

560 VOLUME 20(4), 2021

Date of publication DEC-31, 2021, date of current version NOV-02, 2021.

www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209

Online ISSN 2312-5381

DOI 10.47839/ijc.20.4.2444

Fast Algorithm for Calculating Transitive

Closures of Binary Relations in the

Structure of a Network Object

VLADIMIR BATSAMUT, SVIATOSLAV MANZURA, OLEKSANDR KOSIAK,

VIACHESLAV GARMASH, DMYTRO KUKHARETS
Research Center, National Academy of the National Guard of Ukraine, 3, Zakhysnykiv Ukrayny, Kharkiv, Ukraine, (e-mail: batsamut@ukr.net,

ivanguvv@gmail.com, kosoj12345@gmail.com, 2708garmash@gmail.com, 13dkma@gmail.com), www. nangu.edu.ua

Corresponding author: Vladimir Batsamut (e-mail: batsamut@ukr.net).

This research is supported by the project № 0120U002173 funded by the Commander of the National Guard of Ukraine.

 ABSTRACT The article proposes a fast algorithm for constructing the transitive closures between all pairs

of nodes in the structure of a network object, which can have both directional and non-directional links. The

algorithm is based on the disjunctive addition of the elements of certain rows of the adjacency matrix, which

models (describe) the structure of the original network object. The article formulates and proves a theorem that

using such a procedure, the matrix of transitive closures of a network object can be obtained from the adjacency

matrix in two iterations (traversal) on such an array. An estimate of the asymptotic computational complexity

of the proposed algorithm is substantiated. The article presents the results of an experimental study of the

execution time of such an algorithm on network structures of different dimensions and with different connection

densities. For this indicator, the developed algorithm is compared with the well-known approaches of Bellman,

Warshall-Floyd, Shimbel, which can also be used to determine the transitive closures of binary relations of

network objects. The corresponding graphs of the obtained dependences are given. The proposed algorithm (the

logic embedded in it) can become the basis for solving problems of monitoring the connectivity of various

subscribers in data transmission networks in real time when managing the load in such networks, where the

time spent on routing information flows directly depends on the execution time of control algorithms, as well

as when solving other problems on the network structures.

 KEYWORDS adjacency matrix; algorithm; computational complexity of the algorithm; disjunctive addition

of matrix elements; network object; transitive closure.

I. INTRODUCTION

N his activity, a person constantly collides with objects

that have a network structure. Quite often, these objects

have a large number of nodes and connections between them.

At the same time, individual elements of such objects can be

located at a considerable distance from each other (be

scattered over a large territory), which, when controlling the

connectivity (reachability) of certain nodes, leads to the need

to model such objects and solve some problems. One of the

tasks on the network objects is the task of constructing the

transitive closures (TC) of binary relations. Usually, the

tasks of building the TC binary relations arise in the field of

logistics, control of the topology of transport

communications, development and construction of large

objects based on a network structure, management of

information flows in data transmission networks, building

queries to distributed databases and other areas.

Today, the most well-known classical algorithms for

constructing the TC binary relations include the algorithms

of Bellman [1], Warshall-Floyd [2-6], Shimbel [7], Purdom

[8], Depth-first search (DFS) [9, 10].

The rapid development in the second half of the 20th

century of computing systems and the need to manage

databases became an impetus in the development of

I

mailto:batsamut@ukr.net
mailto:ivanguvv@gmail.com
mailto:kosoj12345@gmail.com
mailto:2708garmash@gmail.com
mailto:batsamut@ukr.net

Vladimir Batsamut et al. / International Journal of Computing, 20(4) 2021, 560-566

VOLUME 20(4), 2021 561

specialized algorithms for constructing the TC. To solve

these problems, many algorithms were developed and

proposed at that time, which, in addition to constructing the

TC itself, also optimize structures for representing and

storing data in the memory of the computing system. These

algorithms include algorithms that were presented in [11-14]

and a number of others. A special attention deserves the work

of H. Jagadish [15], in which the author proposed an

indexing scheme that allows storing the computed TC in a

compressed form, which makes it possible to reduce the size

of the memory used.

