

188 VOLUME 21(2), 2022

Date of publication JUN-30, 2022, date of current version AUG-01, 2021.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.21.2.2587

Software Reusability Estimation based on
Dynamic Metrics using Soft Computing

Techniques
MANJU DUHAN, PRADEEP KUMAR BHATIA

Guru Jambheshwar University of Science &Technology, Hisar
(e-mail: duhan.manju@gmail.com, pkbhatia.gju@gmail.com)

Corresponding author: Manju Duhan (e-mail: duhan.manju@gmail.com).

 ABSTRACT Dynamic metrics capture the run time features of object-oriented languages, i.e., runtime
polymorphism, dynamic binding, etc., that are not covered by static metrics. Therefore, in this paper, we derived a
new approach to measuring the software reusability of a design pattern based on dynamic metrics. To achieve this,
the authors proposed a model based on five parameters, i.e., polymorphism, inheritance, number of children,
coupling, and complexity, to measure the reusability factor by using various soft computing techniques, i.e., Fuzzy,
Neural Network, and Neuro-Fuzzy. Further, we also compared the proposed model with four existing machine
learning algorithms. Lastly, we found that the proposed model using the neuro-fuzzy technique is trained well and
predicts well with MAE (Mean absolute error) 0.003 and RMSE (Root mean square error) 0.009 based on dynamic
metrics. Hence, it is concluded that dynamic metrics are a better predictor of the reusability factor than static metrics.

 KEYWORDS Neuro-Fuzzy system; Fuzzy system; Software Reusability; Neural Network Model; Dynamic
metrics; Dynamic Polymorphism.

I. INTRODUCTION
OFTWARE Reusability is an attribute of quality in which
a new software system is implemented from the pre-

existing software system. Reusability of code plays a vital role
in improving software quality in terms of cost reduction, less
development time and more reliability. To achieve this, object-
oriented (OO) metrics play a crucial role in finding a reusable
class code [1]. Many researchers served on various measures
of metrics like coupling, cohesion, complexity, etc., to identify
the OO design quality. However, most of the existing
investigations were based on static metrics to measure the
quality of software. But in modern OO software, there are
features like run time polymorphism, dynamic binding,
runtime complexity, etc., that are captured using dynamic
metrics. So, the software industry’s focus moves from static
metrics to dynamic metrics to measure software reusability in
advance. Therefore, in this paper, we have used dynamic
metrics instead of static metrics to design a software
reusability prediction model (SRPM) using soft computing
techniques.

In this paper, we mainly focus on five factors i.e.,
Polymorphism, complexity, Inheritance, number of children,
and, coupling to measure the class reusability based on the
correlation of these factors with the output i.e., reusability.

The first factor we decide to measure the reusability factor is a
polymorphism that allows code-sharing and systematic reusing
of code. Polymorphism means having the ability to take
several forms [2]. There are mainly two types of
polymorphism that exist in Object-Oriented languages. First is
compile-time or static polymorphism, which achieves by
function overloading or constructor overloading, where
overloading means using the same name with a different
signature. For measuring this factor, we took SP (Static
Polymorphism) metric. Another one is runtime or dynamic
polymorphism, which reaches by virtual functions or dynamic
binding functions in OO programming languages [3]. In
dynamic binding, the concept of overriding functions comes,
which means a new definition given to the derived class
function that exists with the same name in the base class. For
measuring this factor, we took DP (Dynamic Polymorphism)
metric [4]. Also, we took four static metrics from the famous
Chidamber and Kemerer, CK metric suite [5] i.e WMC
(Weighted Method Complexity) for complexity measure, DIT
(Depth of Inheritance Tree) for inheritance measure, NOC
(Number of Children) for the number of children measure and
CBO (Coupling Between Objects) for coupling measure in OO
environment. We have also used DCBO (Dynamic Coupling
between Objects) from Mitchell and Power suite [6] and

S

Manju Duhan et al. / International Journal of Computing, 21(2) 2022, 188-194

VOLUME 21(2), 2022 189

DWMC (Dynamic Weighted Method Complexity) from
Manju and Bhatia metrics suite [4]. Table 1 and Table 2 show
the description of static and dynamic metrics used in the
current study to measure the reusability factor.

