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 ABSTRACT The adaptive parametric rectified linear unit (AdPReLU) as an activation function of the deep 

neural network is proposed in the article. The main benefit of the proposed system is adjusted activation function 

whose parameters are tuning parallel with synaptic weights in online mode. The algorithm of the simultaneous 

learning of all neurons parameters with AdPReLU and the modified backpropagation procedure based on this 

algorithm is introduced. The approach under consideration permits to reduce volume of the training data set and 

increase tuning speed of the DNN with AdPReLU. The proposed approach could be applied in the deep 

convolutional neural networks (CNN) in conditions of the small value of training data sets and additional 

requirements for system performance. The main feature of DNN under consideration is possibility to tune not only 

synaptic weights but the parameters of activation function too. The effectiveness of this approach is proved by 

experimental modeling. 
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I. INTRODUCTION 

OR today the artificial neural networks (ANN) are 

commonly used for solving different tasks arising in 

Data Science, Data Mining, Big Data and others, first of all, 

due to universal approximation properties and ability to learn 

(tuning its synaptic weights and maybe its architecture) 

during input data of arbitrary nature processing. Here, the 

most widely used are multilayer perceptrons whose universal 

approximation possibilities were proved in the frames of G. 

Cybenko’s and K. Honrik’s theorems [1, 2]. The nodes of 

these neural networks are elementary F. Rosenblatt’s 

perceptrons with so-called squashing activation functions 

that include well known 𝜎 −functions (sigmoidal functions), 

tanh, Softsign, Satlin, arctan [3] and others. 

Based on the multilayer perceptrons, so-called deep 

neural networks (DNN) [4-9] were designed, that proved 

their effectiveness in the tasks of image processing of 

different nature, natural language processing, time series 

analysis, including audio signals, etc. Despite their 

undoubted advantages, these networks are not devoid of 

some problems that arise, first of all, in the process of their 

training. In the case of large volume data sets processing 

deep neural networks suffer from the so-called vanishing-

exploding gradient effect that is connected with stopped 

learning process in DNN. The vanishing-exploding gradient 

effect first of all is connected with the shape of the squashing 

functions that had led to the abandonment of their using. 

F 
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In such situations the most widespread activation 

functions are ones from so-called rectified unit family [10] 

which includes rectified linear units (ReLU), parametric 

rectified linear units (PReLU), exponential linear units 

(ELU) and other [5-13]. This is, as usual, piecewise 

functions with fixed parameters that traditionally are selected 

from empirical reasons. Their main advantage is that their 

derivatives are constants, which simplifies the learning 

process and permits to avoid the effect of vanishing-

exploding gradient. Their main disadvantage is that they do 

not satisfy the requirements of the basic approximation 

theorems [1, 2] and to achieve the required accuracy of the 

piecewise linear approximation, DNN must contain in 

architecture a large number of tuning parameters – synaptic 

weights. This, in turn, increases the training time and the 

required size of training data set. 

In this regard the idea of learning-adaptation of piecewise 

activation function was proposed. So, in [14] the “maxout” 

activation function was introduced, in [15] – adaptive 

piecewise linear units (APL), in [16] – S-shaped rectified 

linear unit (SReLU), in [17] – adaptive blending units 

(ABU). Parameters of these functions are tuned using the 

gradient procedures (stochastic and regularized versions) 

with constant learning rate independently of synaptic 

weights tuning by error backpropagation. This approach can 

improve the approximation properties of DNN, however, it 

does not lead to speed increasing of the learning process. It 

is possible to increase the speed of the learning process by 

simultaneous adjusting the synaptic weights and parameters 

of activation functions within a united tuning procedure 

optimized by speed, taking into account the mutual influence 

of the weights and functions parameters on each other. 

In this regard, in this paper we propose, for DNN learning 

the adaptive parametric linear activation function, whose 

parameters are tuned simultaneously with synaptic weights, 

and learning algorithms for both an individual neuron and 

the network as a whole, optimized in the sense of speed and 

reaching an extremum for the adopted learning criterion 

(goal function). 

