

VOLUME 21(3), 2022 369

Date of publication SEP-30, 2022, date of current version FEB-04, 2022.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.21.3.2694

A Cloud Pub/Sub Architecture to Integrate
Google Big Query with Elasticsearch using

Cloud Functions
SERGIO LAUREANO GUTIÉRREZ, YASIEL PÉREZ VERA

Escuela Profesional de Ingeniería de Sistemas, Universidad Nacional de San Agustín, Arequipa-Perú
(E-mail: slaureano@unsa.edu.pe, yperezv@unsa.edu.pe)

Corresponding author: Sergio Laureano Gutiérrez (e-mail: slaureano@unsa.edu.pe).

 ABSTRACT In recent years, the need for analytics on large volumes of data has become increasingly important.
It turns out to be extremely useful in making strategic decisions about different applications. In this way,
appropriate mechanisms must be designed to carry out data processing and integration with different platforms to
take advantage of their best features. In this work, an architecture that works on cloud services is shown to migrate
data stored in Big Query to an analytics engine such as Elasticsearch and take advantage of its potential in query,
insert and display operations. This is accomplished through the use of Cloud Functions and Pub / Sub. The
integration of these platforms through the proposed architecture showed 100% effectiveness when transferring
data to another, maintaining an insertion rate of 4,138.30 documents per second, demonstrating its robustness,
efficiency, and versatility when performing a data migration. This pretends to establish an architecture solution
when it comes about handling a large amount of data as in the real world.

 KEYWORDS Cloud Computing Architecture; Cloud Function; Cloud Service; Serverless; Pub/Sub.

I. INTRODUCTION
N this digital age, large amounts of data are being generated
exponentially daily. Still, the real challenge is to analyze and

extract value from them since we are not taking advantage of
even a small percentage of what we have at our disposal [1].
We are in a world that is being driven by data. These should
allow companies to make better decisions to improve in all
aspects [2].

According to the data published in a report [3] by the
Seagate company and the IDC consultancy, by 2025, more than
175 Zeta Bytes of data will have been created in the world, an
amount that will be ten times higher than that registered in 2016.
The study also ensures that by 2025 about 20% of global data
will be critical to our daily lives and reveals that the connected
persons worldwide will interact with connected devices an
average of close to 4,800 times daily [3].

Several essential elements must be taken into account to
obtain valuable information. Without these, any effort to deal
with large volumes of data is almost certainly not going to
work [1]. We mainly faced storage problems in the past, but
now, storing large amounts of information is no longer
particularly difficult [4]. Although the storage of large amounts
of data is still expensive on many occasions, to solve this
problem, we have cloud solutions [5]. A good infrastructure
allows us to store and maintain data, but it is very little use

without the right tools to access it [6]. The tools for managing
large volumes of data are undergoing rapid evolution and must
be constantly attentive and updated [7].

Among these tools for handling large volumes of data is Big
Query, an enterprise data warehouse solution with support for
analysis for vast volumes of data at the scale of Petabytes [8].
The goal of placing the data in Google Big Query enables faster
analysis on larger volumes of data. Making data accessible has
become paramount. Therefore, making data available as quickly
as possible is essential [9]. Traditional data integration solutions
are often complex to install, configure, maintain, and develop
data flow [10].

Elasticsearch is a search engine for querying large volumes
of complex data [11]. Its main characteristic is that it allows the
data to be indexed. The answers to the executed queries are fast,
being able to analyze the data much more efficiently. It allows
large amounts of data processing and seeing their evolution in
real-time [12]. In addition, it provides graphs that help to
understand more easily the information obtained [13]. One of
the benefits of this tool is that it can be expanded with Elastic
Stack, a suite of products that enhance the capabilities of
Elasticsearch [14].

Both Big Query and Elasticsearch aim to handle large
volumes of data. The storage power of Big Query is extremely
useful for storing data [15]. On the other hand, the data
aggregation capabilities, the queries in DSL format, and the

I

 Sergio Laureano Gutiérrez et al. / International Journal of Computing, 21(3) 2022, 369-376

370 VOLUME 21(3), 2022

dynamic data visualization module of Elasticsearch bring
significant added value to the big data solutions [16]. The
interoperability of both systems can be merged to make more
robust applications that handle and display large volumes of
information optimally.

