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 ABSTRACT Lately, artificial intelligence has become increasingly popular. Still, at the same time, a stereotype 

has been formed that AI is based solely on neural networks, even though a neural network is only one of the 

numerous directions of artificial intelligence. This paper aims to bring attention to other directions of AI, such as 

genetic algorithms. In this paper, we study the process of solving the travelling salesman problem (TSP) via genetic 

algorithms (GA) and consider the issues of this method. The genetic algorithm is a method for solving both 

constrained and unconstrained optimization problems that are based on natural selection, the process that drives 

biological evolution. One of the common problems in programming is the travelling salesman problem. Many 

methods can be used to solve it, but we are going consider genetic algorithms. This study aims at developing the 

most efficient application of genetic algorithms in the travelling salesman problem. 
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I. INTRODUCTION 

NE of the common problems in programming is the 

travelling salesman problem. Many methods can be 

used to solve it, but we are going consider genetic 

algorithms. This study aims to design the most efficient 

application of genetic algorithms in the travelling salesman 

problem [1, 2]. 

Lately, artificial intelligence has been becoming 

increasingly popular. Still, at the same time, a stereotype has 

been formed that AI is based solely on neural networks, even 

though a neural network is only one of the numerous 

directions of artificial intelligence. This paper aims to bring 

attention to other directions of AI, such as genetic algorithms 

[3, 4]. 

We study the process of solving the travelling salesman 

problem (TSP) via genetic algorithms (GA) and consider this 

method’s issues. 

II. LITERATURE ANALYSIS 

The origin of the travelling salesman problem is unclear. A 

handbook for travelling salesmen, published in 1832, 

mentions the problem and includes examples of tours in 

Germany and Switzerland, but contains no mathematical 

treatment [5-7]. 

It was first considered mathematically in the 1930s by 

Merrill M. Flood, trying to solve a school bus routing 

problem. Hassler Whitney at Princeton University 

introduced the name travelling salesman problem soon after 

[8, 9]. 

There are many methods of solving this problem. Some 

of them give exact results, others only approximate. One of 

the most interesting methods is the method of route 

optimization with the use of genetic algorithms [10, 11]. 

Nils Aall Barricelli conducted the first experiments, 

which involved simulated evolution, in 1945. Later the 
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experiments were also conducted by Nils Aall Barricelli, 

Ingo Rechenberg and Hans-Paul Schwefel. Thanks to 

artificial evolution a well-known optimization method 

appeared [1]. 

The article “Development, a new mutation operator, to 

solve the travelling salesman problem by the aid of genetic 

algorithms” of Murat Albayrak, Novruz Allahverdi [12] 

deals with the study of the method of Greedy Sub Tour 

Mutation for solving the Traveling Salesman Problem. The 

developed GSTM operator was tested with simple GA 

mutation operators. Two different greedy search methods 

and a component that provides distortion in this new operator 

are directly considered. The application of this GSTM 

operator gives much more effective results regarding the best 

and average error values. 

In “Genetic algorithms for the travelling salesman 

problem”, Jean-Yves Potwin [13] considers a classic 

combinatorial optimization problem that is easy to formulate 

but very difficult to solve. The problem is to find the shortest 

tour through a set of N vertices so that each vertex is visited 

exactly once. It is known that this problem is NP-complex 

and cannot be solved exactly in polynomial time. In this 

paper, the author uses a particular problem structure to 

develop complex crossover and mutation operators to encode 

the matrix chromosome. These operators are designed to 

support the ability to implement the solution during the 

search. 

III. MATERIAL AND METHODS 

A. TRAVELLING SALESMAN PROBLEM 

The travelling salesman problem is a problem of finding the 

fastest (most efficient) route between n cities where the way 

must go once through every city. If the problem is presented 

in the form of a graph, then the answer will be the shortest 

Hamiltonian cycle. 

The travelling salesman problem can be presented as in 

[4, 14]: 

• Graph. In this form, the represented cities are displayed 

as vertices, and edges represent the criteria of 

profitability (distance, time). 

• Asymmetric and symmetric problems. The catch in the 

asymmetric problem is that the profitability between 

the cities is dependent on the direction of edges, 

whereas, in the symmetric problem, the law has no role. 

There are two main groups of methods for solving the 

travelling salesman problem, which can be combined [3, 15, 

16]: 

• Precise — they find the precise optimal solution to the 

problem but take a long time to calculate. 