Table 1. Static Metrics Description

Metric Description
SP “Ratio of number of overloading and overridden methods

in class to the total number of methods in class”
WMC “Sum of the complexity of the methods of a class”
DIT “The maximum length from the node to the root of the

tree”
NOC “Number of immediate subclasses subordinated to a class

in the class hierarchy”
CBO “Count of the number of other classes to which it is

coupled”

Table 2. Dynamic Metrics Description

Metric Description
DP “Ratio of number of overloading and overridden methods

executed at runtime to the total number of times methods
of class execute at runtime”

DWMC “Number of times methods of class executed at runtime”
DIT “The maximum length from the node to the root of the tree

at run time”
NOC “Number of immediate subclasses subordinated to a class

in the class hierarchy at run time”
DCBO “Count of the number of other classes to which it is

coupled at runtime”

Further, we cannot predict the reusability of a class by

using crisp logic, i.e., yes or no. Therefore, we need fuzzy
logic (FL) to say the reusability of a class is low, medium, or
high for flexibility. Hence, fuzzy logic allows us to predict the
reusability of a class in the form of low, medium, and high
rather than crisp logic. In addition, Neural Network (NN)
approach provides adaptive learning capabilities to predict the
reusability ranking of software, whereas fuzzy logic can
generalize rules. Therefore, this study evaluates the
reusability of object-oriented software systems using the
fuzzy, neural network, and neuro-fuzzy (NF) approach [7].
Lastly, we have also used four famous existing machine
learning algorithms [8, 9] that are described below.

A. RANDOM FOREST (RF)
Random Forest is a supervised learning algorithm used in
both classification and regression but is most commonly used
in classification [8].

B. LINEAR REGRESSION (LR)
The Linear Regression model is based on the concept of best
fit by finding the relationship between attributes. This
algorithm also comes under the category of supervised
learning classification algorithms [9].

C. SMOreg
The sequential Minimal Optimization Regression (SMOreg)
algorithm performed best for solving quadratic programming
problems to train support vector machines [10].

D. MULTILAYER PERCEPTRON (MLP)
MLP is a supervised learning classification algorithm that
uses a back propagation algorithm for the training of
attributes feed as input to an artificial neural network [10].

The rest of the paper organizes as follows: Section 2
summarizes the literature review, and section 3 presents the

research methodology followed in this paper. Section 4
described the proposed formula and proposed models to
measure reusability using soft computing techniques. Section
5 explains the experimental study done on 140 samples and
the validation of models using the 2 test dataset. Lastly,
Section 6 describes the conclusion and future directions
referenced in this paper.

II. RESEARCH WORK
Many empirical studies exist in the literature to validate the
strong relationship between design patterns and respective
reusability. Zahara et al., 2013 [9] compared MLR, M5P, IBk
and Additive Regression algorithms for reusability evaluation
and found that IBk outperforms compared to other MLA with
no distance weighting using the WEKA tool [12]. Pathy et al.,
2015 [13] reviewed the static reusability metrics and
concluded that reusability increases then reciprocally increase
the DIT and NOC. Godara et al., 2016 [14] proposed an
adaptive neuro-fuzzy inference system (ANFIS), SRPM based
on static and traditional metrics and concluded that the hybrid
neuro-fuzzy model trained well and gives satisfactory results
for reusability measurement of software. Adekola et al., 2017
[15] proposed a new set of design principles for object-
oriented and other reuse-oriented systems. They also
explained how using internal attributes as cohesion could
improve software maintainability and reusability. Papamichail
et al., 2018 [8] proposed MLA to predict reusability and found
that RF outperforms as compared to other MLA. Papamichail
et al., 2019 [16] proposed a new dataset to measure the reuse
rate of software components using the Maven repository with
the help of SourceMeter and the AGORA tool. They
concluded that the generated dataset effectively measures the
reusability of software components based on static metrics.
Mangayarkarasi et al., 2020 [17] proposed NN, and SRPM
based on static and traditional metrics and found that the
proposed mathematical model effectively measures the
software cost with design reusability. Godara et al., 2021 [18]
reviewed various SRPMs and concluded that most of the
model’s base is static metrics and more work is required to
build SRPMs using various soft computing techniques.
Hence, from the literature, it is clear that most of the studies
conducted yet are based on static metrics i.e. mostly on CK
metrics suite [19] [20]. No study is conducted till now based
on dynamic metrics that have equal importance as static
metrics to measure run-time features of object-oriented
languages i.e. run-time polymorphism, dynamic binding etc.
to find SR [21, 22]. Therefore, in this paper, we tried to find
the reusability factor based on dynamic metrics to cover run
time features of object-oriented languages using soft
computing techniques i.e. FL, NN and NF.

