

VOLUME 21(1), 2022 69

Date of publication MAR-30, 2022, date of current version MAR-02, 2022.

www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209

Online ISSN 2312-5381

DOI 10.47839/ijc.21.1.2519

A Real-Value Parameter Function

Optimization Algorithm using Repeated

Adaptive Local Search

SURAPONG AUWATANAMONGKOL
School of Applied Statistics, National Institute of Development Administration, Bangkok, Thailand

Corresponding author: Surapong Auwatanamongkol (e-mail: surapong@as.nida.ac.th).

 ABSTRACT A simple and easy to implement but very effective algorithm for solving real-value parameter

optimization problems is introduced in this paper. The main idea of the algorithm is to perform a local search

repeatedly on a prospective subregion where the optimal solution may be located. The local search randomly

samples a number of solutions in a given subregion. If a new best-so- far solution has been found, the center of the

search subregion is moved based on the new best-so-far solution and the size of the search subregion is gradually

reduced by a predefined shrinking rate. Otherwise, the center of the search is not moved and the size of the search

subregion is reduced using a predefined shrinking rate. This process is repeated for a number of instances so that

the search is focused on a gradually smaller and smaller prospective subregion. To enhance the likelihood of

achieving an optimal solution, many rounds of this repeated local search are performed. Each round starts with a

smaller and smaller initial search space. According to the experiment results, the proposed algorithm, though very

simple, can outperform some well-known optimization algorithms on some testing functions.

 KEYWORDS Real-value Parameters; Function Optimization; Repeated Adaptive Local Search; Shrunk

Subregion.

I. INTRODUCTION

EAL-value parameter Function Optimization plays a

key role in solving many problems in Machine

Learning, Science and Engineering. Some problems may

have hundreds of real parameters to be considered for

optimization. Many evolutionary optimization techniques

including Genetic Algorithm, Evolutionary Strategy,

Particle Swarm Optimization, Artificial Bee Colony and

Differential Optimization have been proposed for solving

real-parameter optimization problems [2, 9, 15, 21-24]. Most

algorithms work well for problems with small numbers of

parameters, but may fail to reach global optima when the

number of parameters becomes very large [10]. Algorithm

performance also depends on the complexity of the

landscape for problems, e.g. modality, separability,

ruggedness and deceptivity [16]. Hence, there is a need for

an effective optimization algorithm to resolve high-

dimensional, real-parameter problems.

A search strategy for an optimization algorithm needs to

balance between exploration and exploitation pressures [17-

20]. More emphasis on exploration can lead to a better

chance of convergence to a global optimal solution, but such

convergence would take more time to achieve. While more

emphasis on exploitation can lead to faster convergence, the

possibility of premature convergence to local optima may

increase. To balance the two conflicting pressures, a good

search strategy should encourage exploration during the

early stages of the search and gradually encourage

exploitation during the later stages of the search. Hence, the

possibility of reaching the global optimal solution becomes

higher while the convergence is not too slow to achieve.

Based on the aforementioned search strategy, a new

algorithm for solving real parameter optimization problems

is proposed in this paper. The algorithm is based on repeating

a local search for global optima around the center of a

R

 Surapong Auwatanamongkol et al. / International Journal of Computing, 21(1) 2022, 69-75

70 VOLUME 21(1), 2022

potential subregion for the given search space. To encourage

exploration during the earlier stages of the search, the initial

search subregion covers the entire given search space. The

local search is performed repeatedly to enhance the

possibility of finding global optima. After finishing a local

search, the subregion is gradually shrunk to a smaller

subregion that may contain the global optima. Therefore,

high exploration and low exploitation are endured during the

early stages, while low exploration and high exploitation are

endured during the later stages of the search, when the

subregion becomes very small. The process is repeated for a

number of iterations, after which a new round of repeated

local search starts on the subregion with the current center,

but with a smaller initial size than that of the previous one.

Due to the stochastic process of the solution sampling in the

algorithm, it is common to run the algorithm for many trials,

and the best solution among the trials is reported.