• Heuristic — they give an approximation of the optimal 

route but take notably less time to calculate. 

Genetic algorithms are generally more efficient than the 

complete vocabulary as there is no need to go through all the 

possible combinations. At the same time, genetic algorithms 

are heuristic that does not guarantee a precise solution, but 

only the best possible approximation with the given amount 

of time (iterations) [17, 18]. 

B. GENETIC ALGORITHMS 

The genetic algorithm is a method for solving both 

constrained and unconstrained optimization problems that 

are based on natural selection, the process that drives 

biological evolution. 

Genetic algorithms can be broken down into the 

following steps [19, 20]: 

1. Creation of the base population. 

2. Iterations of the same actions (Evolution) 

− Rating. 

− Selection. 

− Cross-breeding and/or mutation. 

− Formation of the new generation in the case the 

result was not achieved. 

3. Obtaining the resulting generation presented in 

Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Stages of the genetic algorithm 

During the creation of the base, population individuals 

are generated with mostly randomized parameters. Each 

parameter is a specific gene, and a set for those parameters 

form a chromosome. In our case, the most efficient type of 

data to store in a chromosome are route options. For instance, 

we have 5 cities A, B, C, D and E; inside the chromosome-

specific routes, e.g., ABCDE, BADCE, BDCEA. 

With the base population ready, we can start a cyclic 

process for the goal of creating a population that would 

become more and more optimized with each iteration. 

The first step is for the population to go through a rating 

process where a specific adaptability score is assigned for 

each individual. 

Now we can commence our selection. We do this by 

selecting the best-fitted individuals for their cross-breeding 

and/or mutation [6, 21]. 

To improve the level of adaptivity of the population in 

classic genetic algorithms, the best individuals are bred or 

mutated and sometimes both. 
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The process of cross-breeding imitates sexual 

reproduction. To create a new individual (child), 2 

individuals must be called parents of the child. To inherit 

parent traits, child chromosomes are formed in a certain way 

by combining parent genes. This process is called a 

crossover. 

When both mutation and cross-breeding have been 

performed to avoid a situation in which the population did 

not improve or got stuck on a particular iteration, some, if 

not all, individuals are mutated. In other words, one or some 

genes in a chromosome are replaced. Even though this 

mutation process is not mandatory as mutations can improve 

the rate of approximation to the result and slow it down [5, 

20]. 

After cross-breeding and mutating, it is mandatory to 

correct the number of individuals in the population not to 

increase in size after each iteration. Only the most adapted 

individuals will go on into the next generation (the rest will 

be annihilated). 

If the generation is not adapted enough, we repeat rating, 

selecting, cross-breeding/mutation and forming the new 

generation. 

If the new generation is adapted enough, it can be 

considered to be adjusted. In our case, the route is as short as 

possible, and any improvements are insignificant or 

impossible [1, 10, 21, 22]. 

C. ANALYTICAL PART 

The complexity of using this method is that it is not possible 

to use a regular crossover or a mutation.  

Crossovers are generally presented as simple 

combinations of different parts of the parent chromosomes 

in classic genetic algorithms. For instance, let us say we have 

the following parents: 

 
В D A E C 

Parent 1 

A D E C B 

Parent 2 

Then our children can have the following appearance. 

В D A C B 

Child 1 

A D E E C 

Child 2 

As we can see, the regular crossover does not apply to 

this problem as it is possible to get to one city two times and 

do not get to another at all. 

The same situation will occur with the use of the expected 

mutation. 

This situation can be avoided if the complexity of the 

crossover and the mutation is increased. 

D. THE FIRST STRATEGY (SIMPLE) 

As mentioned before, combining halves of parent 

chromosomes will not be sufficient to avoid getting to the 

same city twice merely differently. The simplest way to 

resolve this is to change the city, which is repeated to a city 

that is not present. But at the same time, this method entails 

that each possible descendant may have several options. 

Back to the same example. 

В D A C B 

Parent 1 

A D E E C 

Parent 2 

Is incorrect. After the correction, they will have the 

following representation: 

 

В D A C E 

Child 1 

A D E В C 

Child 2 

The main drawback of this method is the large number of 

iterations required to find the repeats that are needed to be 

completed for this cross-breeding. As a result, this method is 

relatively inefficient in terms of runtime. 