This paper presents a cloud architecture that integrates the
Big Query non-relational database with the Elasticsearch
distributed analysis and analytics engine. It is intended to use
cloud tools to interoperability systems such as Cloud Functions
on the Pub/Sub architecture to achieve this objective. This
paper is structured as follows. Section 2 reviews the related
works associated with architectures for system integrations.
Subsequently, Section 3 revises the main characteristics of
cloud architectures and non-relational databases. Section 4
introduces the cloud architecture proposed to integrate Big
Query with Elasticsearch using Cloud Functions. Section 5
shows the results of the proposal’s implementation, and Section
6 concludes the paper.

II. RELATED WORKS
From the perspective of the paper “Analyzing Open Source
GitHub Repositories Towards Technology Acceptance Model”
[17], a proposal for analyzing public data from GitHub
repositories available to the public in Big Query was presented.
The article investigated the correlations and anomalies between
the trends and the most used languages using the ELK suite [18].
The research concluded with an architecture that integrates data
from Big Query and is analyzed with Elasticsearch, Logstash,
and Kibana, which determine the correlation between trends and
anomalies in developing technologies. Despite this, the research
did not delve into the integration of Big Query with
Elasticsearch, mentioning that only the API for Python of the
Google Platform is used, without saying the use of Cloud
Functions.

Besides, the article “Investigation of Architecture and
Technology Stack for e-Archive System” [19] investigated the
technologies and architecture models necessary for an electronic
file system. This induces the OASIS architecture model for the
system development and details the different types of
architecture possible to use as Web-Queue-Worker,
Microservices, and others. It also defined the communication
processes and the potential technologies for the analytics part.
MongoDB and Azure were mentioned. Elasticsearch is a
distributed search engine necessary for quick query and search
in the model. The article concluded with a comparison of
different styles of architecture and integration that can be used
to develop the electronic file system. However, it did not show
a conclusive implementation for the system, nor did it delve into
the Cloud architecture required for data ingestion by search
engines such as Elasticsearch.

On the other hand, the research “Integrated Analytics for
IIoT Predictive Maintenance using IoT Big Data Cloud
Systems” [20] described the design and addition of Big Data
Systems on cloud solutions for IoT systems. For this, they take
advantage of serverless functions, cloud services, and domain
knowledge to support dynamic interactions between human
resources and equipment maintenance software. Among the
technologies used are: Google Cloud Functions, Apache Nifi,
and Hadoop Spark. A system was obtained, whose architecture
starts from the BTS (Base Transceiver Station), which, through
sensors and IoT gateways, sends the data to storage sources such
as PostgreSQL and OracleDB. These are then sent through
Google Cloud Functions to components intended for analytics
such as Apache Nifi, Google Big Query, or Hadoop FS. The
article also presented serverless prototypes using AMQP,

Apache Spark, or Google Pub/Sub to integrate different
industrial IoT devices throughout the company.

In contrast to our research, the article proposed a high-cost
architecture, which manages other data storage instances and
different architectures to maintain communication between the
storage and analysis systems. Therefore, the solution has high
complexity. Likewise, it does not integrate Elasticsearch into
the final proposal of its analytics system.

To summarize, the studies presented cover Big Data
integration architectures to be consumed by systems of the ELK
suite and focus on solutions that use cloud services to guarantee
scalability to a greater extent. Some used Elasticsearch as a
means of distributed search due to its great potential when using
the inverted index to index documents. In contrast, others
proposed using Pub/Sub architectures to communicate the
proposed systems’ different services.

The present investigation differs from the previous ones by
integrating the previous concepts through the Pub/Sub
architecture. In that way, scalability, reliability, and availability
are gained. Also, by optimizing the integration of Google Big
Query with Elasticsearch through Cloud Functions, we achieve
a stable solution that is easy to implement in different areas
where it is needed.

III. CLOUD ARCHITECTURES AND NON-RELATIONAL
DATABASES

A. PUB/SUB ARCHITECTURE
Software architecture is defined as a strategic design [21] that
supports related activities to meet the business objectives aimed
at by the software to be developed. It is intrinsically related to
global requirements, and its solution is implemented on
programming paradigms, architectural styles, standards based
on aspects of software engineering, cybersecurity, and legal
regulations [21].

Global Software Development (GSD) is a trend lately,
representing the development of applications through a globally
distanced team [22]. This implies that the integration of the
same has to be managed to reduce communication problems and
improve control and the use and design of an architecture that
simplifies the coordination between distributed teams.