III. RESEARCH METHODOLOGY
Fig. 1 presents the methodology adopted in the current study.
18 design patterns1 were used in the study, having 92 classes
to collect static and dynamic metrics data. Static metrics were
collected from the CodeMR tool2, and dynamic metrics were
measured using the AspectJ tool3, an implementation of
aspect-oriented programming4 on the eclipse platform5. After

1 https://www.Geeksforgeeks.org/chain-responsibility-design-pattern/
2 http://www.codemr.co.uk/
3 http://www.eclipse.org/aspectj
4https://o7planning.org/en/10257/ java-aspect-oriented-programming-tutorial-

 Manju Duhan et al. / International Journal of Computing, 21(2) 2022, 188-194

190 VOLUME 21(2), 2022

successfully collecting data, the proposed fuzzy model fed
with static and dynamic metric data as input to measure
design pattern reusability. Further, the proposed FL model
was validated using the AHP technique [23]. After that, we
took 140 samples from the Fuzzy model and fed them as input
to the proposed neural network and neuro-fuzzy model.
MATLAB tool was used to develop proposed models, i.e.,
FL, NN, and NF. Further, the authors compared the proposed
model with the existing four machine learning algorithms, i.e.,
LR, MLP, RF, and SMOreg, based on predictive accuracy
measures, i.e., MAE and RMSE [11]. We have used WEKA
3.8 tool6 to measure MAE and RMSE values of four machine
learning algorithms.

IV. PROPOSED WORK
In this section, we describe the proposed formula, working of
proposed fuzzy logic (FL), neural network (NN), and neuro-
fuzzy (NF) model with machine learning algorithms used in
the current study in various subsections.

A. PROPOSED FORMULA
A formula is proposed based on metrics described in section
1. Our approach is to discover the formula to measure the
reusability of a class diagram based on the following beliefs:

Figure 1. Research Methodology followed in Current Study

 More eminent the polymorphism factors in class, the

greater the potential for reuse of code because
polymorphism comes after inheritance. So, SP and DP
have a decisive impact on reusability.

 The deeper a particular class is in the hierarchy, the greater
the potential for reusing inherited methods. It declares that
the reusability of a class increases with an increase in the
DIT of a class. So, DIT has a definite impact on class
reusability.

 A nominal value for NOC intimates the extent of reuse.
Up to a particular threshold value, NOC has a convincing
impact on class reusability.

 Excessive coupling indicates a weakness of class
encapsulation and may inhibit reuse. It demonstrates that

with-aspectj
5 https://www.eclipse.org/aspectj/doc/next/progguide/printable.html
6http://people.sabanciuniv.edu/berrin/cs512/lectures/WEKA/ WEKA% 20
Explorer % 20 Tutorial-REFERENCE.pdf

coupling (CBO and DCBO) harms the reusability of a
class.

 Excessive complexity indicates the class is highly
complex and hard to maintain. Therefore, WMC and
DWMC harm class reusability.
Reusability of a class based on static metrics (RS) =

w1*(SP)+w2*(DIT)+w3*(NOC)–w4*(CBO)–w5*(WMC). (1)

Reusability of a class based on dynamic metrics (RD) =

w1*(DP)+w2*(DIT)+w3*(NOC)–w4*(DCBO)–w5*(DWMC). (2)

where w1, w2, w3, w4, and w5 are the weights to be calculated
using AHP (Analytic Hierarchy Process) technique in section
5.1.

Thus, the reusability of a class diagram is the class having
maximum reusability at both compile and run time. Thus,
Reusability of class diagram =

 max(∑ 𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑐𝑙𝑎𝑠𝑠)

ୀଵ), (3)

where n is the total number of classes in the class diagram.