Even though correcting children is similar to mutation, a 

full-fledged mutation still needs to be implemented because 

otherwise, child elements with an identical genome might 

cease to evolve. 

E. THE SECOND STRATEGY (CYCLE) 

The previous strategy was based on a basic crossover that 

had to be improved so that children could form a 

Hamiltonian cycle that would create a large quantity of 

children variations. 

If we admit the premade movement directions taken from 

parent chromosomes, then there would be no reason to 

correct the children. As a result, by using this method, we 

acquire a wanted amount of children and we do not depend 

on the number of repeating cities. 

The idea of this strategy is that the combination of parent 

genes should immediately form a Hamiltonian cycle [3, 5, 

14, 7]. 

In addition to ensuring that the child chromosome would 

not repeat its parent, it is necessary to limit the length of the 

parents’ chromosome from which the child will be built. 

To understand this method, let us look at the following 

example. We have our parents: 

 
E A B D C 

Parent 1 

B C A E D 

Parent 2 

Suppose we are allowed to copy up to three genes in one 

parent in a row. 

To begin with, let us take a part of genes from one of the 

parents, three genes from parent 1 to be exact. 

Then we shall take the other fathers’ gene (BCAED). 

Next, we choose a direction leading to a city in which we 

have not been yet. And because we are looking for a cyclic 

route, we are not restricted to only moving from the previous 

gene to the following gene(city), but we can also move from 

the first to the last one and vice versa. In this case, we can 

both move to D and C. For the sake of optimization, let us 

assume that moving to the right has a higher priority, so we 

add C. 

After that, we will be moving through the parent in the 

same direction until we hit a city to which we have been 

before. Then we move to the next parent and repeat the 

previous step. This continues until we reach all the cities. 

In our case, after C comes A, to which we have been 

before, we also cannot move backwards, and because of that, 

we move to the next parent. Here we can go to D, and that is 
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going to be our last gene. As a result, we get: 
E A B C A 

F. THE THIRD STRATEGY (NEAREST) 

Based on the second strategy, a new, more efficient 

crossover can be created. In the second strategy, we have up 

to 4 different moves. If the most efficient move can be 

chosen, then the runtime of the algorithm can be 

substantially improved while at the same time drastically 

decreasing the number of generations needed. However, the 

complexity of choosing the most efficient moves will 

increase the time designated for computing in a single age. 

To make sure that the complexity of the algorithm will 

not increase, the restriction regarding copying the second 

parent’s sequence shall be ignored. As a side effect, this 

creates an issue where the child can become a carbon copy 

of the parent: yet, it can be solved by either mutating such 

child or by banishing it from the general population. 

Going back to our previous example, our parents: 
E A B D C 

Parent 1 

B C A E D 

Parent 2 

In this case, we are not just going to the first available 

city, but instead, we choose an optimal path. A starting gene 

is randomly chosen, so for simplicity sake, in this example, 

the first parent gene will be selected, let it be E. Next, we 

have the options between A, C or D, and the shortest one will 

be chosen. Given that we have not specified the distances 

between the cities, we assume that C is the fastest. And as a 

result, we get more children who are more efficient than their 

parents. 

G. MUTATION 

To simplify the work, we will take the mutation method from 

the first method, i.e., the process of mutation follows the 

process for a standard genetic algorithm. Then we will 

correct the cities which are missing. As a result, we swap the 

places of two random genes. 

The chromosome before mutation: 
В D A E C 

and after mutation: 

В C A E D 

We could also look for the most efficient swap to 

improve the algorithm, but that would only waste resources 

as it will amount too little to optimization gain. 

H. SELECTION OF INDIVIDUALS FOR REPRODUCTION 

The next problem is the selection of individuals who will be 

bred and the way how they will be bred. The most 

straightforward and efficient method is sorting the 

individuals according to some coefficient and pairwise 

crossing of the most adapted individuals [9, 22].  

The fact is that crossing the same parents will yield the 

same individual. To avoid breeding the same pairs of parents, 

each individual will have its list of partners with whom it has 

already created offspring and its ability to generate with 

these individuals will be blocked. 

Development of the software solution 

The structure of the software solution can be separated 

into three parts [23]: 

● Structural specifics of the travelling salesman 

problem are described in the structural interpretation 

of cities and connections between them. 