A Pub/Sub system works as a type of middleware with a
client/multi-server architecture, which provides personalized
and disseminated information by identifying and delivering a
particular event for the interested user [23]. The main
components of the Pub/Sub architecture are publishers,
subscribers, and brokers. The subscribers are applications that
generate a subscription to indicate their interest in specific
content that a publisher will cause. The publishers are the
information producers who publish data in the system. Then the
brokers (servers) will be responsible for relating the
subscriptions with the data that they are looking for and that
have been previously published [23].

There are many Pub/Sub implementations in cloud
environments, and some examples of these are Google Cloud
Pub/Sub [24] or Amazon Pub-Sub Messaging [25]. Among all
the providers that implement this architecture, key concepts are
maintained. The Pub/Sub paradigm is mainly based on topics
and messages [23].

Topics are specific classes of objects for customers who are
interested in subscribing. Messages are objects that are sent
when data is required. This works in the following way: when a
message is published on a topic, each customer with a
subscription to it receives the message automatically. The
messages are serialized into an array of bytes since Pub/Sub is

Sergio Laureano Gutiérrez et al. / International Journal of Computing, 21(3) 2022, 369-376

VOLUME 21(3), 2022 371

conceived to work in distributed systems and send the data to a
distributed network set.

The data distributed through Pub/Sub can be topic-based.
The messages are published on different topics. The publisher
is responsible for defining the class of messages that subscribers
must access and content-based. The messages are only sent to
the subscriber if the content or attributes of the messages match
the restrictions defined by the subscriber [23].

Google Cloud Pub/Sub defines the following types of
subscription: Pull and Push [24]. Each is used for specific
situations. The subscriber starts pulling subscriptions with a
request to the Pub/Sub server to receive messages. Then the
server responds with the message or an error if the queue is
empty. Finally, the subscriber must explicitly indicate to the
server that it received the messages correctly using an
acknowledgement ID [24]. These subscriptions are
advantageous when handling a large volume of messages and
prioritizing efficiency and message processing. It is also helpful
to guarantee HTTPS requests when there is no public endpoint
with an SSL certificate.

In a push-type subscription, the Pub/Sub server starts the
process by sending the data to the subscriber through an
HTTPS request to a preconfigured endpoint [24]. The
subscriber must also confirm the correct reception of the
messages. On the other hand, push subscriptions are helpful
when the same endpoint must process multiple topics and when
it is sought that the same Pub/Sub server implements the
message control flow [24].

B. CLOUD FUNCTIONS
Serverless is a recent trend, referring to web applications that
react to events [26]. This type of architecture manages to
execute complex and distributed applications built from simple
functions without requiring the developer to manage the servers
or any complex operational aspect [27]. The characteristics of a
Serverless architecture can be summarized in 3 elements.
Granular Billing, the service is charged per use in an execution.
No operational logic, the development team does not worry
about architectural issues such as the auto-scaling service,
which the service provider itself already does. And Event-
Driven applications are deployed that only respond to events
when needed, allowing interaction with serverless applications
that are short-lived [27].

A Cloud Function is a software script deployed in the
providers’ cloud infrastructure to execute an operation in
response to an external event [26]. These are short, stateless, and
only run-on demand, with a single functional responsibility. The
function implements specific business logic to achieve the goal
of the application [27]. Its characteristics include short life, a
small input is taken, and output is typically generated after a
short time). Cloud Functions are devoid of operational logic,
which means that the entire operative issue is delegated to the
platform. They also are context agnostic, so the function does
not need to know the environment or the reason for its execution
[27].

The Cloud Functions can be activated by: an event generated
by the cloud infrastructure (changes in the database, file upload,
the loading of an object, a new item, notifications to be sent,
etc.) and a direct call from the application via HTTP or the cloud
service API.

C. NON-RELATIONAL DATABASES
1) Big Query

Google Big Query is a highly scalable Data Warehouse
under the Serverless architecture, which comes with its built-in

query engine. This query engine is capable of executing SQL on
TB of data in seconds. All performance is achieved without
having to manage the infrastructure capable of lifting the service
[28].

Big Query’s serverless architecture allows different
company parts to store their datasets and easily share them for
seamless cross-departmental querying. It also allows third
parties to access the data to carry out their operations if they
have the permissions. Big Query can also be used for basic data
warehouse workflows such as ETL (Extract, Transform, and
Load). However, it accepts variations of it such as EL (Extract
the data, then store it in Big Query) or ELT (Extract data, store
it in Big Query, and then transforms it using Big Query’s built-
in query engine) [28].

