLUME 20(4), 2021 545

The process of cross-breeding imitates sexual

reproduction. To create a new individual (child), 2

individuals must be called parents of the child. To inherit

parent traits, child chromosomes are formed in a certain way

by combining parent genes. This process is called a

crossover.

When both mutation and cross-breeding have been

performed to avoid a situation in which the population did

not improve or got stuck on a particular iteration, some, if

not all, individuals are mutated. In other words, one or some

genes in a chromosome are replaced. Even though this

mutation process is not mandatory as mutations can improve

the rate of approximation to the result and slow it down [5,

20].

After cross-breeding and mutating, it is mandatory to

correct the number of individuals in the population not to

increase in size after each iteration. Only the most adapted

individuals will go on into the next generation (the rest will

be annihilated).

If the generation is not adapted enough, we repeat rating,

selecting, cross-breeding/mutation and forming the new

generation.

If the new generation is adapted enough, it can be

considered to be adjusted. In our case, the route is as short as

possible, and any improvements are insignificant or

impossible [1, 10, 21, 22].

C. ANALYTICAL PART

The complexity of using this method is that it is not possible

to use a regular crossover or a mutation.

Crossovers are generally presented as simple

combinations of different parts of the parent chromosomes

in classic genetic algorithms. For instance, let us say we have

the following parents:

В D A E C

Parent 1

A D E C B

Parent 2

Then our children can have the following appearance.

В D A C B

Child 1

A D E E C

Child 2

As we can see, the regular crossover does not apply to

this problem as it is possible to get to one city two times and

do not get to another at all.

The same situation will occur with the use of the expected

mutation.

This situation can be avoided if the complexity of the

crossover and the mutation is increased.

D. THE FIRST STRATEGY (SIMPLE)

As mentioned before, combining halves of parent

chromosomes will not be sufficient to avoid getting to the

same city twice merely differently. The simplest way to

resolve this is to change the city, which is repeated to a city

that is not present. But at the same time, this method entails

that each possible descendant may have several options.

Back to the same example.

В D A C B

Parent 1

A D E E C

Parent 2

Is incorrect. After the correction, they will have the

following representation:

В D A C E

Child 1

A D E В C

Child 2

The main drawback of this method is the large number of

iterations required to find the repeats that are needed to be

completed for this cross-breeding. As a result, this method is

relatively inefficient in terms of runtime.

Even though correcting children is similar to mutation, a

full-fledged mutation still needs to be implemented because

otherwise, child elements with an identical genome might

cease to evolve.

E. THE SECOND STRATEGY (CYCLE)

The previous strategy was based on a basic crossover that

had to be improved so that children could form a

Hamiltonian cycle that would create a large quantity of

children variations.

If we admit the premade movement directions taken from

parent chromosomes, then there would be no reason to

correct the children. As a result, by using this method, we

acquire a wanted amount of children and we do not depend

on the number of repeating cities.

The idea of this strategy is that the combination of parent

genes should immediately form a Hamiltonian cycle [3, 5,

14, 7].

In addition to ensuring that the child chromosome would

not repeat its parent, it is necessary to limit the length of the

parents’ chromosome from which the child will be built.

To understand this method, let us look at the following

example. We have our parents:

E A B D C

Parent 1

B C A E D

Parent 2

Suppose we are allowed to copy up to three genes in one

parent in a row.

To begin with, let us take a part of genes from one of the

parents, three genes from parent 1 to be exact.

Then we shall take the other fathers’ gene (BCAED).

Next, we choose a direction leading to a city in which we

have not been yet. And because we are looking for a cyclic

route, we are not restricted to only moving from the previous

gene to the following gene(city), but we can also move from

the first to the last one and vice versa. In this case, we can

both move to D and C. For the sake of optimization, let us

assume that moving to the right has a higher priority, so we

add C.

After that, we will be moving through the parent in the

same direction until we hit a city to which we have been

before. Then we move to the next parent and repeat the

previous step. This continues until we reach all the cities.

In our case, after C comes A, to which we have been

before, we also cannot move backwards, and because of that,

we move to the next parent. Here we can go to D, and that is

 Nataliya Boyko et al. / International Journal of Computing, 20(4) 2021, 543-550

546 VOLUME 20(4), 2021

going to be our last gene. As a result, we get:
E A B C A

F. THE THIRD STRATEGY (NEAREST)

Based on the second strategy, a new, more efficient

crossover can be created. In the second strategy, we have up

to 4 different moves. If the most efficient move can be

chosen, then the runtime of the algorithm can be

substantially improved while at the same time drastically

decreasing the number of generations needed. However, the

complexity of choosing the most efficient moves will

increase the time designated for computing in a single age.