II. LEARNING OF THE NEURON WITH ADAPTIVE 

PARAMETRIC RECTIFIED LINEAR ACTIVATION 

FUNCTION 

As nodes of deep neural networks elementary 

F. Rosenblatt’s perceptrons that realize nonlinear mapping in 

the form: 

 

�̂�𝑗(𝑘) = 𝜓𝑗 (𝜃𝑗0 +∑𝑤𝑗𝑖

𝑛

𝑖=1

𝑥𝑖(𝑘)) = 

= 𝜓𝑗 (∑𝑤𝑗𝑖𝑥𝑖(𝑘)

𝑛

𝑖=0

) = 𝜓𝑖 (𝑤𝑗
𝑇𝑥(𝑘)) = 

= 𝜓𝑗 (𝑢𝑗(𝑘)) 

 

 

 

 

are used, where �̂�𝑗(𝑘) – output signal of the j-th neuron at 

discrete time k=1, 2,…, N,…, 𝜓𝑗(∙) – nonlinear activation 

function of this neuron, 𝜃𝑗0 – bias (threshold), n – number of 

neurons inputs, 𝑤𝑗𝑖  – tuned synaptic weight, 𝑥𝑖(𝑘) – input 

signal on the i-th neuron input at k-th instant of time, 𝜃𝑗0 =

𝑤𝑗0, 𝑥(𝑘) = (1, 𝑥1(𝑘), … , 𝑥𝑛(𝑘))
𝑇

 – (𝑛 + 1) × 1 – vector of 

the input signals, 𝑤𝑗 = (𝑤𝑗0 , 𝑤𝑗1, … , 𝑤𝑗𝑛)
𝑇
 – (𝑛 + 1) × 1 – 

vector of the tuned synaptic weights, 𝑢𝑗(𝑘) – internal 

activation signal. 

The chosen of the nonlinear activation function 𝜓𝑗(∙) is 

usually performed based on empirical considerations, but the 

most popular is 𝜎 −function, considered by G. Cybenko 

in [1] 

 

�̂�𝑗(𝑘) = 𝜓𝑗 (𝑢𝑗(𝑘)) = 

= (1 + 𝑒𝑥𝑝 (−𝛾𝑗𝑢𝑗(𝑘)))
−1

 

 

(1) 

 

with derivation: 

 

𝜓𝑗
′ (𝑢𝑗(𝑘)) = 𝛾𝑗�̂�𝑗(𝑘) (1 − �̂�𝑗(𝑘)), (2) 

 

where 𝛾𝑗 − so called gain parameter, that describes the shape 

of activation function and hyperbolic tangent function: 

 

�̂�𝑗(𝑘) = 𝜓𝑗 (𝑢𝑗(𝑘)) = 𝑡𝑎𝑛ℎ𝛾𝑗𝑢𝑗(𝑘) 
(3) 

 

with derivation: 

 

𝜓𝑗
′ (𝑢𝑗(𝑘)) = 𝛾𝑗 (1 − �̂�𝑗

2(𝑘)). (4) 

 

Note that, if in the (1), (2) �̂�𝑗(𝑘) tends to 0 or 1, and in 

the (3), (4) – to -1 or +1, the effect of the vanishing gradient 

is arisen. The activation function of the rectified unit family 

overcomes this effect and can be written as follows: 

 

𝜓𝑗 (𝑢𝑗(𝑘)) = {
𝑢𝑗(𝑘) 𝑖𝑓 𝑢𝑗(𝑘) > 0,

𝑎𝑗𝑢𝑗(𝑘) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(5) 

 

with derivation: 

 

𝜓𝑗
′ (𝑢𝑗(𝑘)) = {

1 𝑖𝑓 𝑢𝑗(𝑘) > 0,

𝑎𝑗  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

 

 

where parameter 𝑎𝑗 is commonly chosen arbitrary. Note also, 

that in the most popular ReLU 𝑎𝑗 = 0. 