B. PROPOSED FUZZY LOGIC MODEL (FL)
The proposed FL model developed using the MATLAB tool
takes five inputs, i.e., polymorphism, inheritance, number of
children, coupling, complexity to the MFIS (Mamdani’s
Fuzzy Inference System), and one output, i.e., reusability, as
shown in Fig. 2. We classify all inputs into fuzzy sets viz.,
Low, Medium, and High. Therefore, according to the
formula, 35 rules were developed [4]. In addition, to fuzzify
the inputs, the triangular membership function (trimf) has
been chosen, namely Low, Medium and High. The output
variable, i.e., software reusability, has five membership
functions (trimf), namely Very Low, Low, Medium, High,
and Very High as shown in Fig. 3. The proposed model
considers all five inputs and provides a crisp value of
software reusability using a rule base. The range of inputs is
different in the case of static metrics and dynamic metrics.
For static metrics ranges of input are SP[0-1], WMC[0-9],
DIT[0-2], NOC[0-3], CBO[0-4] respectively. For dynamic
metrics ranges of input are DP[0-1], DWMC[0-14], DIT[0-2],
NOC[0-3], DCBO[0-4] respectively.

Figure 2. Proposed Fuzzy Model

Manju Duhan et al. / International Journal of Computing, 21(2) 2022, 188-194

VOLUME 21(2), 2022 191

Figure 3. Proposed Mamdani’s Fuzzy Inference System

С. NEURAL NETWORK MODEL (NN)
The proposed neural network, as described in Table 3, takes
input generated from the proposed fuzzy model. The network
has trained with five inputs by using trainlm as training
functions and one output, i.e., software reusability. We set the
number of neurons at the hidden layer to 20. The Transig
function was used as a transfer function in the proposed
ANN. The ANN was trained on these data sets (140 samples
of different datasets generated by the fuzzy model) by the
standard error back-propagation algorithm at a learning rate
of 0.006, having the mean squared error as the training
stopping criterion. The network divides the 140 samples into
three parts, i.e., 98 samples (70%) for training, 21 samples
(15%) for testing, and 21 samples (15%) for validating the
neural network, as shown in Fig. 4.

Table 3. Proposed neural network Description

Input units 05
Output units 01
No. of neurons at the hidden layer 20
Algorithm Back propagation
Training function Trainlm
Network ratio 14:3:3

Figure 4. Proposed Neural network Model

В. PROPOSED NEURO-FUZZY MODEL (NF)
Neuro-fuzzy is a hybrid system [10], as described in Table 4,
that benefits from a fuzzy logic approach that provides
flexibility to a system rather than crisp logic and a neural
network that can learn by itself. Therefore we can say that the
neuro-fuzzy approach is a mixture of implicit and explicit
knowledge. In this paper, the neuro-fuzzy model is applied
with the help of the MATLAB tool using the ANFIS editor.

Table 4. Proposed Neuro-Fuzzy Model Description

Input units 05
Output units 01
No of the train data pairs 140
No. of Fuzzy rules generated 243
FIS Model Sugeno
FIS training optimization method Hybrid
FIS Input membership function gaussmf(Low, Medium, High)
FIS Output membership function Linear
FIS Generation method Grid Partitioning
No. of Epochs 60

Firstly, raw data was loaded in the ANFIS editor using the

load data option and set the type of data as training data in the
load data part of the ANFIS editor, as shown in Fig. 5. After
the successful loading of data, we can see the structure of the
proposed neuro-fuzzy model. After that, the authors
generated a Sugeno fuzzy inference system with three
membership functions (gaussmf), i.e., low, medium, and
high, using the grid partitioning method and then train the
generated FIS using a hybrid optimization method by setting
the number of epochs to 60. Further, trained ANFIS was
tested on two validation datasets by selecting the load data
type for testing, and again, the authors generated the FIS on
testing data.

Figure 5. Loaded data in the Neuro-fuzzy model

E. MACHINE LEARNING ALGORITHMS USED IN THE
CURRENT STUDY
The authors have used four MLA, i.e., LR, MLP, RF, and
SMOreg, in the current study to find the reusability factor of
software. The authors applied these algorithms by using
WEKA 3.8 tool. After that, the classification of processed data
has done by setting the cross-validation folds value to 30.

 Manju Duhan et al. / International Journal of Computing, 21(2) 2022, 188-194

192 VOLUME 21(2), 2022

From the results, the authors observed that the time taken to
build a model using WEKA 3.8 is significantly less than the
fuzzy and neuro-fuzzy models.