To make sure that the complexity of the algorithm will

not increase, the restriction regarding copying the second

parent’s sequence shall be ignored. As a side effect, this

creates an issue where the child can become a carbon copy

of the parent: yet, it can be solved by either mutating such

child or by banishing it from the general population.

Going back to our previous example, our parents:
E A B D C

Parent 1

B C A E D

Parent 2

In this case, we are not just going to the first available

city, but instead, we choose an optimal path. A starting gene

is randomly chosen, so for simplicity sake, in this example,

the first parent gene will be selected, let it be E. Next, we

have the options between A, C or D, and the shortest one will

be chosen. Given that we have not specified the distances

between the cities, we assume that C is the fastest. And as a

result, we get more children who are more efficient than their

parents.

G. MUTATION

To simplify the work, we will take the mutation method from

the first method, i.e., the process of mutation follows the

process for a standard genetic algorithm. Then we will

correct the cities which are missing. As a result, we swap the

places of two random genes.

The chromosome before mutation:
В D A E C

and after mutation:

В C A E D

We could also look for the most efficient swap to

improve the algorithm, but that would only waste resources

as it will amount too little to optimization gain.

H. SELECTION OF INDIVIDUALS FOR REPRODUCTION

The next problem is the selection of individuals who will be

bred and the way how they will be bred. The most

straightforward and efficient method is sorting the

individuals according to some coefficient and pairwise

crossing of the most adapted individuals [9, 22].

The fact is that crossing the same parents will yield the

same individual. To avoid breeding the same pairs of parents,

each individual will have its list of partners with whom it has

already created offspring and its ability to generate with

these individuals will be blocked.

Development of the software solution

The structure of the software solution can be separated

into three parts [23]:

● Structural specifics of the travelling salesman

problem are described in the structural interpretation

of cities and connections between them.

● The genetic algorithm is the central aspect of this

problem because the algorithm is described inside it.

● Cross-breeding and mutation implementation.

Structural specifics of the travelling salesman

problem.

To work with genetic algorithms, input data is required,

and in this particular problem, it is presented in the form of

a list of cities between which we are looking for the shortest

route.

To consider the graphic formulation of the route, cities

are represented as points with their names on the coordinate

plane.

Figure 2. UML diagram of the city class

When selecting the structure to hold the data, it is

essential to consider that connections between the cities are

more important than the cities themselves (Fig. 2). In

addition, it is wiser to store the calculated distances and

retrieve them rather than constantly recomputing them. So,

for this purpose, we will realize a sort of map which will keep

all the cities and spaces between them. To ease the access to

data inside the map, the list of cities and the distances

between them will be presented as hash maps. Cities will be

accessed through their names, and the spaces will be

accessed by using a key that encodes the characters of cities

and distances between them [15].

Because the algorithm is supposed to work with only one

instance of the map, thus, we should restrict its access to

creating multiple maps. This can be done by implementing a

map based on the Singleton pattern.

Also, do not repeat creating a map every time we call the

algorithm, options of saving the map to a file, loading it from

the said file and generating it with randomized data have

been implemented – the process of developing a map (Fig.

3).

Genetic algorithm in this specific problem

An individual is the smallest structural unit in any genetic

algorithm, and all individuals have a chromosome and an

adaptivity score. In our case, a chromosome is a sequence of

cities, a.k.a is one of the possible routes and the adaptivity

score is the ratio of the shortest known route to the length of

Nataliya Boyko et al. / International Journal of Computing, 20(4) 2021, 543-550

VOLUME 20(4), 2021 547

the current individual [5].

To determine the best-adapted individuals, we need to

compare them by their adaptivity score, and for this, a

“Comparable” will be used.

Figure 3. UML maps and their dependencies

The first generation will be generated with random

routes.

We get our list of cities from the map, and for this, every

individual should also have access to the map. Individuals

should also have the same access to the values of the shortest

route and the size of their chromosomes (Fig. 4) [6].

Figure 4. Class diagram of the individual

Evolution occurs in each generation. Generation is an

imitation of the life cycle wherein every generation has a

population of individuals and the breed within that

population. Only the individuals with the highest adaptivity

score are kept alive [14].

Generations must be limited by their size and the number

of individuals who have the right to breed. These parameters

can be changed to observe the change in evolution.

For evolution to occur, we need to create our starting

generation and other generations based on previous ones.