Natural generalization of the (5) is activation function as 

follows: 

 

𝜓𝑗 (𝑢𝑗(𝑘)) = {
𝑎𝑗
𝑅𝑢𝑗(𝑘) 𝑖𝑓 𝑢𝑗(𝑘) > 0,

𝑎𝑗
𝐿𝑢𝑗(𝑘) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 

(6) 

 

with derivation: 
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𝜓′ (𝑢𝑗(𝑘)) = {
𝑎𝑗
𝑅  𝑖𝑓 𝑢𝑗(𝑘) > 0,

𝑎𝑗
𝐿  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

. 
 

 

In this case, the question naturally arises: how to choose 

parameters 𝑎𝑗
𝑅, 𝑎𝑗

𝐿 for each neuron or how to organize their 

tuning-learning process. It is clear that in this situation for 

each neuron should be tuned n+3 parameters instead of 

traditional n+1 ones. As it is known, the standard F. 

Rosenblatt’s perceptron is adjusted by 𝛿 −rule in the form 

[3]: 

𝑤𝑗𝑖(𝑘) = 𝑤𝑗𝑖(𝑘 − 1) + 𝜂(𝑘)𝛿𝑗(𝑘)𝑥𝑖(𝑘),

𝑖 = 0,1,2, … , 𝑛 

(7) 

 

or in the vector form: 

 

𝑤𝑗(𝑘) = 𝑤𝑗(𝑘 − 1) + 𝜂(𝑘)𝛿𝑗(𝑘)𝑥(𝑘), (8) 

 

where 𝜂(𝑘) – learning rate parameter, usually chosen 

empirically and it is not changing in learning process, 

𝛿𝑗(𝑘) = 𝜓𝑗
′ (𝑢𝑗(𝑘)) 𝑒𝑗(𝑘) − 𝛿 −error, 𝑒𝑗(𝑘) = 𝑦𝑗(𝑘) −

𝜓𝑗 (𝑢𝑗(𝑘)) − learning error, 𝑦𝑗(𝑘) − reference signal. 

Because the learning algorithms (7), (8) contain the 

derivation of the activation function, the choice of its 

parameters significantly affects the rate of convergence of 

this procedure.  

For the convergence process improving for activation 

function (3) in [18] along with the synaptic weights vector 

𝑤𝑗(𝑘) it was proposed to tune gain parameter 𝛾𝑗(𝑘) with the 

procedure:  

 

{
 
 

 
 

𝛾𝑗(𝑘) = 𝛾𝑗(𝑘 − 1) +

+𝜂𝛾(𝑘)𝑒𝑗(𝑘) (1 − �̂�𝑗
2(𝑘)) 𝑢𝑗(𝑘),

𝑤𝑗(𝑘) = 𝑤𝑗(𝑘 − 1) + 𝜂𝑗(𝑘)𝑒𝑗(𝑘) ×

× (1 − �̂�𝑗
2(𝑘)) 𝑥(𝑘)

 

 

 

that is not protected from the vanishing gradient effect. 

The neuron tuning process with activation function (6) in 

the each discrete moment of time k was proposed to carry 

out learning in the form of the two-step procedure [19]. 

Tuning of the parameters 𝑎𝑗
𝑅, 𝑎𝑗

𝐿 (in the next transformations 

for simplifying the record indexes R and L are temporarily 

dropped) and based on the adjusted parameters 𝑎𝑗(𝑘) – the 

synaptic weights vectors are updated. 

The tuning process of the parameters 𝑎𝑗(𝑘) is realized by 

gradient procedure of quadratic learning criterion 

minimization in the form: 
 

𝑎𝑗(𝑘) = 𝑎𝑗(𝑘 − 1) + 𝜂𝑎(𝑘) × 

× (𝑦𝑗(𝑘) − 𝑎𝑗(𝑘 − 1)𝑢𝑗(𝑘)) 𝑢𝑗(𝑘) = 

= 𝑎𝑗(𝑘 − 1) + 𝜂𝑎(𝑘) × 

× (𝑦𝑗(𝑘) − 𝑎𝑗(𝑘 − 1)𝑤𝑗
𝑇(𝑘 − 1)𝑥(𝑘)) × 

× 𝑤𝑗
𝑇(𝑘 − 1)𝑥(𝑘). 