V. EXPERIMENTAL STUDY
An experimental study has been conducted on 18 Design
patterns coded in Java programming language. Statistics were
applied to obtain values of metrics using the MATLAB tool.
Simple functions, i.e., min, max, mean, median, std, are used
in MATLAB to find the minimum, maximum, mean, median,
and standard deviation of measured metrics values. Table 5
and Table 6 show the statistical results on metrics values of 92
classes taken from 18 design patterns.

Table 5. Statistical data of static Metrics

Metric Name MIN. MAX. MEAN MEDIAN STD.DEV.
SP 0 1 0.43 0.5 0.40

DIT 0 2 0.63 1 0.56
NOC 0 3 0.58 0 0.92
CBO 0 4 0.78 0 1.08
WMC 1 9 0.23 2 1.65

Table 6. Statistical data of Dynamic Metrics

Metric Name MIN. MAX. MEAN MEDIAN STD.DEV.
DP 0 1 0.36 0.23 0.39
DIT 0 2 0.60 1 0.53
NOC 0 3 0.55 0 0.90

DCBO 0 4 0.70 0 1.01
DWMC 0 14 3.08 2 3.33

To find the reusability of a system or design pattern, we

first divide the static and dynamic metrics values by the
number of components or classes in the system or design
pattern, respectively. After that, processed data feed as input
to the fuzzy model. In contrast, for reusability measurement of
a class, no pre-processing of static and dynamic metrics values
is required. Table 7 shows the reusability of 18 design patterns
measured by proposed MFIS based on static and dynamic
metrics where NC denotes the number of components in the
design pattern.

Table 7. Reusability Measured by the Proposed MFIS

Class Name SP DP DIT NOC CBO WMC DWMC NC Static MFIS Dynamic MFIS
Abstract Factory 1.64 1.84 3 3 16 17 31 8 0.42 0.41
Adaptor 2.5 1.75 3 3 1 8 8 5 0.64 0.50
Bridge 3 1.5 4 4 3 9 16 5 0.64 0.40
Builder 2.6 2.6 3 3 5 28 19 6 0.55 0.55
Composite 1.33 1.25 3 3 0 8 20 4 0.55 0.50
Iterator 0.99 1.08 2 2 8 13 21 6 0.38 0.29
Factory Method 2 1 2 2 3 5 3 4 0.69 0.65
FlyWeight 1.32 1.80 2 2 3 12 32 4 0.50 0.40
Chain 3 2.29 3 3 4 10 16 5 0.55 0.44
Observer 1.33 0.94 3 3 2 17 22 5 0.47 0.33
ProtoType 1.5 1.12 5 2 1 7 20 4 0.75 0.70
State 2 2 2 2 5 6 11 4 0.53 0.53
Strategy 5.5 3.5 7 7 8 20 12 10 0.69 0.64
Template 2 2 2 2 0 13 18 3 0.64 0.59
Visitor 2.11 1.2 3 3 7 15 14 5 0.39 0.39
Mediator 1.83 1.83 3 3 6 15 11 5 0.33 0.33
Employee 1.83 1.5 4 3 0 7 5 4 0.64 0.67
Car Data 3 3 4 3 0 7 5 4 0.84 0.86

After measuring the static and dynamic metrics, we found

that the value of the coupling measure, CBO and DCBO gives
almost the same results. In the same way, there is very little
variance in the values of DIT and NOC metrics values at
compile and run time. Therefore, in table 7, we show only
static values of DIT, NOC and CBO metrics. From table 7, we
can say that there is a significant difference between the
reusability factor measured by MFIS based on static, and
dynamic metrics.

A. VALIDATION OF PROPOSED MFIS USING AHP
The proposed fuzzy model is validated using the standard
AHP (Analytic Hierarchy Process) technique given by Saaty
[19]. Table 8 shows the calculated values of 5 factors:
polymorphism, inheritance, number of children, coupling,
and complexity. If the consistency index value is less than
0.1, then the decision value of 5 factors is accepted;
otherwise, it’s rejected. Hence, Eigen vector values are used
as the final weight value to the corresponding factor, i.e., w1
is 0.46 for polymorphism, w2 is 0.24 for an inheritance, w3 is
0.16 for the number of children, w4 is 0.11 for coupling, and
w5 is 0.03 for complexity.

Consistency Index (CI) = (λmax –n)/(n-1) where n=5.
From Table 8, we got the values of w1, w2, w3, w4, and w5.