Recently, the notion of TC has been increasingly used in

substantiating the logic of computations based on inductive

reasoning [16-18], as well as in the development of software

tools for searching information on the Internet [19].

A separate direction in the development of algorithms for

constructing the TC has become the technology, which is

based on the search in the structure of the graph of strongly

connected components, followed by the search for

connections between the components. This approach was

applied in the algorithms of P. Purdom [8], J. Dzikiewicz and

M. Sysło [20, 21], J. Eve and R. Kurki-Suonio [22],

L. Schmitz [23]. A feature of such algorithms is the fact that

they work on directed graphs (structures). This feature

imposes a number of restrictions on the solution of some

practical problems.

Some authors use the DFS-procedure as a basic algorithm

to construct the TC. From this position of view, the work of

Y. Ioannidis, R. Ramakrishnan and L. Winger can be noted

[24]. It should be said here that the DFS-procedure is also

used in the algorithms already mentioned above, described

in [8] (P. Purdom) and [10] (R. Tarjan).

The algorithms mentioned in the article, due to their

narrow specialization, have functional redundancy (search of

the strong component, search and identifying of the shortest

patch), which, when constructing the TC binary relations,

leads to increased execution time. In some areas, where the

time for making a control decision is commensurate with the

execution time of the algorithm, this is critical and

unacceptable. Therefore, the development and application

of fast algorithms for calculating the TC is a topical issue in

the theory of computation.

In this article, we will show that due to the use of

disjunctive addition procedures (disjunctive nesting into

each other) of rows of the adjacency matrix that models the

original network object, it is possible to reduce the

execution time of the algorithm for constructing the TC of

binary relations of network objects.

The idea of disjunctive nesting of rows of an adjacency

matrix for constructing the TC binary relations in the

structure of an initial arbitrary graph was first expressed in

the work [25].

The algorithm proposed in this work uses two adjacency

matrices
1S and

2S dimensions nn , where n – the

number of vertices in the original graph G . The algorithm

performs row-by-row traversal of the matrix
1S , and if some

of its elements 01 ijs , then the element-wise disjunctive

embedding of the j-th row into the i-th row is carried out,

namely, Expression 1 is used:

112

jkijij ss:s = , where n,j,i 1= , n,k 1= . (1)

That is, when processing a certain vertex, all arcs

originating from it are processed. Processing of some arc

()j,i consists in adding to the graph G arc ()k,i for each

arc ()k,j , outgoing from the vertex j. Thus, breadth-first

search (BFS) [26] is implemented, which is obvious from the

operation of disjunctive addition of the corresponding rows.

However, unlike the well-known BFS, this search is local in

nature every time. The place of the beginning of the next

search is determined by the number of the processed vertex

and its place in the structure of the graph G (see Figure 1).

We call this processing a Local Breadth-First Search (LBFS)

procedure.

Figure 1. А fragment of the work of the LBFS procedure

(the analyzed vertices and constructed TC are marked in

red)

Results of analysis of array elements
1S entered into

2S
. After such traversal, an element-wise comparison of the

arrays is performed
1S and

2S . If they do not match, the

elements of the array
1S are rewritten into

1S and the

traversal of the array repeats. A sign of stopping the

algorithm is the identity of the arrays
1S and

2S , or doing

1−n iterations of the array
1S , at the same time it is

asserted that,
+== GRSS 21

, where
+

GR – an array that

carries information about the TC of the binary relations of

the original graph G .

The computational complexity of such an algorithm is of

the order of O(n4), since
3n addition and assignment

operations are performed on each traversal (see Expression

LBFS

LBFS

LBFS

…
… … …

…

…

…

…
…

…

LBFS

LBFS

 Vladimir Batsamut et al. / International Journal of Computing, 20(4) 2021, 560-566

562 VOLUME 20(4), 2021

1), and such traversals in the asymptotical must be performed

1−n times.