 

 

(9) 

Thus, the neuron output signal is linearly depends on the 

adjusted parameters 𝑎𝑗, the procedure (9) can be optimized 

by the speed where in the optimal value of the learning rate 

is given by expression: 

 

𝜂𝑎(𝑘) = 𝑢𝑗
−2(𝑘),  

 

i.e., returning to indexes R and L finally it could be rewritten: 

 

{
 
 
 

 
 
 

𝑎𝑗
𝑅(𝑘) = 𝑎𝑗

𝑅(𝑘 − 1) +

+(𝑦𝑗(𝑘) − 𝑎𝑗
𝑅(𝑘 − 1)𝑢𝑗(𝑘)) ×

× 𝑢𝑗
−1(𝑘) 𝑖𝑓 𝑢𝑗(𝑘) > 0,

𝑎𝑗
𝐿(𝑘) = 𝑎𝑗

𝐿(𝑘 − 1) +

+(𝑦𝑗(𝑘) − 𝑎𝑗
𝐿(𝑘 − 1)𝑢𝑗(𝑘)) ×

𝑢𝑗
−1(𝑘) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (10) 

 

Next aposterior learning error after training 𝑎𝑗  is 

introduced: 

 

�̃�𝑗(𝑘) = 𝑦𝑗(𝑘) − 𝑎𝑗(𝑘)𝑤𝑗
𝑇(𝑘 − 1)𝑥(𝑘).  

 

The gradient procedure of the synaptic weights tuning can be 

written as follows: 

 

𝑤𝑗(𝑘) = 𝑤𝑗(𝑘 − 1) + 𝜂(𝑘) = 

= (𝑦𝑗(𝑘) − 𝑎𝑗(𝑘)𝑤𝑗
𝑇(𝑘 − 1)𝑥(𝑘)) = 

= 𝑎𝑗(𝑘)𝑥(𝑘) = 𝑤𝑗(𝑘 − 1) + 

+𝜂(𝑘) (𝑦𝑗(𝑘) − 𝑤𝑗
𝑇(𝑘 − 1)�̃�(𝑘)) �̃�(𝑘), 

 

 

(11) 

 

where 

 

�̃�(𝑘) = 𝑎𝑗(𝑘)𝑥(𝑘).  

 

Procedure (11) also can be optimized by speed, and 

optimum value of 𝜂(𝑘) is determined by expression: 

 

𝜂(𝑘) = ‖�̃�(𝑘)‖−2  

 

and (11) at the same time takes the form: 

 

𝑤𝑗(𝑘) = 𝑤𝑗(𝑘 − 1) + (𝑦𝑗(𝑘) − 

−𝑤𝑗
𝑇(𝑘 − 1)�̃�(𝑘)) ‖�̃�(𝑘)‖−2�̃�(𝑘) = (12) 

= 𝑤𝑗(𝑘 − 1) + �̃�𝑗(𝑘)�̃�
+𝑇(𝑘), 

 

where (∙)+ − symbol of matrix pseudoinversion. 

It is easy to see, that (12) is optimal by speed one-step 

adaptive learning algorithm proposed by Kaczmarz-

Widrow-Hoff [20-23]. Because procedures (10), (12) are 

affected by exploding gradient, its regularized version could 

be taken into consideration: 



 Yevgeniy Bodyanskiy et al. / International Journal of Computing, 21(1) 2022, 11-18 

14 VOLUME 21(1), 2022 

{
 
 

 
 𝑎𝑗(𝑘) = 𝑎𝑗(𝑘 − 1) + (𝛼 + 𝑢𝑗

2(𝑘))
−1

(𝑦𝑗(𝑘) − 𝑎𝑗(𝑘 − 1)𝑢𝑗(𝑘)) 𝑢(𝑘),

𝑤𝑗(𝑘) = 𝑤𝑗(𝑘)(𝑘 − 1) + (𝛼 + ‖�̃�(𝑘)‖
2)−1

(𝑦𝑗(𝑘) − 𝑤𝑗
𝑇(𝑘 − 1)�̃�(𝑘))�̃�(𝑘)

,     (13) 

 

where 𝛼 > 0 – momentum term that is in fact additive form 

of Kaczmarz’s algorithm. 