Further, we put these weight values in equations (1) and (2)
described in section 4.1 and calculated class reusability based
on static and dynamic metrics.

Table 8. AHP Decision Values

Factors Poly. Inhe. NOC Coup. Comp. Eigen
Vector
(w)

Polymorphism 1 3 3 7 9 0.46
Inheritance 1/3 1 3 3 7 0.24
NOC 1/3 1/3 1 3 7 0.16
Coupling 1/7 1/3 1/3 1 7 0.11
Complexity 1/9 1/7 1/7 1/7 1 0.03
Total 1.000

After that, we calculated relative error (RE) and relative

root square error (RRSE). For static metrics, the measured
value of MAE is 0.036, and RMSE is 0.11. For dynamic
metrics, the measured value of MAE is 0.026, and RMSE is
0.02. The resulted values indicate that dynamic metrics can
better predict the reusability of design patterns.

Manju Duhan et al. / International Journal of Computing, 21(2) 2022, 188-194

VOLUME 21(2), 2022 193

B. ANALYSIS RESULTS
Data generated by the fuzzy model act as input to the neural
network and neuro-fuzzy model. We took 140 samples from
the MFIS model to feed as input to the NN and NF model.
After successful training of the neural network and neuro-
fuzzy model, the value of MAE and RMSE was obtained. In
addition, a comparison of proposed models has been done
with the existing four machine learning algorithms on the
predictive accuracy measures, i.e., MAE and RMSE. Table 9
shows the comparison of various SRPMs.

Table 9. Comparison of various SRPMs

 Static Metrics Dynamic Metrics
SRPM Model

Name
MAE RMSE MAE RMSE

Proposed
Model

FL 0.08 0.10 0.05 0.07
NN 0.02 0.04 0.009 0.03
NF 0.01 0.02 0.003 0.009

MLA SMOreg 0.06 0.08 0.07 0.09
RF 0.04 0.07 0.05 0.08
LR 0.06 0.07 0.07 0.09

 MLP 0.06 0.08 0.05 0.07

The highest value of MAE is 0.08 for static metrics and

0.05 for dynamic metrics. This indicates that the fuzzy model
has the highest difference between predicted and actual
values. The lowest value of MAE is 0.01 for static metrics
and 0.003 for dynamic metrics using the neuro-fuzzy model
which indicates that the proposed neuro-fuzzy model is
trained well and has minimized the differences between
predicted and actual values. Fig. 6 shows a comparison of
MAE values for the static and dynamic metrics of SRPM.

Figure 6. Comparison of MAE values of various SRPMs.

C. VALIDATION OF PROPOSED MODELS
The proposed model has been validated on two datasets. The
result indicates that the neuro-fuzzy model trained well,
which gave MAE 0.000 for dataset 1 based on dynamic
metrics. Table 10 and Table 11 show validation results for
static and dynamic metrics on two datasets, respectively.

Table 10. Validation results for Static Metrics

 Static metrics
 Test Dataset1 Test Dataset 2
Proposed Model MAE RMSE MAE RMSE
FL 0.076 0.082 0.081 0.098
NN 0.019 0.026 0.032 0.052
NF 0.007 0.013 0.004 0.009

Table 11. Validation results for Dynamic Metrics

 Dynamic metrics
 Test Dataset1 Test Dataset 2
Proposed
Model

MAE RMSE MAE RMSE

FL 0.055 0.064 0.048 0.062
NN 0.003 0.008 0.016 0.047
NF 0.000 0.002 0.001 0.006

Therefore, from Table 10 and Table 11, we can say that

the neuro-fuzzy model performed well on both the test
datasets irrespective of any model based on dynamic metrics.
We compared the MAE values of dataset 1 and dataset 2, and
we found that the value of error is minimized in the models
based on dynamic metrics. The minimum value of MAE is
0.000, and RMSE is 0.001 for the neuro-fuzzy model based
on dynamic metrics for test dataset 1, as shown in Fig. 7 and
Fig. 8, respectively.