However, in this article we will show that TC of binary

relations of the original graph (array
+

GR) can be constructed:

firstly, for a significantly smaller number of traverses of the

original adjacency matrix (
1S); secondly, using only one

array, which together leads to a decrease in the

computational complexity of such an algorithm, as well as to

a decrease in the used hardware resources – the memory of

the computing system.

II. MATERIALS AND METHODS

A. THE CONSTRUCTION OF THE TRANSITIVE

CLOUSURE OF A NETWORK OBJECT BY THE METHOD

OF DISJUNCTIVE NESTING OF ROWS OF AN

ADJACENCY ARRAY

The optimization of such an algorithm, at the stage of

disjunctive nesting of rows, can be carried out if the terms

are analyzed before disjunctive addition. Obviously, if

there is some element 11 =ijs in the i-th line or some element

01 =jks in the j-th line, then the operation described by

Expression 1 is redundant. Considering that the comparison

operation is faster than the addition and assignment

operations, on large n , you can get a significant reduction

in the execution time of the algorithm.

The results of disjunctive nesting of rows will not be

entered into
2S , but accumulated in a single current array

GS . Taking into account the above corrections, we

formulate and prove the following theorem.

 Theorem 1. The transitive closure matrix
+

GR of the

original arbitrary graph G is calculated on the basis of the

adjacency matrix GS in two rounds (m=2) of the current

array by disjunctive embedding into the analyzed row of

those rows whose indices correspond to the column indices

of nonzero elements in the analyzed row.
Proof: Consider separate sections of some initial graph

G . Suppose that two arbitrary vertices s and t of the graph

G are transitively closed. If so, then between them there are

a number of paths connecting them. Then, applying the

procedure L , on the first traversal of the adjacency array

for any vertex i , a certain arc ()k,i can be added to the

graph G . In this case, two situations are possible:

(a) ki  or tk = ;

(b) ki  or tk = .

In the first case, a certain path

() () () () t,i,...,i,i,i,i,i,sM mst 32211= is formed in the

graph G for which mi...iiis  321 . For example,

path () () 1224 ,,,M st = , see Figure 2.

Figure 2. Formation of a section of a path with

monotonically decreasing numbers of vertices

In the second case, the path will have the

mi...iiis  321 property. For example, the path

() () 5331 ,,,Mst = (see Fig. 3).

Figure 3. Formation of a track section with monotonically

increasing numbers of vertices

Thus, after the completion of the first traversal of the

adjacency array GS , in the structure of the intermediate

graph between two arbitrary vertices s and t , it is possible

to select the path sections with monotonically decreasing and

increasing numbers of vertices. Let us consider the behavior

of the algorithm on such structures.

Since the processing of arcs (viewing the rows of the

current array) occurs in the order of increasing numbers of

the source vertices, then on the second traversal in situation

(a), when processing some arc ()1i,s , all previous ones

() () ()t,ii,i,i,i 13121 ... will be taken into account, which will lead

to the introduction of the desired transitive arc closure ()t,s .

For example, processing an arc ()34, takes into account

both the arc ()23, and the previously entered arc ()13, , which

adds arcs ()24, and ()14, to the desired structure,

respectively (see Figure 4). The numbers indicate the order

of adding arcs.

Figure 4. Construction of the TC on a section of a path with

monotonically decreasing numbers of vertices

In situation (b), the arc ()1i,s will be encountered first

(see Figure 5). Its processing will cause the appearance of

s t 4 2 3 1

s t 2 4 5 3 1

s t 3 1 2 4

2

1 3

Vladimir Batsamut et al. / International Journal of Computing, 20(4) 2021, 560-566

VOLUME 20(4), 2021 563

the arc ()2i,s , since there is an arc ()21 i,i in the graph. Since

12 ii  , the arc ()2i,s will also be processed (the

corresponding unit element in the generated array
+

GR is

located to the right of the element responsible for the arc

()1i,s). Processing it will result in the appearance of an arc

()t,s since there is an arc ()t,i2
, etc.