In experiments, a number of benchmark functions were

carried out to evaluate the performance of the proposed

algorithm. The experimental results showed that the

proposed algorithm was very effective in finding optimal

solutions for the functions. The optimal solutions were also

compared with those results from well-known optimization

algorithms [1].

II. PROPOSED ALGORITHM

To search for the optimal solution to a problem in a large

search space, the proposed algorithm first defines an initial

potential subregion to be searched as the given entire search

space, then pursues multiple rounds of search for the optimal

solution in the moved and shrunk subregion. Thus, high

exploration and low exploitation are ensured in the earlier

rounds. In the later rounds, low exploration and high

exploitation become prominent as the subregion becomes

smaller and smaller. For each round of the search, a local

search is performed repeatedly for a number of iterations.

Each local search samples a number of random solutions

located within the subregion. If the fittest solution among the

sample solutions is fitter than the best-so-far solution, the

subregion is shifted so the new solution becomes the center

of the subregion as well as the best-so-far solution, otherwise

the center remains stationary. The size of the subregion is

gradually decreased to reduce the scope of the next iteration

of the local search, thus gradually enhancing the exploitation

of the search. The shrinking rate of the subregion size is

adaptive depending on the progress of the search. The fast

predefined shrinking rate, α, is used if there is progress in the

search, i.e. the center is moved to a new fitter solution, as

seen in Fig. 1. Otherwise, the slower shrinking rate, β, is used

instead so that the size of the subregion is reduced at a very

low rate, as seen in Fig. 2.

For the sake of simplicity, a subregion size is defined by

the width of the subregion for each dimension. The width of

the subregion for each iteration of the local search can be

calculated as follows:

1

() / - -

()
,

() /

i

i

i

W j if a new best so far solution is

found and becomes the center
W j

of the subregion

W j otherwise





+





= 



,

where

 is a fast predefined shrinking rate and  is a slow

predefined shrinking rate, where 1.0   e.g. 1.1 = ,

1.01 = . ()iW j is the width of the jth dimension of the

subregion at the ith iteration of the local search.
1()W j is the

initial width of the jth dimension of the subregion.

Figure 1. A subregion is shifted with its new center C at a

new best-so-far solution and then shrunk with a fast

shrinking rate.

Figure 2. A subregion is stationary as no new best-so-far

solution has been found and so it is shrunk with a slow

shrinking rate.

It can be seen that the subregion size is reduced more

quickly by the reduction factor, which increases

exponentially, when a new best-so-far solution is found and

the center of the subregion is moved. On the other hand, the

subregion size is reduced very slowly by a much smaller

shrinking rate when a new best-so-far solution is not found

and the center of the subregion is not moved. Since the center

of subregion is moved during the iterative local search, it is

possible that some parts of the subregion need to be chopped

off as they do not fit within the given search region. Hence,

the widths of the subregion need to be adjusted accordingly.

Once a round of the local search completed, a new round

of the repeated local search starts to increase the likelihood

of reaching the global optima. The initial center of the

subregion is set to the best-so-far solution and the initial size

of the subregion is reduced adaptively in the same way as in

the local search process as follows:

Surapong Auwatanamongkol et al. / International Journal of Computing, 21(1) 2022, 69-75

VOLUME 21(1), 2022 71

1

1

- -

,

() () /

i

i

i

i i

IS if a new best so far solution is

IS found in the current round

IS otherwise

IW j IW j IS





−

−




= 



=

,

where
iIS is the reduction factor to be used for the ith round

of the repeated local search;
1iIS −
 is the reduction factor that

has been used for the previous round;  is the fast

predefined shrinking rate and  is the slow predefined

shrinking rate. These two rates are the same ones used in the

local search; ()iIW j is the initial width of the jth dimension

of the subregion for the ith round of the local search; ()IW j

is the initial width of the jth dimension of the given search

region;
iIS is the initial reduction factor for the first round of

the local search and equals 1.0.