Thus, algorithm (10-13) provides maximal speed of 

convergence and does not suffer from the vanishing-

exploiding gradient. In situation when processing signals are 

disturbed by noise of arbitrary nature, additional filtering 

properties could be given to the learning algorithm (12). In 

this situation the synaptic weights learning procedure takes 

the form [23]: 

 

𝑤𝑗(𝑘) = 𝑤𝑗(𝑘 − 1) + 𝑟
−1(𝑘)�̃�𝑗(𝑘)�̃�(𝑘) = 

= 𝑤𝑗(𝑘 − 1) + 

+(𝛽𝑟(𝑘 − 1) + ‖�̃�(𝑘)‖2)−1�̃�𝑗(𝑘)�̃�(𝑘), 

 

where 0 ≤ 𝛽 ≤ 1 − forgetting factor that is the same as (12) 

when 𝛽 = 0 and, with the algorithm of stochastic 

approximation of Goodwin-Ramadge-Caines [24] at 𝛽 = 1. 

Then, finally, the learning procedure of a single neuron – F. 

Rosenblatt’s perseptron with adaptive rectified linear 

activation function can be written in the form: 

 

{
 
 
 
 

 
 
 
 𝑎𝑗

𝑅(𝑘) = 𝑎𝑗
𝑅(𝑘 − 1) + (𝑟𝑎

𝑅(𝑘))
−1
×

× (𝑦𝑗(𝑘) − 𝑎𝑗
𝑅(𝑘 − 1)𝑢𝑗(𝑘)) 𝑢𝑗(𝑘),

𝑟𝑎
𝑅(𝑘) = 𝛽𝑟𝑎

𝑅(𝑘 − 1) + 𝑢𝑗
2(𝑘),

𝑤𝑗(𝑘) = 𝑤𝑗(𝑘 − 1) + (𝑟
𝑅(𝑘))

−1
×

× (𝑦𝑗(𝑘) − 𝑎𝑗
𝑅(𝑘)𝑤𝑗

𝑇(𝑘 − 1)𝑥(𝑘)) 𝑎𝑗
𝑅(𝑘)𝑥(𝑘),

𝑟𝑅(𝑘) = 𝛽𝑟𝑅(𝑘 − 1) + (𝑎𝑗
𝑅(𝑘))

2
‖𝑥(𝑘)‖2

 (14) 

 

if 𝑤𝑗
𝑇(𝑘 − 1)𝑥(𝑘) > 0, and 

 

{
 
 
 
 

 
 
 
 𝑎𝑗

𝐿(𝑘) = 𝑎𝑗
𝐿(𝑘 − 1) + (𝑟𝑎

𝐿(𝑘))
−1
×

× (𝑦𝑗(𝑘) − 𝑎𝑗
𝐿(𝑘 − 1)𝑢𝑗(𝑘)) 𝑢𝑗(𝑘),

𝑟𝑎
𝐿(𝑘) = 𝛽𝑟𝑎

𝐿(𝑘 − 1) + 𝑢𝑗
2(𝑘),

𝑤𝑗(𝑘) = 𝑤𝑗(𝑘 − 1) + (𝑟
𝐿(𝑘))

−1
×

× (𝑦𝑗(𝑘) − 𝑎𝑗
𝐿(𝑘)𝑤𝑗

𝑇(𝑘 − 1)𝑥(𝑘)) 𝑎𝑗
𝐿(𝑘)𝑥(𝑘),

𝑟𝐿(𝑘) = 𝛽𝑟𝐿(𝑘 − 1) + (𝑎𝑗
𝐿(𝑘))

2
‖𝑥(𝑘)‖2

 (15) 

 

otherwise. 

Let us note that all described procedures are in fact the 

gradient optimization algorithms, providing maximum speed 

of the learning process and possessing by filtering properties. 