Figure 5. Construction of the TC on a section of a path with

monotonically increasing numbers of vertices

Thus, such an algorithm to construct the TC of binary

relations of the network object (array definition
+

GR) enough

two traversals (m=2) of the stream array. The theorem is

proved.

The principle of operation of the algorithm (let us call it

DDAA – Double Disjunctive Addition Algorithm), based on

Theorem 1, is generally described by the following

Expressions 2 and 3:

if  0ijs jkij

m

ij ss:r ==1 , n,j,i 1= , n,k 1= , (2)

112 === = m

jk

m

ij

m

ij rr:r , n,j,i 1= , n,k 1= , (3)

where m – is the number of traversal of the current

matrix, n – is the dimension of the original graph G .

Obviously, the complexity of this algorithm can be

estimated as O(n3).

B. AN EXAMPLE OF CONSTRUCTING THE TRANSITIVE

CLOUSURE

Let the structure of an arbitrary directed graph G be given

by the adjacency matrix GS , Expression 4.

001005

000004

000103

000012

100001

54321

l

l

l

l

l

lllll

SG =
. (4)

After the completion of the first traversal (m=1) of the

matrix elements by Algorithm DDAA, the intermediate

array of the TC will be represented by Expression 5, and

after the second traversal (m=2) by Expression 6.

101115

000004

101113

101112

101001

54321

1

l

l

l

l

l

lllll

Rm

G ==
. (5)

101115

000004

101113

101112

101111

54321

2

l

l

l

l

l

lllll

RR m

GG == =+
. (6)

The algorithm will stop after the second traversal, and the

array
2=m

GR will correspond to the desired array
+

GR , which

describes the TC binary relations in the original graph G . A

further increase in the number of traversals (m=3) will not

lead to a change in the array
2=m

GR , which confirms the

theorem proved above and the correctness of the developed

algorithm.

C. SOFTWARE IMPLEMENTATION

Considering the above, the DDAA algorithm proposed in this

article can be implemented as the following procedure:

procedure TForm1.DDAA;
var i, j, jj, n: Integer;

 m: Short;

begin

for m:=1 to 2 do

for i:=0 to n-1 do

for j:=0 to n-1 do

If (S[i,j]=1) and (i<>j) then

begin

for jj:=0 to n-1 do If

(S[i,jj]=0) and (S[j,jj]=1) then S[i,jj]:=1;

end;

end.

s t 2 4 3 1

2

3 1

 Vladimir Batsamut et al. / International Journal of Computing, 20(4) 2021, 560-566

564 VOLUME 20(4), 2021

III. RESULTS AND DISCUSSION

A. THE EXPERIMENTAL ESTIMATION OF THE

COMPUTATIONAL COMPLEXITY OF THE ALGORITHM

In the course of the experiment, the dependence of the

execution time of various algorithms on the dimension of

the network object (test task) is established as well as the

density of the edges in it. In particular, this approach was

applied and described in [27, 28]. According to this

indicator, the developed DDAA algorithm was compared

with the well-known classical algorithms of Bellman

(computational complexity O(n3) [29]), Warshall-Floyd

(computational complexity O(n3) [29]) and Shimbell

(computational complexity O(n4) [7]). The choice of these

algorithms is not accidental, since they are used in practice,

due to its low computational complexity and ease of

implementation. At the same time, it was noted in [7] that

the most efficient is the Warshall-Floyd algorithm,

appropriately programmed.

For the correctness of the experiment, all four algorithms

were programmed by one programmer. Programming

environment was Delphi 7.0, Object Pascal language. The

experiment was carried out on the same computer.

B. THE EXPERIMENT LAYOUT AND RESULTS

To plot the dependency graphs, the sizes of test tasks were

changed in the range 10010,n = with a step of 10, where n –

the number of vertices of the graph that models the network

object. At each step, the time spent by each investigated

algorithm on solving 1000 test tasks was recorded. Next, the

average time spent on solving the one task by each algorithm

was calculated.