Generating the starting generation

We need to implement a method for removing

individuals whose adaptivity score is too low because not

every individual can reproduce or be moved to the next

generation.

And an option to get the best individual in the generation

has been added to collect additional static data (Fig. 5).

Figure 5. Class diagram of the individual

To generalize the algorithm and data, a Calculation class

has been created in which the following data is stored:

− Size of the population.

− Number of generations.

− Percentage of individuals who can reproduce.

− Error(𝜺) that determines the stopping of the algorithm.

− Reproduction type.

The two main methods are shown below. The first one

launches the algorithm with the required parameters, and the

second one saves the resulting data into a file.

Implementation of the cross-breeding and mutation

methods

Cross-breeding and mutation methods are implemented

inside an enumerative class where each element represents

one method of cross-breeding and mutation.

Also, the ability to acquire descendants from the breeding

individuals has been added to that class.

The generalized representation of this class (Fig. 6):

Figure 6. Class diagram of the individual

 Nataliya Boyko et al. / International Journal of Computing, 20(4) 2021, 543-550

548 VOLUME 20(4), 2021

Inside the first method, “crossover”, everything takes

place in two steps. The first step is the combination of parent

chromosomes, and the second step is the formatting of the

resulting chromosome to make sure it fits the standard

model.

Mutation, on the other hand, is realized as a swap of two

random genes.

Inside the second method, “mutation”, everything is a bit

more complicated. First of all, an attempt is made to copy

parents’ transitions, and if at some point it becomes

impossible to do so, then all the cities which were not visited

are added to it.

The third method, “posterity”, is similar to the second

one but slightly changed. The shortest possible parent

transition is selected.

Because both the second and the third methods have a

possibility where the parents’ steps cannot be repeated, we

need to add all the cities which were not visited by those

chromosomes.

IV. RESULTS

We will conduct a study on equal terms for each one of the

methods. For this, we shall use the same map and the starting

generation (Fig. 7).

Figure 7. View of the cities on the coordinate plane

Let us generate a map with 20 cities (Table 1).

Table 1. Coordinates

Name x y

A 1 10

B 19 0

C 9 13

D 15 12

E 16 1

F 16 15

G 11 3

H 9 10

I 13 18

J 18 3

K 12 1

L 18 10

M 6 18

N 4 9

O 11 19

P 11 18

Q 0 3

R 8 15

S 8 7

T 11 1

Analyzing the efficiency of the cross-breeding method

We conduct a study on 50 generations, with each size

being 100 individuals and the possibility to reproduce in 90%

of the population.

In the first method, "crossover", the most efficient route

is "N-A-S-B-E-J-G-T-K-L-D-F-O-M-R-C-P-I-H-Q"

(Fig. 8). Where its length is 109.67769964641892, and the

runtime is 5501 ms, 110 ms per iteration.

Figure 8. View of the first strategy (Simple)

In the second method, “mutation”, the most efficient

route is “C-A-H-R-N-Q-S-T-K-J-B-E-G-L-F-I-D-M-O-P”

(Fig. 9). Where its length is 118.9046735493942, and the

runtime is 3865 ms, 77 ms per iteration.

Figure 9. View of the second strategy (Cycle)

Nataliya Boyko et al. / International Journal of Computing, 20(4) 2021, 543-550

VOLUME 20(4), 2021 549

In the third method, the most efficient route is "H-C-R-

M-P-O-I-F-D-L-J-B-E-K-T-G-S-Q-A-N" (Fig. 10). Where

its length is 77.69, and the runtime is 2341 ms, 46 ms per

iteration.

Figure 10. View of the third strategy (Nearest)

As we can see, the third algorithm, “posterity”, has the

best runtime and gives us the shortest final route. The second

algorithm is average in both runtime and the final route. And

the first one has the worst runtime and returns mediocre

results.

An analysis of the approximation to the optimal

solution

As we can see from the chart (Fig. 11), the third method

gives us the best results, and the effects of simple and cycle

methods are quite similar.

The nearest algorithm has the most significant decline,

and it needs fewer generations to achieve the optimal

solution.

The cycle gave us some interesting results (Fig. 11). It

has a jump-like approximation, and it happens much less

often than in other algorithms. And as a result, the best-fitted

individual survives for much longer than other simple and

nearest algorithms.

Figure 11. Chart of the speed of approximation to the optimal

solution

V. CONCLUSION

As we can see, genetic algorithms are an excellent way to

find the best possible solution. They have a reasonably short

execution when one iteration takes about 46-110 ms in 20

cities. We considered three methods of crossing, and the

third of them was the most effective. This is because the third

has one feature from the nearest neighbour, given that each

child has better adaptability than its parents.