It is possible that some parts of the initial subregion need

to be chopped off as they do not fit within the given search

region. Hence, the initial widths of the subregion need to be

adjusted accordingly. Fig. 3 shows an example of how the

width of the subregion is reduced gradually and adaptively

during each round of the iterative local search. It can also be

seen from the figure that the initial width of the subregion is

reduced in a similar fashion after each round of a local

search. Therefore, the search is repetitive and continually

focuses on smaller and smaller subregion until an optimal

solution, possibly the global one, is reached. It is also

possible to execute this repeated local search process for

many independent runs in order to further enhance the

convergence likelihood to the global optima.

Figure 3. An example of how the width and the initial width

of the search subregion are gradually and adaptively

reduced.

The search process of the proposed algorithm can be

described as a stochastic process represented by a Hidden

Markov Model. States of the model correspond to states of

the search at the beginning of each iteration. Each state can

be described by the upper bound and lower bound values of

all parameters, that define the boundary of the search

subregion, as well as, a flag stating whether the global

optimal solution lies within the search subregion or not. The

flag is hidden since the position of the global optimal

solution is unknown. The observation of the model is the

fitness value of the solution at the center of the subregion.

A state transition of the model occurs between two

consecutive iterations of the same round of the local search,

or between the state of the last iteration of one round and the

first iteration of the next round. The new state of a transition

is dependent on how the new center and new boundary of the

search subregion are determined. The goal of the search is to

reach the final state which subregion is very small but still

contains the global optimal solution.

The local search picks the best-so-far solution to be the

new center of the search subregion. It is expected that the

new center is getting closer to the global optimal solution,

therefore, it would move the search subregion toward the

optimal solution. The subregion is also shrunk gradually

using small adaptive shrinking rates so the subregion gets

smaller and smaller while there is a good chance that the

subregion still contains the global optimal solution. After

each round of the repeated local search, it is possible that the

search subregion may miss the global optimal solution.

Therefore, a new round of the repeated local search is

performed with an initial size smaller than that of the

previous round to narrow down the scope of the search. With

many rounds of this repeated local search, there is a high

possibility that the desired final state would be reached.

III. EXPERIMENTS AND RESULTS

Six real parameter functions were used to evaluate the

performance of the proposed method. They comprised both

unimodal and multimodal functions as follows:

f1: Sphere function (unimodal)

f2: Schwefel 2.22 problem (unimodal)

f3: Rosenbrock function (multimodal)

f4: Rastrigin function (multimodal)

f5: Griewank function (multimodal)

f6: Ackley function (multimodal)

A set of experiments were carried out to evaluate the

performance of the proposed algorithm with the following

parameter settings:

Fixed Parameters

Number of independent runs = 25

Number of rounds of execution for the repeated local search

(P) = 1000

Varying Parameters

To study the effects of each varying parameter on the

performance of the proposed algorithm, the other parameters

are fixed at a baseline parameter setting as follows:

Number of Dimensions (D) = 100

Fast Shrinking Rate (ɑ) = 1.1

Slow Shrinking Rate (β) = 1.01

Number of solutions sampled for each local search (N) =

100

Number of repetitions for the local search (M) = 100

 Surapong Auwatanamongkol et al. / International Journal of Computing, 21(1) 2022, 69-75

72 VOLUME 21(1), 2022

Table 1. Varying the number of dimensions (D)

Function D = 25 D = 50 D = 100 D = 500

Best Mean SD Best Mean SD Best Mean SD Best Mean SD

f1 2.86E-17 2.95E-15 4.70E-15 1.80E-15 2.71E-12 4.13E-12 0 0 0 0 0 0

f2 1.62E-06 8.48E-06 5.81E-06 2.23E-10 1.15E-08 1.27E-08 8.53E-14 1.15E-13 9.78E-15 167.87 177.36 4.81

f3 7.76E-11 31.75 10058.30 31.75 2985.77 10058.31 90.79 5495.25 10861.84 676.85 242940.22 890655.99

f4 8.95 19.88 5.33 60.84 88.93 16.03 308.20 378.47 48.70 5981.01 6764.93 355.72

f5 7.77E-16 6.14E-14 1.20E-13 0 4.14E-03 5.69E-03 0 1.97E-03 3.56E-03 6.37E-05 1.73E-03 4.35E-03

f6 7.96E-09 4.58E-08 3.18E-08 4.31E-08 1.13E-06 1.21E-06 4.93E-14 6.14E-14 5.12E-15 2.20E-13 2.33E-13 8.35E-15

From the experimental results shown in Table 1, it can be

seen that the proposed algorithm can perform very well, even

when the number of dimensions is increased for some testing

functions. Therefore, the optima convergence for the

proposed algorithm would probably depend very much on

the complexity of the landscape of the search region.