Figure 7. Comparison of MAE values of proposed models on

dataset 1

Figure 8. Comparison of MAE values of proposed models on
dataset 2

VI. CONCLUSION AND FUTURE WORK
This paper proposed a model having five inputs, i.e.,
polymorphism, inheritance, number of children, coupling,
complexity, and one output, i.e., reusability. We have also
offered a formula based on these inputs to evaluate the
reusability factor based on static and dynamic metrics. We
have taken 140 samples from the web to find the reusability
of a class. Further, the authors compared the proposed model
with four machine learning algorithms, and we found that the
neuro-fuzzy model is trained well and gives MAE 0.01 in the
case of static metrics and 0.003 in the case of dynamic
metrics. Also, the authors validated the proposed fuzzy,
neural network, and neuro-fuzzy model on 2 test datasets.
The result shows that the neuro-fuzzy model gives

0
0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08
0,09

FL LR MLP SMOreg RF NN NF

Static MAE

Dynamic MAE

0
0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08

Fuzzy Neural
Network

Neuro-Fuzzy

static

dynamic

0
0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08
0,09

Fuzzy Neural
Network

Neuro-Fuzzy

static

dynamic

 Manju Duhan et al. / International Journal of Computing, 21(2) 2022, 188-194

194 VOLUME 21(2), 2022

satisfactory results with MAE 0.000 on dataset 1 based on
dynamic metrics. Hence, we can say that dynamic metrics are
a better predictor of the reusability factor than static metrics.
Therefore, this model is beneficial for the software industry
to predict the reusability of Object-Oriented software systems
that would be very beneficial for developers about cost
benefits. Static metrics-based SRPM can be used in the early
phases of the software development life cycle. In contrast,
dynamic metrics-based SRPM can be used after the coding
phase. In future, the model will be more refined by
considering other object-oriented metrics and large projects
to calculate a project’s reusability in advance quickly.

References
[1] R. S. Pressman, Software Engineering – A Practitioner’s Approach, 7th

ed., McGraw Hill, 2005.
[2] S. Benlarbi, W. L. Melo, “Polymorphism measures for early risk

prediction,” Proceedings of the International Conference on Software
Engineering, 1999, pp. 334-344.
https://doi.org/10.1145/302405.302652.

[3] K. H. T. Choi, E. Tempero, “Dynamic measurement of polymorphism,”
Proceedings of the Thirtieth Australasian Computer Science
Conference, Victoria, Australia, 2007, vol. 62, pp. 211-220.

[4] Manju, P. K. Bhatia, “Empirical validation of dynamic metrics using
knowledge based approach,” International Journal of Advanced
Research in Engineering and Technology, vol. 11, issue 12, pp. 3219-
3230, 2020.

[5] S. R. Chidamber, C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, vol. 20, issue 6,
pp. 476-493, 1994. https://doi.org/10.1109/32.295895.

[6] A. Mitchell, J. F. Power, “A study of the influence of coverage on the
relationship between static and dynamic coupling metrics,” Science of
Computer Programming, vol. 59, issue (1/2), pp. 4-25, 2006.
https://doi.org/10.1016/j.scico.2005.07.002.

[7] H. Lounis, T. Gayed, M. Boukadoum, “Using efficient machine-
learning models to assess two important quality factors: Maintainability
and reusability,” Proceedings of the 2011 Joint Conference of the 21st
International Workshop on Software Measurement and the 6th
International Conference on Software Process and Product
Measurement, pp. 170-177, 2011, https://doi.org/10.1109/IWSM-
MENSURA.2011.44.

[8] M. Papamichail, T. Diamantopoulos, I. Chrysovergis, P. Samlidis, A.
Symeonidis, “User perceived reusability estimation based on analysis of
software repositories,” Proceedings of the IEEE Workshop on Machine
Learning Techniques for Software Quality Evaluation (MaLTeSQuE),
2018, pp. 49–54. https://doi.org/10.1109/MALTESQUE.2018.8368459.

[9] R. Feldt, F. G. Neto, R. Torkar, “Ways of applying artificial intelligence
in software engineering,” Proceedings of the 6th International
Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering, 2018, pp. 35–41.

[10] D. Stefano, T. Menzies, “Machine learning for software engineering:
case studies in software reuse,” Proceedings of 14th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI 2002), pp. 246–
251, 2002.

[11] S. I. Zahara, M. Ilyas, T. Zia, “A study of comparative analysis of
regression algorithms for reusability evaluation of object-oriented based
software components,” Proceedings of 2013 International Conference
on Open-Source Systems and Technologies, 2013, pp. 75–80.
https://doi.org/10.1109/ICOSST.2013.6720609.