The paper proposes three methods of intersection. After

all, in classical genetic algorithms, crossover occurs by

simply linking different halves of both parents’

chromosomes. Therefore, it is not suitable for solving our

problem, because with its help we will get to the same city

twice and will not visit other cities. A similar situation will

occur when using a specific mutation. Therefore, if you

complicate crossover and mutation, you can avoid this

situation.

To do this, use three strategies. The first is to replace the

recurring city with the missing one. At the same time, this

method assumes the fact that each possible offspring may

have several options. The disadvantage of this method lies in

the fact that many iterations need to be performed for one

intersection to find repetitions.

The second strategy is the bonding of parental genes to

form a Hamiltonian cycle. Based on the second method, you

can create an even more efficient crossover.

The third strategy is choosing the most efficient move,

speeding up the algorithm, and reducing the number of

required generations. A side effect of this strategy is that the

offspring can become a copy of the father. However, this can

be solved by mutating the offspring or removing it from the

general genetic population. The third strategy has a feature

of the method of the nearest neighbour, which, in turn, makes

each offspring more effective than his father.

Therefore, the article describes various aspects of the

study of genetic algorithms and mechanisms for their

optimization for the problem of the seller-travelled.

References
[1] J. H. Holland, Adaptation in Natural and Artificial Systems,

University of Michigan Press, Ann Arbor, 1975.
[2] X. Chen, P. Zhang, G. Du and F. Li, “Ant colony optimization based

memetic algorithm to solve bi-objective multiple traveling salesmen

problem for multi-robot systems,” IEEE Access, vol. 6, pp. 21745–
21757, 2018. https://doi.org/10.1109/ACCESS.2018.2828499.

[3] E. Hadjiconstantinou and N. Christofides, “An exact algorithm for

general, orthogonal, two-dimensional knapsack problems,”
European Journal of Operational Research, vol. 83, pp. 39-56, 1995.

https://doi.org/10.1109/ACCESS.2018.2828499.

[4] O. Е. Semenkina, E. А. Popov, O. Е. Semenkina. “Self-configuring
evolutionary algorithms for travelling salesman problem,” Journal of

Siberian State Aerospace University named after academician M. F.

Reshetnev, vol. 4, no. 50, pp. 134-139, 2013.
[5] R. D. Tsai, E. M. Malstrom and H. D. Meeks, “A two-dimensional

palletizing procedure for warehouse loading operations,” IIE

Transactions, vol. 20, pp. 418–425, 1988.
https://doi.org/10.1080/07408178808966200.

[6] L. S. Buriol, P. Moscato, P. França, “A new memetic algorithm for

the asymmetric traveling salesman problem,” Journal of Heuristics,
vol. 10, pp. 483–506, 2004.

https://doi.org/10.1023/B:HEUR.0000045321.59202.52.

https://doi.org/10.1109/ACCESS.2018.2828499
https://doi.org/10.1109/ACCESS.2018.2828499
https://doi.org/10.1080/07408178808966200
https://doi.org/10.1023/B:HEUR.0000045321.59202.52

 Nataliya Boyko et al. / International Journal of Computing, 20(4) 2021, 543-550

550 VOLUME 20(4), 2021

[7] M. Mitchell, An Introduction to Genetic Algorithms, Cambridge

USA, London UK: MIT Press, 1999.

[8] N. Boyko, A. Pytel, “Application of genetic algorithms for
optimization of salesman’s tasks and their modeling by sequential

selection,” Proceedings of the 5th International Conference on

Computational Linguistics and Intelligent Systems (COLINS 2021),
vol. I: Main Conference, Lviv, Ukraine, April 22-23, 2021, pp. 969-

981.

[9] N. Boyko, “A look through methods of intellectual data analysis and
their applying in informational systems,” XIth International

Scientific and Technical Conference Computer Sciences and

Information Technologies (CSIT), September, 2016, pp. 183-185.
https://doi.org/10.1109/STC-CSIT.2016.7589901.

[10] D. Whitley, A Genetic Algorithm Tutorial, 1993.

https://doi.org/10.1007/BF00175354.
[11] J. Majumdar, A. K. Bhunia, “Genetic algorithm for asymmetric

traveling salesman problem with imprecise travel times,” Journal of

Computational and Applied Mathematics, Elsevier, vol. 235, issue 9,
pp. 3063-3078, 2011. https://doi.org/10.1016/j.cam.2010.12.027.