Table 2. Varying the Fast Shrinking Rate (ɑ)

Functio

n

ɑ = 1.05 ɑ = 1.1 ɑ = 1.2 ɑ =1.5

Best Mean SD Best Mean SD Best Mean SD Best Mean SD

f1 2.21E-10 4.16E-09 8.21E-09 0 0 0 0 0 0 96464.36 151061.56 26632.55

f2 1.89E-06 5.44E-06 2.40E-06 8.53E-14 1.15E-13 9.78E-15 53.59 71.62 11.69 152.45 174.65 10.15

f3 81.69 7478.75 16852.97 90.79 5495.25 10861.84 203.89 590028.14 1063736.62 54266447963.
21

133147772769
.20

46918668735.
16

f4 289.31 362.60 37.27 308.20 378.47 48.70 377.79 498.93 62.69 90692.28 154720.55 33702.27

f5 8.88E-12 1.97E-03 4.67E-03 0 1.97E-03 3.56E-03 3.33E-16 4.73E-03 7.96E-03 23.97 39.61 10.12

f6 6.52E-06 2.05E-05 8.64E-06 4.93E-14 6.14E-14 5.12E-15 5.28E-14 6.46E-14 4.35E-15 19.97 19.99 0.01

From the experimental results shown in Table 2, it can be

seen that the repeated local search can miss the optimal

solution if the fast shrinking rate gets too large and the search

subregion is shrunk too quickly. On the other hand, if the

search subregion is shrunk too slowly, it may take more time

and probably require a higher number of solutions to sample

in order to converge to an optimal solution. From the results,

the optimal fast shrinking rate for most of the testing

functions is around 1.1.

Table 3. Varying the Slow Shrinking Rate (β)

Function β =1.005 β =1.01 β=1.05 β = 1.10

Best Mean SD Best Mean SD Best Mean SD Best Mean SD

f1 1.71E-11 2.68E-09 6.39E-09 0 0 0 0 0 0 0 0 0

f2 1.78E-12 8.77E-10 3.36E-09 8.53E-14 1.15E-13 9.78E-15 1.05E-04 1.1 2.27 37.62 74.46 20.67

f3 92.89 9925.52 15781.58 90.79 5495.25 10861.84 92.09 11518.28 16069.47 87.79 7436.93 13447.97

f4 259.49 352.18 52.10 308.20 378.47 48.70 405.63 489.66 49.98 505.05 626.10 72.68

f5 0 2.46E-03 4.00E-03 0 1.97E-03 3.56E-03 0 1.97E-03 3.55E-03 1.11E-16 3.35E-03 5.21E-03

f6 1.34E-06 4.48E-05 4.85E-05 4.93E-14 6.14E-14 5.12E-15 6.35E-14 6.95E-14 4.68E-15 20.96 20.96 7.11E-15

From the experimental results shown in Table 3, it can be

seen that the repeated local search can miss the optimal

solution similarly to the case of the fast shrinking rate when

the slow shrinking rate gets too large and the search

subregion is shrunk too quickly. On the other hand, if the

search subregion is shrunk too slowly, it can take more time

and probably require a higher number of solutions to sample

in order to converge to an optimal solution. From the results,

the optimal slow shrinking rate for most of the testing

functions is around 1.01. It should be noted that when the

slow shrinking rate is set to be the same as the fast shrinking

rate, i.e. there is no slow shrinking rate in this case as

α = β = 1.10, the algorithm converges to a poor solution for

all testing functions except f1 function. This means the

adaptive scheme, which employs both fast and slow

shrinking rates for adjusting the shrinking rate, can help the

local search achieve much better solutions.