The input data was formed in two variants:

(a) at each step, the same test task of the corresponding

dimension n (stationary task) was used;

(b) at each step, a set of the different test tasks of the

corresponding dimension n was used. The density (number)

of nonzero elements in the original matrix GS was set by a

generator of random integers from the set {0,...,
2n } –

(dynamic tasks).

The curves were built in the mathematical package

MathCAD from the points obtained during the experiment.

The advantages of the proposed DDAA algorithm over

the Warshall's algorithm when forming the input data

according to variant (a) for dimensions n=30 reach about

8%, and for n=100 already 14% (see Figure 6). The

advantage over the Bellman's algorithm is 35...50% for all

dimensions that were considered during the experiment.

With the input data generated according to variant (b), the

execution time of the DDAA algorithm is less than that of

the Warshall algorithm by an average of 45...60%,

depending on the dimension of the test task. Approximately

the same indicators are retained in comparison with the

Bellman's algorithm.

Figure 6 presents the dependences obtained for

discharged, but coupled structures. That is, the

corresponding data arrays were characterized by 6...10%

content of nonzero elements of the total number of elements

in the array.

Figure 6. The graph of the dependence of the execution

time on the dimension of stationary tasks, (variant (a))

When solving dynamic tasks (variant (b)), the execution

time of all algorithms increased (see Figure 7). A sharp

increase is observed in the Warshall algorithm. This is

explained by the fact that in case (b) the input data sets were

denser and were characterized on average by 45...55%

content of nonzero elements, the analysis of which the

Warshall algorithm spent more time on.

Figure 7. The graph of the dependence of the execution

time on the dimension of dynamic tasks, (variant (b))

Bellman's and Shimbel's algorithms differ in terms of

execution time both under the conditions of variant (a) and

variant (b), since they do not contain conditional operators,

and therefore, without analyzing the values of array

elements, they execute three nested loops. However, the

execution time of these algorithms is longer than that of other

algorithms.

The logic that is implemented in DDAA algorithm

assumes the execution of conditional operators, however,

due to this, the algorithm does not perform redundant

operations of disjunctive nesting of rows of the adjacency

array, and does not perform unnecessary assignment

operations, which makes it more efficient. The increase in

Vladimir Batsamut et al. / International Journal of Computing, 20(4) 2021, 560-566

VOLUME 20(4), 2021 565

the execution time for DDAA algorithm on different

dimensions of test tasks during the formation of input data

arrays for variant (b) in comparison with variant (a) was

14...30%. For the Warshall algorithm, this indicator was

31...58%.

IV. CONCLUSIONS

Theoretical research in the field of connectivity of network

objects made it possible to formulate and prove the theorem

on the possibility of constructing the TC of binary relations

of network objects by disjunctive nesting of the

corresponding rows of an adjacency array in two rounds of

such an array.

The DDAA algorithm developed on the basis of this

theorem is accurate, and its computational complexity is less

than that of the known analogs and in asymptotics is of the

order of O(n3).

The advantages of DDAA algorithm over its closest

competitors (Bellman's and Warshall's algorithms) on all

considered dimensions of test tasks generated by variant (b),

on average, are 1,8...2 times. The nature of the trends

presented in Figure 7 allows us to assert that this pattern will

also persist on network objects with a higher dimension than

the one that was selected to be the maximum (n=100) during

the experiment.

The algorithm works with both undirected and oriented

structures which makes it versatile.

The proposed algorithm can find its application in

solving adaptive routing problems in data transmission

networks when managing incoming load to eliminate

blockages in such networks [30], where the time spent on

routing information flows (individual packets) directly

depends on the execution time of link state algorithms (Link

State Algorithms, LSA). In addition, LSAs must be fairly

simple, not requiring a lot of computational resources.

We consider that the DDAA algorithm proposed in the

article fully meets all these requirements.