[12] N. Allahverdi, N. Allahverdi, “Development a new mutation operator

to solve the traveling salesman problem by aid of genetic
algorithms,” Expert Systems with Applications, vol. 38, issue 3, pp.

1313-1320, 2011. https://doi.org/10.1016/j.eswa.2010.07.006.

[13] J.-Y. Potvin, “Genetic algorithms for the traveling salesman
problem,” Annals of Operations Research, vol. 63, pp. 337–370,

1996. https://doi.org/10.1007/BF02125403.

[14] K.K. Lai and J.W.M. Chan, “Developing a simulated annealing
algorithm for the cutting stock problem,” Computers & Industrial

Engineering, vol. 32, pp. 115-127, 1997.

https://doi.org/10.1016/S0360-8352(96)00205-7.
[15] D. Korpyljov, T. Sviridova, S. Tkachenko, “Using of genetic

algorithms in design of hybrid integrated circuits,” Proceedings of

the IXth International Conference on “The Experience of Designing
and Application of CAD Systems in Microelectronics” CADSM 2007,

Polyana, Ukraine, 2007, pp. 302.

https://doi.org/10.1109/CADSM.2007.4297557.
[16] A. Shabalov, E. Semenkin, P. Galushin, “Automatized design

application of intelligent information technologies for data mining

problems,” Proceedings of the 7th Joint IEEE International
Conference on Natural Computation & The 8th International

Conference on Fuzzy Systems and Knowledge Discovery, Shanghai,

China, 2011, pp. 2659–2662.
https://doi.org/10.1109/FSKD.2011.6020026.

[17] Y. Hrytsyshyn, R. Kryvyy, S. Tkatchenko, “Genetic programming

for solving cutting problem,” Proceedings of the IXth International
Conference on The Experience of Designing and Application of CAD

Systems in Microelectronics, CADSM 2007, Polyana, Ukraine, 2007,

pp. 280-282. https://doi.org/10.1109/CADSM.2007.4297550.

[18] E. Semenkin, M. Semenkina, “Self configuring genetic algorithm

with modified uniform crossover operator,” Advances in Swarm

Intelligence, ICSI 2012, Part 1, LNCS 7331, Springer, Heidelberg,
2012, pp. 414-421. https://doi.org/10.1007/978-3-642-30976-2_50.

[19] M. Gen, R. Cheng, Genetic Algorithms and Engineering design, John

Wiley & Sons, 1997, 352 p. https://doi.org/10.1002/9780470172254.
[20] J. Gaber, M. Bakhouya. “An immune inspired-based optimization

algorithm: application to the traveling salesman problem,” Advanced

Modeling and Optimization, vol. 9, issue 1, pp. 105–116, 2007.
[21] L. Grady, E. L. Schwartz, “Isoperimetric graph partitioning for image

segmentation,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 28, issue 3, pp. 469-475, 2006.
https://doi.org/10.1109/TPAMI.2006.57.

[22] P. Larra Naga, C.M.H. Kuijpers, R.H. Murga, I. Inza and S.

Dizdarevic, “Genetic algorithms for the travelling salesman problem:
A review of representations and operators,” Artificial Intelligence

Review, Kluwer Academic Publishers, Printed in the Netherlands,

vol. 13, issue 2, pp. 129–170, 1999.
https://doi.org/10.1023/A:1006529012972.

[23] S. Rana, Examining the Role of Local Optima and Schema

Processing in Genetic Search, 1999.

NATALIYA BOYKO, PhD, an

Associate Professor of the Artificial

Intelligent Systems Department of

Lviv Polytechnic National

University. Scientific interests:

machine learning, data

visualization, intellectual data

analysis, system analysis.

ANDRIY PYTEL is a student of the

Artificial Intelligent Systems

Department of Lviv Polytechnic

National University.

https://doi.org/10.1109/STC-CSIT.2016.7589901
https://doi.org/10.1007/BF00175354
https://doi.org/10.1016/j.cam.2010.12.027
https://doi.org/10.1016/j.eswa.2010.07.006
https://doi.org/10.1007/BF02125403
https://doi.org/10.1016/S0360-8352(96)00205-7
https://doi.org/10.1109/CADSM.2007.4297557
https://doi.org/10.1109/FSKD.2011.6020026
https://doi.org/10.1109/CADSM.2007.4297550
https://doi.org/10.1007/978-3-642-30976-2_50
https://doi.org/10.1002/9780470172254
https://doi.org/10.1109/TPAMI.2006.57
https://doi.org/10.1023/A:1006529012972