Table 4. Varying the number of randomly sampled solutions for each local search (N)

Function N = 50 N = 100 N = 200

Best Mean SD Best Mean SD Best Mean SD

f1 0 0 0 0 0 0 0 0 0

f2 1.14E-13 6.19E-14 2.15E-01 8.53E-14 1.15E-13 9.78E-15 8.53E-14 9.78E-14 1.41E-14

f3 92.34 11946.41 16500.34 90.79 5495.25 10861.84 90.72 4650.82 10543.46

f4 265.45 427.07 86.76 308.20 378.47 48.70 309.19 357.43 37.11

f5 0 3.94E-03 4.83E-03 0 1.97E-03 3.56E-03 0 4.04E-03 5.90E-03

f6 5.64E-14 6.85E-14 4.82E-15 4.93E-14 6.14E-14 5.12E-15 4.57E-14 5.74E-14 4.98E-15

Surapong Auwatanamongkol et al. / International Journal of Computing, 21(1) 2022, 69-75

VOLUME 21(1), 2022 73

From the experimental results shown in Table 4, it can be

seen that a better solution can be achieved by the proposed

algorithm if more solutions are sampled for each local

search, resulting in a higher chance of finding the optimal

solution.

Table 5. Varying the number of repetitions for the local search (M)

Function M = 25 M = 50 M = 100

Best Mean SD Best Mean SD Best Mean SD

f1 0 1.92E-18 9.17E-18 1E-20 7.02E-17 1.68E-16 0 0 0

f2 4.78E-01 4.02 2.96 1.14E-13 1.19E-13 1.14E-14 8.53E-14 1.15E-13 9.78E-15

f3 92.85 16042.80 46750.74 87.81 5586.96 12623.40 90.79 5495.25 10861.84

f4 367.85 459.87 62.64 322.12 434.54 56.17 308.20 378.47 48.70

f5 0 2.66E-03 5.02E-03 0 2.86E-03 5.29E-03 0 1.97E-03 3.56E-03

f6 2.35E-12 7.48E-11 8.54E-11 2.69E-11 2.44E-09 2.68E-09 4.93E-14 6.14E-14 5.12E-15

Table 6. Effects of the increases of the parameter values

on the possibility of optima convergence for the

proposed algorithm

Comparisons of the optimal results achieved from the

proposed algorithm against those achieved by some other

well-known optimization algorithms are shown in Table 7.

The results of the well-known algorithms, namely

MABC[26], GOABC[27], CoDE[28,29], FA[30], BA[31],

BSA[32,33,34], BDS[32,33,34], SDS[32,33,34] and

PSCS[1] are based on [1]. The results are the mean optimal

values for 30 runs. The number of dimensions is 50 and the

total number of function evaluations for each run is at least

2,000,000. The standard deviations of the results are shown

in the parentheses. The proposed algorithm was executed for

30 runs. The number of sampled solutions, N, was 200 and

the number of repetitions, M, was 10. The total number of

function evaluations for each run was at least 2,000,000.

Table 7. Performance comparison between the proposed algorithm and others

Algorithms f1 f2 f3 f4 f5 f6
MABC 0 (0) 8.294e-012

(7.675e-012)
36.2419 (31.0792) 27.4042 (56.7605) 1.1191e-014

(2.0167e-015)
0(0)

GOABC 4.590e-008

(1.026e-007)

0.3459 (0.1311) 4.98838e+002

(8.0716e+002)

1.1952 (2.1599) 5.2013e-004

(9.2477e-004)

0.0024 (0.0055)

CoDE 0 (0) 9.093e-048
(2.567e-047)

0.3987 (1.2271) 0.4975 (0.9411) 4.4409e-015(0) 0 (0)

FA 7.465e-

101(7.142e-102)

0.0532 (0.0251) 45.8660 (0.8307) 93.9239 (41.6611) 5.3468e-014

(1.1621e-014)

2.220e-017

(4.965e-017)

BA 2.7120e-005
(3.023e-006)