● The genetic algorithm is the central aspect of this 

problem because the algorithm is described inside it. 

● Cross-breeding and mutation implementation. 

Structural specifics of the travelling salesman 

problem. 

To work with genetic algorithms, input data is required, 

and in this particular problem, it is presented in the form of 

a list of cities between which we are looking for the shortest 

route. 

To consider the graphic formulation of the route, cities 

are represented as points with their names on the coordinate 

plane. 

 

Figure 2. UML diagram of the city class 

When selecting the structure to hold the data, it is 

essential to consider that connections between the cities are 

more important than the cities themselves (Fig. 2). In 

addition, it is wiser to store the calculated distances and 

retrieve them rather than constantly recomputing them. So, 

for this purpose, we will realize a sort of map which will keep 

all the cities and spaces between them. To ease the access to 

data inside the map, the list of cities and the distances 

between them will be presented as hash maps. Cities will be 

accessed through their names, and the spaces will be 

accessed by using a key that encodes the characters of cities 

and distances between them [15]. 

Because the algorithm is supposed to work with only one 

instance of the map, thus, we should restrict its access to 

creating multiple maps. This can be done by implementing a 

map based on the Singleton pattern. 

Also, do not repeat creating a map every time we call the 

algorithm, options of saving the map to a file, loading it from 

the said file and generating it with randomized data have 

been implemented – the process of developing a map (Fig. 

3). 

Genetic algorithm in this specific problem 

An individual is the smallest structural unit in any genetic 

algorithm, and all individuals have a chromosome and an 

adaptivity score. In our case, a chromosome is a sequence of 

cities, a.k.a is one of the possible routes and the adaptivity 

score is the ratio of the shortest known route to the length of 
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the current individual [5]. 

To determine the best-adapted individuals, we need to 

compare them by their adaptivity score, and for this, a 

“Comparable” will be used. 

 

Figure 3. UML maps and their dependencies 

The first generation will be generated with random 

routes. 

We get our list of cities from the map, and for this, every 

individual should also have access to the map. Individuals 

should also have the same access to the values of the shortest 

route and the size of their chromosomes (Fig. 4) [6]. 

 

Figure 4. Class diagram of the individual 

Evolution occurs in each generation. Generation is an 

imitation of the life cycle wherein every generation has a 

population of individuals and the breed within that 

population. Only the individuals with the highest adaptivity 

score are kept alive [14]. 

Generations must be limited by their size and the number 

of individuals who have the right to breed. These parameters 

can be changed to observe the change in evolution. 

For evolution to occur, we need to create our starting 

generation and other generations based on previous ones. 

Generating the starting generation 

We need to implement a method for removing 

individuals whose adaptivity score is too low because not 

every individual can reproduce or be moved to the next 

generation. 

And an option to get the best individual in the generation 

has been added to collect additional static data (Fig. 5). 

 

Figure 5. Class diagram of the individual 

To generalize the algorithm and data, a Calculation class 

has been created in which the following data is stored: 

− Size of the population. 

− Number of generations. 

− Percentage of individuals who can reproduce. 

− Error(𝜺) that determines the stopping of the algorithm. 

− Reproduction type. 

The two main methods are shown below. The first one 

launches the algorithm with the required parameters, and the 

second one saves the resulting data into a file. 

Implementation of the cross-breeding and mutation 

methods 

Cross-breeding and mutation methods are implemented 

inside an enumerative class where each element represents 

one method of cross-breeding and mutation. 

Also, the ability to acquire descendants from the breeding 

individuals has been added to that class. 

The generalized representation of this class (Fig. 6): 

 

 

Figure 6. Class diagram of the individual 
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Inside the first method, “crossover”, everything takes 

place in two steps. The first step is the combination of parent 

chromosomes, and the second step is the formatting of the 

resulting chromosome to make sure it fits the standard 

model. 

Mutation, on the other hand, is realized as a swap of two 

random genes. 

Inside the second method, “mutation”, everything is a bit 

more complicated. First of all, an attempt is made to copy 

parents’ transitions, and if at some point it becomes 

impossible to do so, then all the cities which were not visited 

are added to it. 

The third method, “posterity”, is similar to the second 

one but slightly changed. The shortest possible parent 

transition is selected. 

Because both the second and the third methods have a 

possibility where the parents’ steps cannot be repeated, we 

need to add all the cities which were not visited by those 

chromosomes. 