III. LEARNING OF THE MULTILAYER NEURAL 

NETWORK BASED ON ADAPTIVE PARAMETRIC 

RECTIFIED LINEAR UNITS 

Let us consider the learning process of the multilayer neural 

network that contains n inputs, m outputs and Q layers. In 

this network first hidden layer contains n1 neurons, q-th layer 

– nq neurons and output layer – m neurons respectively. 

Indexes R and L are omitted again and learning rates 

parameters determined as in the (14), (15). The output 

signals of the q-th hidden layer (q=1,2,…, Q) are designated 

𝑜𝑗
[𝑞](𝑘), 𝑗 = 1,2, … , 𝑛𝑞 , and its input signals −𝑜𝑗

[𝑞−1](𝑘) 

respectively. 

For the neural network learning procedure standard error 

backpropagation is used, and on the each learning step for 

every network neuron firstly parameters 𝑎𝑗
[𝑞]

 are specified, 

next based on them – synaptic weights 𝑤𝑗
𝑎 for all neurons in 

all network layers are specified. Then for Q-th output 

network layer, on the input of which signals 𝑜𝑖
[𝑄−1](𝑘), 

i=1,2,…, 𝑛𝑞−1 are fed, could be used learning procedure 

(14), (15) written in the form: 

 

{
 
 
 
 

 
 
 
 𝑎𝑗

[𝑄](𝑘) = 𝑎𝑗
[𝑄](𝑘) + 𝜂𝑎

[𝑄](𝑘)𝑒𝑗(𝑘) ×

× 𝑢𝑗
[𝑄](𝑘),   𝑗 = 1,2, … , 𝑛𝑄 = 𝑚,

𝛿𝑗
[𝑄](𝑘) = (𝜓𝑗

[𝑄] (𝑢𝑗
[𝑄](𝑘)))

′

×

× 𝑒𝑗(𝑘) = 𝑎𝑗
[𝑄](𝑘)𝑒𝑗(𝑘),

𝑤𝑗𝑖
[𝑄](𝑘) = 𝑤𝑗𝑖

[𝑄](𝑘 − 1) + 𝜂[𝑄](𝑘)𝛿𝑗
[𝑄](𝑘)𝑜𝑖

[𝑄−1](𝑘),

𝑖 = 0,1,2, … , 𝑛𝑄−1

 

 

or introducing notations: 

 

{
∆𝑎𝑗

[𝑄](𝑘) = 𝑎𝑗
[𝑄](𝑘) − 𝑎𝑗

[𝑄](𝑘 − 1),

∆𝑤𝑗𝑖
[𝑄](𝑘) = 𝑤𝑗𝑖

[𝑄](𝑘) − 𝑤𝑗𝑖
[𝑄](𝑘 − 1),

 

 

{
  
 

  
 ∆𝑎𝑗

[𝑄](𝑘) = 𝜂𝑎
[𝑄](𝑘)𝑒𝑗(𝑘)𝑢𝑗

[𝑄](𝑘),

𝛿𝑗
[𝑄](𝑘) = (𝜓𝑗

[𝑄] (𝑢𝑗
[𝑄](𝑘)))

′

×

× 𝑒𝑗(𝑘) = 𝑎𝑗
[𝑄](𝑘)𝑒𝑗(𝑘),

∆𝑤𝑗𝑖
[𝑄](𝑘) = 𝜂[𝑄](𝑘)𝛿𝑗

[𝑄](𝑘)𝑜𝑖
[𝑄−1](𝑘).