32.0319 (5.5715) 9.5638 (2.4789) 1.0328e+002
(22.6817)

16.7048 (0.7936) 18.7555
(41.9249)

BSA 2.201e-261 (0) 0.0309 (0.0266) 0.9966 (1.7711) 0.3482 (0.6674) 2.7355e-014

(4.5343e-015)

0.0013 (0.0033)

BDS 0 (0) 2.293e -013
(3.594e-013)

9.8809 (20.8574) 0.0497 (0.2224) 1.0302e-014
(3.3157e-015)

0 (0)

SDS 0(0) 1.319e-016

(1.755e-016)

5.264e-027

(1.8936 e-026)

0.8457 (1.2616) 1.3500e-014

(2.9330e-015)

8.6131e-004

(0.0038)

PSCS 0(0) 5.830e-020
(1.301e-019)

2.5590e-028
(2.0639e-028)

0 (0) 4.4409e-015 (0) 0 (0)

Proposed

Algorithm

Mean

Standard deviation

Best

ɑ, β

0

0

0

1.1,1.01

5.7790e-014

5.1018e-015

5.6843e-014

1.1,1.01

7.6997e+03

1.5834e+04

37.8987

1.05,1.01

1.2533e+02

24.9333

80.5302

1.05,1.005

5.8290e-03

6.5551e-03

0

1.1,1.01

4.574e-014

7.0459e-015

3.5083e-014

1.1,1.01

From the experimental results shown in Table 7, the

PSCS performed the best while the proposed algorithm

outperformed some other algorithms e.g GOABC, BA and

BSA for some test functions except f3 and f4. For these two

functions, the proposed algorithm achieved variable results

for different runs with high means and high standard

deviations, though, the best solutions achieved by the

proposed algorithm are much better than the means. So, for

 Surapong Auwatanamongkol et al. / International Journal of Computing, 21(1) 2022, 69-75

74 VOLUME 21(1), 2022

some complex functions like these two functions, several

runs are needed for the proposed algorithm to reach good

optimal solutions.

IV. DISCUSSION

It should be noted that the proposed algorithm utilizes a

sampling method for a local search. It does not need to

maintain a population of solutions during the search. Hence,

it requires very small amount of memory to run. The

exploration and exploitation aspects of the search can be

easily controlled by the number of sampled solutions and the

shrinking rates. The high exploration of the search is

achieved with a large number of the sampled solutions and/or

very slow shrinking rates. While, the exploitation of the

search is assured when fast shrinking rates are employed.

However, according to the experiments, for a multimodal

and very complex landscape functions, e.g. f3 and f4, the

algorithm may need a number of runs with a large number of

sampled solutions as well as very slow shrinking rates to

reach good optimal solution. This can cause longer time to

run the algorithm. To alleviate this problem, a parallel

sampling technique may be used to do the local search so the

computation can be speeded up.

V. CONCLUSION

In this paper, a simple but very effective algorithm for

solving real-value parameter function optimization is

proposed. The algorithm enhances the possibility of

convergence to an optimal solution by repeating the local

search many times on a gradually shrinking search

subregion. The center of the subregion is also moved to the

most recently found solution. The gradually shrinking size of

the search subregion allows for the exploration of the search

during the early iterations when the search subregion is still

relatively large and gradually allows the exploitation of the

search during later iterations when the search space becomes

very small. The shrinking rate of the search subregion is also

designed to be adaptive. A high shrinking rate is employed

when a new best-so-far solution has been found. Otherwise,

a small shrinking rate is used instead. This helps the local

search to remain focused on the prospective subregion while

at the same time not shrinking the size of the subregion too

much, causing the search to miss the optimal solution. This

iterative local search process is also repeated for many

rounds. In each round, the best-so-far of the previous round

is used as the initial center and the initial size of the search

subregion is also reduced by an adaptive rate using the same

strategy mentioned previously. According to the

experiments, the algorithm outperforms some optimization

algorithms and performs comparable with some others for

some testing functions. However, the proposed algorithm is

much simpler and easier to implement with very minimal

memory requirements.