References

[1] R. Bellman, “On a Routing Problem,” Quarterly of Applied

Mathematics, vol. 16, issue 1, pp. 87-90, 1958.
https://doi.org/10.1090/qam/102435.

[2] R. Floyd, “Algorithm 97: Shortest path,” Communications of the ACM,

vol. 5, issue 6, 345 p., 1961, https://doi.org/10.1145/367766.368168.
[3] S. Hougardy, “The Floyd-Warshall algorithm on graphs with negative

cycles,” Information Processing Letters, vol. 110, no. 8-9, pp. 279-

281, 2010. https://doi.org/10.1016/j.ipe.2010.02.001.
[4] S. Warshall, “Algorithm on Boolean matrices,” Journal of the ACM,

vol. 9, issue 1, pp. 11-12, 1962.

https://doi.org/10.1145/321105.321107.
[5] H. Warren, “A modification of Warshall’s algorithm for the transitive

closure of binary relations,” Commun. ACM, vol. 18, issue 4, pp. 218-

220, 1975. https://doi.org/10.1145/360715.360746.
[6] Z. Ding, W. Shu and M. Wu, “FPGA based parallel transitive closure

algorithm,” Proceedings of the 2011 ACM Symposium on Applied

Computing SAC’11, March 2011, pp. 393-394.
https://doi.org/10.1145/1982185.1982270.

[7] A. Shimbel, “Structural parameters of communication networks,”

Bulletin of Mathematical Biophysics, vol. 15, issue 4, pp. 501-507,
1953. https://doi.org/10.1007/BF02476438.

[8] P. Purdom, “A transitive closure algorithm,” Bit 10, vol. 1, 1970,

pp. 76-94. https://doi.org/10.1007/BF01940892.

[9] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to

Algorithms, Second Edition. Section 22.3: Depth-first search, MIT

Press and McGraw-Hill, 2001, pp. 540-549.
[10] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM J.

Computing, vol. 1, issue 2, pp. 146-160, 1972.

https://doi.org/10.1137/0201010.
[11] R. Agrawal, S. Dar and H. Jagadish, “Direct transitive closure

algorithms: Design and performance evaluation,” ACM Trans.

Database Syst., vol. 15, issue 3, pp. 427-458, 1990.
https://doi.org/10.1145/88636.88888.

[12] Y. Chen, “On the graph traversal and linear binary-chain programs,”

IEEE Transactions on Knowledge and Data Engineering, vol. 15,
pp. 573-596, 2003. https://doi.org/10.1109/TKDE.2003.1198392.

[13] S. Dar, R. Ramarkrishnan, “A performance study of transitive closure

algorithm,” Proceedings of the SIGMOD International Conference,
Minneapolis, Minnesota, USA, 1994, pp. 454-465.

https://doi.org/10.1145/191843.191928.

[14] A. Velasquez, S. Jha, “Brief announcement: Parallel transitive closure
within 3D crosspoint memory,” Proceedings of the 30th Symposium

on Parallelism in Algorithms and Architectures SPAA '18, July 2018,

pp. 95-98. https://doi.org/10.1145/3210377.3210657.
[15] H. Jagadish, “A compression technique to materialize transitive

closure,” ACM Trans. Database Systems, vol. 15, issue 4, pp. 558-598,

1990. https://doi.org/10.1145/99935.99944.
[16] L. Cohen, R. N. S. Rowe, “non-well-founded proof theory of

transitive closure logic,” ACM Transactions on Computational

Logic, vol. 21, issue 4, Article no. 31, pp. 1-31, 2020.
https://doi.org/10.1145/3404889.

[17] W. Charatonik, E. Kieroński and F. Mazowiecki, “Decidability of

weak logics with deterministic transitive closure,” Proceedings of the
Joint Meeting of the Twenty-Third EACSL Annual Conference on

Computer Science Logic (CSL’14) and the Twenty-Ninth Annual

ACM/IEEE Symposium on Logic in Computer Science (LICS’14),
July 2014, Article no. 29, pp. 1-10.

https://doi.org/10.1145/2603088.2603134.