IV. RESULTS 

We will conduct a study on equal terms for each one of the 

methods. For this, we shall use the same map and the starting 

generation (Fig. 7). 

 
Figure 7. View of the cities on the coordinate plane 

Let us generate a map with 20 cities (Table 1). 

Table 1. Coordinates 

Name x y 

A 1 10 

B 19 0 

C 9 13 

D 15 12 

E 16 1 

F 16 15 

G 11 3 

H 9 10 

I 13 18 

J 18 3 

K 12 1 

L 18 10 

M 6 18 

N 4 9 

O 11 19 

P 11 18 

Q 0 3 

R 8 15 

S 8 7 

T 11 1 

 

Analyzing the efficiency of the cross-breeding method 

We conduct a study on 50 generations, with each size 

being 100 individuals and the possibility to reproduce in 90% 

of the population. 

In the first method, "crossover", the most efficient route 

is "N-A-S-B-E-J-G-T-K-L-D-F-O-M-R-C-P-I-H-Q" 

(Fig. 8). Where its length is 109.67769964641892, and the 

runtime is 5501 ms, 110 ms per iteration. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. View of the first strategy (Simple) 

In the second method, “mutation”, the most efficient 

route is “C-A-H-R-N-Q-S-T-K-J-B-E-G-L-F-I-D-M-O-P” 

(Fig. 9). Where its length is 118.9046735493942, and the 

runtime is 3865 ms, 77 ms per iteration. 

Figure 9. View of the second strategy (Cycle) 
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In the third method, the most efficient route is "H-C-R-

M-P-O-I-F-D-L-J-B-E-K-T-G-S-Q-A-N" (Fig. 10). Where 

its length is 77.69, and the runtime is 2341 ms, 46 ms per 

iteration. 

Figure 10. View of the third strategy (Nearest) 

As we can see, the third algorithm, “posterity”, has the 

best runtime and gives us the shortest final route. The second 

algorithm is average in both runtime and the final route. And 

the first one has the worst runtime and returns mediocre 

results. 

An analysis of the approximation to the optimal 

solution 

As we can see from the chart (Fig. 11), the third method 

gives us the best results, and the effects of simple and cycle 

methods are quite similar. 

The nearest algorithm has the most significant decline, 

and it needs fewer generations to achieve the optimal 

solution. 

The cycle gave us some interesting results (Fig. 11). It 

has a jump-like approximation, and it happens much less 

often than in other algorithms. And as a result, the best-fitted 

individual survives for much longer than other simple and 

nearest algorithms. 

 

 

Figure 11. Chart of the speed of approximation to the optimal 

solution 

 

V. CONCLUSION 

As we can see, genetic algorithms are an excellent way to 

find the best possible solution. They have a reasonably short 

execution when one iteration takes about 46-110 ms in 20 

cities. We considered three methods of crossing, and the 

third of them was the most effective. This is because the third 

has one feature from the nearest neighbour, given that each 

child has better adaptability than its parents. 

The paper proposes three methods of intersection. After 

all, in classical genetic algorithms, crossover occurs by 

simply linking different halves of both parents’ 

chromosomes. Therefore, it is not suitable for solving our 

problem, because with its help we will get to the same city 

twice and will not visit other cities. A similar situation will 

occur when using a specific mutation. Therefore, if you 

complicate crossover and mutation, you can avoid this 

situation. 

To do this, use three strategies. The first is to replace the 

recurring city with the missing one. At the same time, this 

method assumes the fact that each possible offspring may 

have several options. The disadvantage of this method lies in 

the fact that many iterations need to be performed for one 

intersection to find repetitions. 

The second strategy is the bonding of parental genes to 

form a Hamiltonian cycle. Based on the second method, you 

can create an even more efficient crossover. 

The third strategy is choosing the most efficient move, 

speeding up the algorithm, and reducing the number of 

required generations. A side effect of this strategy is that the 

offspring can become a copy of the father. However, this can 

be solved by mutating the offspring or removing it from the 

general genetic population. The third strategy has a feature 

of the method of the nearest neighbour, which, in turn, makes 

each offspring more effective than his father. 

Therefore, the article describes various aspects of the 

study of genetic algorithms and mechanisms for their 

optimization for the problem of the seller-travelled. 
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