[12] S. S. Aksenova, Machine Learning with WEKA, WEKA Explorer
Tutorial, 2004.

[13] N. Padhy, R. Panigrahi, S. Baboo, “A systematic literature review of an
object oriented metric: reusability,” Proceedings of the International
Conference on Computational Intelligence and Networks, Bhubaneswar,
2015, pp. 190–191. https://doi.org/10.1109/CINE.2015.44.

[14] D. Godara, O. P. Sangwan, “Neuro-fuzzy based approach to software
reusability estimation,” Proceedings of the International Conference on
Sustainable Computing Techniques in Engineering Science and
Management (IJCTA), pp. 3811-3891, 2016.

[15] O. D. Adekola, S. A. Idowu, S. O. Okolie, J. V. Joshua, A. O
Akinsanya, M. O. Eze, E. Seun, “Software maintainability and
reusability using cohesion metrics,” international journal of computer
trends and technology (ijctt), vol. 54, pp. 63–73, 2017.
https://doi.org/10.14445/22312803/IJCTT-V54P111.

[16] M. Papamichail, T. Diamantopoulos, A. Symeonidis, “Software
reusability dataset based on static analysis metrics and reuse rate
information,” Journal of System and Software, vol. 27, 104687, 2019,
https://doi.org/10.1016/j.dib.2019.104687.

[17] P. Mangayarkarasi, R. Selvarani, “Dynamic reusability prediction model
for SMEs based on realtime constraints,” International Journal of
Engineering Trends and Technology – Special Issues, pp. 63-75, 2020.

[18] D. Godara, O. P. Sangwan, “Software reusability estimation using
machine learning techniques – A systematic literature review,”
Proceedings of the Evolving Technologies for Computing,
Communication and Smart World, Lecture Notes in Electrical
Engineering, Springer, Singapore, vol. 694, pp. 53-68, 2021.
https://doi.org/10.1007/978-981-15-7804-5_5.

[19] J. Sanz-Rodriguez, J. M. Dodero, S. Sanchez-Alonso, “Metrics-based
evaluation of learning object reusability,” Software Qual Journal, vol.
19, issue 1, pp. 121-140, 2011. https://doi.org/10.1007/s11219-010-
9108-5.

[20] A. K. M. Fazal-e Amin, A. Oxley, “Reusability assessment of open
source components for software product lines,” International Journal on
New Computer Architectures and Their Applications (IJNCAA), vol. 1,
issue 3, pp. 519–533, 2011.

[21] M. Mijač, Z. Stapic, “Reusability metrics of software components:
Survey,” Proceedings of the Central European Conference on
Information and Intelligent Systems, pp. 221-231, 2015. DOI:
10.13140/RG.2.1.3611.4642.

[22] A. L. Imoize, D. Idowu, T. Bolaji, “A brief overview of software reuse
and metrics in software engineering,” World Science News, vol. 122, pp.
56–70, 2019.

[23] T. L. Saaty, “How to make a decision: The analytic hierarchy process,”
European Journal of Operational Research, vol. 48, issue 1, pp. 9-26,
1990. https://doi.org/10.1016/0377-2217(90)90057-I.

[24] F. Taibi, “Empirical analysis of the reusability of object-oriented
program code in open-source software,” International Journal of
Computer, Information, System and Control Engineering, vol. 8, issue
1, pp. 114–120, 2014.

[25] V. Dimaridou, A. C. Kyprianidis, M. Papamichail, T. Diamantopoulos,
A. Symeonidis, “Assessing the user-perceived quality of source code
components using static analysis metrics,” Communications in
Computer and Information Science (CCIS), vol. 868, pp. 3–27, 2018.
https://doi.org/10.1007/978-3-319-93641-3_1.

MANJU DUHAN has completed PhD
degree at Guru Jambheshwar University
of Science and Technology, Hisar, India.
Her research interests are Neural
networks, Machine learning, Neuro-fuzzy,
and Software Quality Metrics in Object-
Oriented environments.

PRADEEP KUMAR BHATIA, Doctor of
Sciences, a Professor, Department of
Computer Science and Engineering, Guru
Jambheshwar University of Science and
Technology, Hisar, India. His research
areas are Software Engineering, Computer
graphics and Artificial Intelligence.