 

 

The (Q-1)-th hidden layer is tuned according to the 

relations: 
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{
 
 
 
 

 
 
 
 ∆𝑎𝑗

[𝑄−1](𝑘) = 𝜂𝑎
[𝑄−1](𝑘) ×

× (∑𝛿𝑖
[𝑄]

𝑛𝑄

𝑖=0

(𝑘)𝑤𝑖𝑗
[𝑄](𝑘))𝑢𝑗

[𝑄](𝑘),

𝛿𝑗
[𝑄](𝑘) = 𝑎𝑗

[𝑄−1](𝑘)∑𝛿𝑖
[𝑄]

𝑛𝑄

𝑖=0

(𝑘)𝑤𝑖𝑗
[𝑄](𝑘),

∆𝑤𝑗𝑖
[𝑄](𝑘) = 𝜂[𝑄−1](𝑘)𝛿𝑗

[𝑄−1](𝑘)𝑜𝑖
[𝑄−2](𝑘),

 

 

the q-th hidden layer: 

 

{
 
 
 
 

 
 
 
 ∆𝑎𝑗

[𝑞](𝑘) = 𝜂𝑎
[𝑞](𝑘) ×

× (∑ 𝛿𝑖
[𝑞+1]

𝑛𝑞+1

𝑖=0

(𝑘)𝑤𝑖𝑗
[𝑞+1](𝑘))𝑢𝑗

[𝑞](𝑘),

𝛿𝑗
[𝑞](𝑘) = 𝑎𝑗

[𝑞](𝑘) ∑ 𝛿𝑖
[𝑞+1]

𝑛𝑞+1

𝑖=0

(𝑘)𝑤𝑖𝑗
[𝑞+1](𝑘),

∆𝑤𝑗𝑖
[𝑞](𝑘) = 𝜂[𝑞](𝑘)𝛿𝑗

[𝑞](𝑘)𝑜𝑖
[𝑞−1](𝑘)

 

 

and, finally, the first network layer: 

 

{
 
 
 
 
 

 
 
 
 
 ∆𝑎𝑗

[1](𝑘) = 𝜂𝑎
[1](𝑘) ×

× (∑𝛿𝑖
[2]

𝑛2

𝑖=0

(𝑘)𝑤𝑖𝑗
[2](𝑘))𝑢𝑗

[1](𝑘),

𝛿𝑗
[1](𝑘) = 𝑎𝑗

[1](𝑘)∑𝛿𝑖
[2]

𝑛2

𝑖=0

(𝑘)𝑤𝑖𝑗
[2](𝑘),

∆𝑤𝑗𝑖
[1](𝑘) = 𝜂[1](𝑘)𝛿𝑗

[1](𝑘)𝑥𝑖(𝑘),

𝑥0(𝑘) = 1.

 

 

Proposed relations differ from the standard error 

backpropagation procedure, that in the learning process not 

only synaptic weights are tuned, but also the activation 

functions parameters. Moreover, calculated by a special way 

values of the learning rate parameters obtained for the tuning 

process high speed permit to decrease total learning time of 

the deep neural network. 

IV. EXPERIMENTAL MODELING 

For the evaluation of the proposed deep neural network with 

adaptive parametric rectified linear units data set “Carvana” 

was taken from Kaggle platform. This data set was proposed 

by Carvana company for segmentation task in 2017. Carvana 

data set includes 318 images of cars visualization in the 16-

th different views (angles). Every image has 1918x1280 

pixels resolution. All data set consists of the 5088 marked 

images and every segmentation mask includes two classes: 

background and foreground. All experiments were realized 

in the TensorFlow 2.4.0. 

Examples of the images and their masks are 

demonstrated Fig. 1. As a prototype of the deep neural 

network U-Net network was used. Before network training 

data preprocessing was made all input images had been 

resized (256, 256, 3), random regularization for image tint 

that should be in the interval [0; 0,5], horizontal images 

rotation on the central axes with probability equal to 0,5 and 

rescale (1/255) also were made. 

 

 

Figure 1. Examples of the images and their masks 

Adjusted parameters of U-Net base modal with standard 

ReLU and Adaptive ReLU are shown in Table 1. The second 

part of Table 1 shows only adjusted parameters for the 

Adaptive ReLU, first part is similar for standard ReLU and 

Adaptive ReLU. 