References
[1] X. Li, M. Yin, “A particle swarm inspired cuckoo search algorithm for

real parameter optimization,” Soft Computing, vol. 20, pp. 1389-1413,
2016.

[2] E. K. Nyarko, R. Cupec, D. Filko, “A comparison of several heuristic

algorithms for solving high dimensional optimization problems,”

International Journal of Electrical and Computer Engineering
Systems, vol. 5, no. 1, pp. 1-8, 2014.

[3] X. Xia, J. Liu, Z. Hu, “An improved particle swarm optimizer based

on tabu detecting and local learning strategy in a shrunk search space,”
Applied Soft Computing, vol. 23, pp. 76-90, 2014.

[4] S. Das, S. S. Mullick, P. N. Suganthan, “Recent advances in

differential evolution – An updated survey,” Swarm and Evolutionary
Computation, vol. 27, pp. 1-30, 2016.

[5] J. F. Qiu, J. W. Wang, D. Y., J. Xie, and N. Z. Yao, “A parameter

adaptive artificial bee colony algorithm for real-parameter
optimization,” International Journal of Online and Biomedical

Engineering (iJOE), vol. 9, pp. 34-39, 2013.

[6] F. Luo, J. Zhao, Z. Y. Dong, “A new metaheuristic algorithm for real
parameter optimization: Natural aggregation algorithm,” Proceedings

of the 2016 IEEE Congress on Evolutionary Computation (CEC),

2016, pp. 94-103.
[7] M. Duan, H. Yang, S. Wang, Y. Liu, “Self-adaptive dual-strategy

differential evolution algorithm,” PLoS ONE, vol. 14, e0222706,

2019.
[8] T. Eltaeib, A. Mahmood, “Differential evolution: A survey and

analysis,” Applied Sciences, vol. 8, issue 10, 1945, 2018.

[9] K. R. Opara, J. Arabas, “Differential evolution: A survey of theoretical
analyses,” Swarm and Evolutionary Computation, vol. 44, pp. 546-

558, 2018.

[10] P. Agarwal, S. Mehta, “Empirical analysis of five nature-inspired
algorithms on real parameter optimization problems,” Artificial

Intelligence Review, vol. 50, pp. 383-439, 2018.

[11] M. Mavrovouniotis, F. M. Muller, S. Yang, “Ant colony optimization
with local search for dynamic traveling salesman problems,” IEEE

Transactions on Cybernetics, vol. 47, no. 7, pp. 1743-1756, 2017.

[12] D. Zhan, J. Qian, Y. Cheng, “Balancing global and local search in

parallel efficient global optimization algorithms,” Journal of Global

Optimization, vol. 67, pp. 873-892, 2017.

[13] W. Deng, H. Zhao, L. Zou, G. Li, X. Yang, D. Wu, “A novel
collaborative optimization algorithm in solving problems,” Soft

Computing, vol. 21, pp. 4387-4398, 2017.

[14] A. Nakib, S. Ouchraa, N. Shvai, L. Souquet, and E.-G. Talbi,
“Deterministic metaheuristic based on fractal decomposition for large-

scale optimization,” Applied Soft Computing, vol. 61, pp. 468–485,

2017.
[15] S. Tuo, J. Zhang, X. Yuan, L. Yong, “A new differential evolution

algorithm for solving multimodal optimization problems with high

dimensionality,” Soft Computing – A Fusion of Foundations,
Methodologies and Applications, vol. 22, issue 13, pp. 4361-4388,

2018.

[16] P. Caamano, F. Bellas, J. A. Bacerra, and R. J. Duro, “Evolutionary
algorithm characterization in real parameter optimization problems,”

Applied Soft Computing, vol. 13, pp. 1902-1921, 2013.