[18] A. Eriksson, P. Jansson, “An agda formalisation of the transitive
closure of block matrices (extended abstract),” Proceedings of the 1st

International Workshop on Type-Driven Development TyDe’2016,

September 2016, pp. 60-61.
https://doi.org/10.1145/2976022.2976025.

[19] H. Yin, A. Benson and J. Leskovec, “the local closure coefficient: a

new perspective on network clustering,” Proceedings of the Twelfth
ACM International Conference on Web Search and Data Mining

WSDM’19, January 2019, pp. 303–311.

https://doi.org/10.1145/3289600.3290991.
[20] J. Dzikiewicz, “An algorithm for finding the transitive closure of a

digraph,” Computing, vol. 15, pp. 75-79, 1975.

https://doi.org/10.1007/BF02252839.
[21] M. Sysło, J. Dzikiewicz, “Computational experiences with some

transitive closure algorithms,” Computing, vol. 15, pp. 33-39, 1975.

https://doi.org/10.1007/BF02252834.
[22] J. Eve, R. Kurki-Suonio, “On computing the transitive closure of a

relation,” Acta Informatica, vol. 8, pp. 303-314, 1977.
https://doi.org/10.1007/BF00271339.

[23] L. Schmitz, “An improved transitive closure algorithm,” Computing,

vol. 30, pp. 359-371, 1983. https://doi.org/10.1007/BF02242140.
[24] Y. Ioannidis, R. Ramakrishnan and L. Winger, “Transitive closure

algorithms based on graph traversal,” ACM Trans. Database Syst., vol.

18, vol. 3, pp. 512-576, 1993. https://doi.org/10.1145/155271.155273.
[25] A. Kuznetsov, Mathematical Modeling of Design Objects in ADS,

Kharkov Military University Press, Kharkov, Ukraine, 1994, 92 p.

[26] C. Lee, “An algorithm for path connections and its applications,” IEEE
Transactions on Electronic Computers, vol. 10, no. 3, pp. 346-365,

1961. https://doi.org/10.1109/TEC.1961.5219222.
[27] K. Hanauer, M. Henzinger and C. Schulz, “Faster fully dynamic

transitive closure in practice”, Proceedings of the 18th International

Symposium on Experimental Algorithms (SEA’2020), 2020, Article

no. 14; pp. 1-14. https://doi.org/10.4230/LIPIcs.SEA.2020.14.
[28] V. Pieterse, L. Cleophas, “Benchmarking optimized algorithms for