 

Table 1. Adjusted parameters of the standard ReLU 

and Adaptive ReLU 

Parameters of the U-Net base model with standard ReLU 

The loss function  Dice loss + Binary Cross-
Entropy 

Numbers of epoch  10 

Starter earning rate parameter (lr) 0.001 

Parameters for the Adaptive ReLU 

lr_forgetting factor (𝛽) 0, 0.3, 0.6, 0.9 (different for 
each experiment) 

The initial 𝑎𝑗
𝑅 0.5 

The initial 𝑎𝑗
𝐿 0.05 

 

The internal activation signal 𝑢𝑗
2 was normalized by l2-

normalization with respect to all elements of the tensor, 

otherwise values of parameters 𝑟𝑎
𝑅, 𝑟𝑎

𝐿  became very big, that 
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led to exploding of the weights coefficients. Then, the mean 

value of the internal activation signal 𝑢𝑗
2 was used to 

calculate the new learning rate. 

The graphic of the train loss function is demonstrated in 

Fig. 2 and in Fig. 3 the validation loss function graphic is 

shown. 

 

 

Figure 2. The train loss function graphic 

 

 

Figure 3. The validation loss function graphic 

Visualization of the train dice coefficient is demonstrated 

in Fig. 4 and in Fig. 5 the validation dice coefficient is 

shown. 

 

Figure 4. The train dice coefficient 

 

Figure 5. The validation dice coefficient 

As can be seen in the graphs in Fig. 3 and Fig. 5 the 

metric on the validation dataset pulls, that indicates a 

small number of learning epochs. In Table 2 numerical 

results of train and validation dice coefficients are 

presented for base U-net model and for U-Net with 

adaptive ReLU activation function. In Fig. 6 angles 

changing of the adaptive ReLU are presented. 

Table 2. Numerical results of train and validation dice 

coefficients 

Model Train dice 

coefficient 

Validation dice 

coefficient 

Base Model 0.9886 0.9909 

Adaptive ReLu (β=0) 0.9927 0.9928 

Adaptive ReLu (β=0.3) 0.9923 0.9918 

Adaptive ReLu (β=0.6) 0.9912 0.9917 

Adaptive ReLu (β=0.9) 0.9931 0.9914 

 

Figure 6. Changing the angles of Adaptive ReLU 

Experimental results show that with the same accuracy of 

solving the problem under consideration, parameters 

adaptation of the Adaptive ReLU activation function can 

reduce the learning rate by approximately 10 %, while the 

smaller is value of the forgetting factor \beta, the faster is the 

neural network tuning, i.e., the learning algorithm 

approaches the speed-optimal Kaczmarz-Widrow-Hoff 

procedure. 

Segmentation results using the model based on the U-net 

deep neural network with standard ReLU activation function 

are presented in Fig. 7. And finally, in Fig. 8, Fig. 9, Fig. 10 

and Fig. 11 the U-Net neural network with Adaptive ReLU 

activation function are shown. Fig. 8 demonstrates using 

adaptive ReLU with forgetting factor 0.9, Fig. 9 

demonstrates using adaptive ReLU with forgetting factor 

0.6, Fig. 10 demonstrates using adaptive ReLU with 

forgetting factor 0.3 and Fig. 11 demonstrates using adaptive 

ReLU with forgetting factor 0.  

 

Figure 7. Segmentation results by base model 
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Figure 8. U-Net neural network with Adaptive ReLU 

activation function with forgetting factor 0.9 

 

Figure 9. U-Net neural network with Adaptive ReLU 

activation function with forgetting factor 0.6 

 

Figure 10. U-Net neural network with Adaptive ReLU 

activation function with forgetting factor 0.3 

 

Figure 11. U-Net neural network with Adaptive ReLU 

activation function with forgetting factor 0 

 

The experimental modeling has proved theoretical 

researches and shows that MLP with adaptive parametric 

rectified linear units could be used in the CNN with 

traditional fully connected layers. 

V. CONCLUSION 

The task of deep neural network training with adaptive 

parametric rectified linear activation function, whose 

parameters are adjusted simultaneously with synaptic 

weights is considered in the paper. Adaptive optimal learning 

algorithms for all network parameters with additional 

filtering properties are introduced. Based on these 

algorithms, the learning procedure based on the error 

backpropagation that permits to reduce total learning time of 

the neural network in general is proposed. 
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