[17] H. Zhang, J. Sun, T. Liu, K. Zhang, Q. Zhang, “Balancing exploration
and exploitation in multi-objective evolutionary optimization,”

Information Sciences, vol. 497, pp. 129-148, 2019.
[18] G. Kaur, S. Arora, “Chaotic whale optimization algorithm,” Journal

of Computational Design and Engineering, vol. 5, issue 3, pp. 275-

284, 2018.
[19] M. Crepinsek, S.-H. Liu, M. Mernik, “Exploration and exploitation in

evolutionary algorithm: A survey,” ACM Computing Surveys, vol. 45,

issue 3, pp. 1-33, 2013.
[20] X.-S. Yang, “Nature-inspired optimization algorithms: Challenges and

open problems,” Journal of Computational Science, vol. 46, article

101104, 2020.
[21] J. Brest, M. S. Maucec, B. Boskovic, “Single objective real-parameter

optimization: Algorithm JSO,” Proceedings of the 2017 IEEE

Congress on Evolutionary Computation, 2017, pp. 1311-1318.

[22] H. Peng, C. Deng, Z. Wu, “Best neighbor-guided artificial bee colony

algorithm for continuous optimization problems,” Soft Computing,

vol. 23, pp. 8723–8740, 2019.
[23] J. Ding, J. Liu, K. R. Chowdhury, W. Zhang, Q. Hu, J. Lei, “A particle

swarm optimization using local stochastic search and enhancing

diversity for continuous optimization,” Neurocomputing, vol. 137, pp.
261-267, 2014.

Surapong Auwatanamongkol et al. / International Journal of Computing, 21(1) 2022, 69-75

VOLUME 21(1), 2022 75

[24] I. Ciornei, E. Kyriakides, “Hybrid ant colony-genetic algorithm

(GAAPI) for global continuous optimization,” IEEE Transactions on

Systems, Man, and Cybernetics – Part B: Cybernetics, vol. 42, n. 1,
pp. 234-245, 2012.

[25] M. Kaedi, “Fractal-based algorithm: a new metaheuristic method for

continuous optimization,” International Journal of Artificial
Intelligence, vol. 15, issue 1, pp.76-92, 2017.

[26] B. Akay, D. Karaboga, “A modified artificial bee colony algorithm for

real-parameter optimization,” Information Sciences, vol. 192, pp.120-
142, 2012.

[27] M. El-Abd, “Generalized opposition-based artificial bee colony

algorithm,” Proceedings of the IEEE Congress on Evolution
Computation (CEC), 2012, pp. 1-4.

[28] Y. Wang, Z. Cai, Q. Zhang, “Enhancing the search ability of

differential evolution through orthogonal crossover,” Information
Sciences, vol. 18, issue 1, pp.153–177, 2012.

[29] Y. Wang, Z. Cai, Q. Zhang, “Differential evolution with composite

trial vector generation strategies and control parameters,” IEEE
Transactions on Evolution Computations, vol. 15, issue 1, pp. 55-66,

2011.

[30] X. S. Yang, “Firefly algorithms for multimodal optimization,”
Stochastic algorithms: foundations and applications, SAGA 2009,

Lecture Notes in Computer Sciences, vol. 5792, pp. 169-178.

[31] X. S. Yang, H. Gandomi Amir, “Bat algorithm: A novel approach for
global engineering optimization,” Engineering Computations, vol. 29,

no. 5, 2012, pp. 464-483.

[32] P. Civicioglu, “Transforming geocentric cartesian coordinates to

geodetic coordinates by using differential search algorithm,”

Computers and Geosciences, vol. 46, pp. 229-247, 2012.
[33] P. Civicioglu, “Backtracking search optimization algorithm for

numerical optimization problems,” Applied Mathematics and

Computation, vol. 219, issue 15, pp. 8121-8144, 2013.
[34] P. Civicioglu, “Circular antenna array design by using evolutionary

search algorithms,” Progress Electromagnetics Research B, vol. 54,

pp. 265-284, 2013.

SURAPONG AUWATANAMONGKOL

received the bachelor degree of electrical

engineering from Chulalongkorn

University, Thailand, the master degree of

computer science from Georgia Institute

of Technology, USA, and the doctoral

degree of computer science from

Southern Methodist University, USA. He is

an associate professor at the school of Applied Statistics,

National Institute of Development Administration, Bangkok,

Thailand. His current research interests include Evolutionary

Computation, Machine Learning, Data and Image Analytics.