transitive closure,” Proceedings of the South African Institute of

Computer Scientists and Information Technologists SAICSIT’17,

https://doi.org/10.1090/qam/102435
https://doi.org/10.1145/367766.368168
https://doi.org/10.1016/j.ipe.2010.02.001
https://doi.org/10.1145/321105.321107
https://doi.org/10.1145/360715.360746
https://dl.acm.org/profile/81452599002
https://dl.acm.org/doi/10.1145/1982185.1982270
https://dl.acm.org/doi/10.1145/1982185.1982270
https://dl.acm.org/doi/proceedings/10.1145/1982185
https://dl.acm.org/doi/proceedings/10.1145/1982185
https://doi.org/10.1145/1982185.1982270
https://doi.org/10.1007/BF02476438
https://doi.org/10.1007/BF01940892
https://doi.org/10.1137/0201010
https://doi.org/10.1145/88636.88888
https://doi.org/10.1109/TKDE.2003.1198392
https://doi.org/10.1145/191843.191928
javascript:void(0);
javascript:void(0);
https://dl.acm.org/doi/proceedings/10.1145/3210377
https://dl.acm.org/doi/proceedings/10.1145/3210377
https://doi.org/10.1145/3210377.3210657
https://doi.org/10.1145/99935.99944
https://dl.acm.org/doi/10.1145/3404889
https://dl.acm.org/doi/10.1145/3404889
file:///D:/Computing/issue%204/ACM%20Transactions%20on%20Computational%20Logic,%20vol. 21,%20issue%204
file:///D:/Computing/issue%204/ACM%20Transactions%20on%20Computational%20Logic,%20vol. 21,%20issue%204
https://doi.org/10.1145/3404889
https://dl.acm.org/profile/81100210695
https://dl.acm.org/profile/81100483724
https://dl.acm.org/profile/82858790457
https://dl.acm.org/doi/10.1145/2603088.2603134
https://dl.acm.org/doi/10.1145/2603088.2603134
https://doi.org/10.1145/2603088.2603134
javascript:void(0);
https://dl.acm.org/doi/proceedings/10.1145/2976022
https://dl.acm.org/doi/proceedings/10.1145/2976022
https://doi.org/10.1145/2976022.2976025
https://dl.acm.org/profile/99659192695
https://dl.acm.org/profile/99658632368
https://dl.acm.org/profile/81367595814
https://dl.acm.org/doi/10.1145/3289600.3290991
https://dl.acm.org/doi/10.1145/3289600.3290991
https://dl.acm.org/doi/proceedings/10.1145/3289600
https://dl.acm.org/doi/proceedings/10.1145/3289600
https://doi.org/10.1145/3289600.3290991
http://dx.doi.org/10.1145/155271.155273
https://doi.org/10.4230/LIPIcs.SEA.2020.14
javascript:void(0);
https://dl.acm.org/doi/proceedings/10.1145/3129416
https://dl.acm.org/doi/proceedings/10.1145/3129416

 Vladimir Batsamut et al. / International Journal of Computing, 20(4) 2021, 560-566

566 VOLUME 20(4), 2021

September 2017, vol. 27, pp. 1-10.

https://doi.org/10.1145/3129416.3129425.

[29] V. Lipskyy, Combinatory for Programmers, Moscow, Mir Press.,
1988, 213 p. (in Russian)

[30] R. Al-Dujaily, T. Mak, F. Xia, A. Yakovlev and M. Palesi, “Embedded

Transitive Closure Network for Runtime Deadlock Detection in
Networks-on-Chip”, IEEE Transactions on Parallel and Distributed

Systems, vol. 23, issue 7, pp. 1205-1215, 2012.

https://doi.org/10.1109/TPDS.2011.275.

VLADIMIR BATSAMUT, Doctor of

Military Science, Professor. Current

position a Deputy Head of the

Research Center of the National

Academy of the National Guard of

Ukraine, Kharkiv. His research

interests include justification of

decisions in the military sphere,

optimization of network objects and

control their condition,

algorithmization of processes and

software development, analysis of

data and forecasting the development

of processes.

SVIATOSLAV MANZURA has PhD in

Weapons and Military Technology.

Current position a Head of the

Research Laboratory, Research

Center of the National Academy of the

National Guard of Ukraine, Kharkiv.

His research activities are focused on

research qualitative and quantitative

characteristics of technical systems,

information support and analysis of

data and processes.

OLEKSANDR KOSIAK is Master of

Military Administration. Current

position a graduate student of the

National Academy of the National

Guard of Ukraine, Kharkiv. His

research activities are focused on

data processing, justification of

decisions in the military sphere.

VIACHESLAV GARMASH. Current

position a Senior Researcher,

Research Laboratory, Research

Center of the National Academy of the

National Guard of Ukraine, Kharkiv.

His research interests are in the field

of security of computer systems and

data transmission networks.

DMYTRO KUKHARETS is Master of

Military Administration. Current

position a Senior Researcher,

Research Laboratory, Research

Center of the National Academy of the

National Guard of Ukraine, Kharkiv.

His research interests are in the field

of security of computer systems and

optimization of processing of big data.

https://doi.org/10.1145/3129416.3129425
https://doi.org/10.1007/BF01940892
https://doi.org/10.1109/TPDS.2011.275