Also, the platform is helpful to handle large volumes of
Analytics. Big Query can store large amounts of data of
different types: numeric, textual, even geospatial data. It can be
done directly via the REST API to facilitate data entry or exit.
Among its other applications, we have the Administration
Facility. Part of the design behind Big Query is to get users to
focus on application development and the results they expect
from Big Query rather than infrastructure management [28].

2) Elasticsearch
Elasticsearch is a distributed real-time analytics engine, first

released in 2010 [29] and designed to organize data to make it
easily accessible [30]. It is developed as open-source on Apache
Lucene [31], in Java [29] and is part of the ELK suite [18],
where we can find other tools for analytics such as Logstash and
Kibana [29]. Elasticsearch works like a distributed document
warehouse, saving them in JSON format [30].

Elasticsearch’s architecture is composed of [32]: document
(basic Elasticsearch storage instance), index (logical storage
location for documents. It can be divided into one or more
Shards and is structured based on the inverted index model),
Node (single running Elasticsearch instance), Cluster (group of
cooperating running nodes), Shards (an index can be divided
into smaller parts to increase efficiency by enabling parallelism.
They can be stored on different servers), and Replicas (copies
of shards, used for redundancy).

Indexes in the engine are considered databases in a relational
database system. Indexes are defined as a collection of JSON
documents, just as databases are a collection of tables [30]. They
manage fault tolerance by redundantly copying data and
maintaining high data availability [30].

The main function of Elasticsearch is search [18]. The
general process begins with indexing a document when it is
saved to the system. Elasticsearch keeps two fields by default:
the document’s original content. The other is the inverted index,
which is generated by a series of processes such as word
segmentation and filtering during indexing [18]. It should be
noted that documents in Elasticsearch are indexed by default
and do not have a schema [33], so it’s not necessary defining
fields for data types before adding data [30].

Now, for searching, the user enters a keyword of the
document he intends to access, so Elasticsearch executes a
search in the inverted index table, after which the document
corresponding to the keyword is related. The result is returned
to the user [18].

To perform searches in Elasticsearch, Query DSL is
provided, which is the library offered by the distributed engine
to make the Apache Lucene query syntax more accessible to
users [34]. The advantage of using this syntax is seen when
making complex queries that can be done in JSON format [35].
Similarly, it is possible to use filters such as numeric_range
(numeric range), and (y), or (o), among others. All

 Sergio Laureano Gutiérrez et al. / International Journal of Computing, 21(3) 2022, 369-376

372 VOLUME 21(3), 2022

Elasticsearch operations are performed via HTTP REST API
[30], for which it provides a CRUD (Create, Read, Update and
Delete operations) [29].

IV. THE ARCHITECTURE FOR INTEGRATING GOOGLE
BIG QUERY WITH ELASTICSEARCH USING CLOUD
FUNCTIONS
Fig. 1 shows the proposed architecture that integrates Big Query
and Elasticsearch non-relational databases using the cloud
components provided by Google Cloud Platforms such as Cloud
Functions, Cloud Scheduler, and Cloud Pub/Sub.

Figure 1. Architecture diagram to integrate Big Query with Elasticsearch using Cloud Functions.

The first component of the architecture is a cron that will

run once a day. It will be implemented in the Google Cloud
Scheduler tool executing an HTTP request to Cloud Function
Sync every day at 00:00 hours. This function will be activated
through an HTTP request, and its task is to request the
Elasticsearch cluster to obtain the last date/ hour in which data
was inserted. If it does not find dates inserted in Elasticsearch,
for example, in the first execution of the function, it will have
to refer to the first date found in the Big Query dataset. After
obtaining the specified date (let it be the last one entered in
Elasticsearch or the first of the entire Big Query dataset), the
function will publish a message per day in the time interval
between the date/hour obtained from Elasticsearch and the
current date/hour. This topic will have a pull subscription.

The next component of the proposed architecture will be
another cron that will run every hour. It will be implemented in
the Google Cloud Scheduler tool executing an HTTP request to
the Cloud Function Pull every hour. This function will access
the pull subscription from the previous topic and extract a
predetermined number of messages. These messages contain
the dates to be processed for the data transfer from Big Query
to Elasticsearch. If there are messages in this topic, the function
publishes them in another topic with a push-type subscription.
If there are no messages to extract from the topic with the pull-
type subscription, the function will end.

If there are messages to process and, therefore, they have
been published in the topic with the push type subscription, it
will execute the main Cloud Function for each message that
reaches that topic. This function will query to Big Query with
the date/time it received in the message. This query will extract

from Big Query all the rows that match this date/time. Then
that function will gather all the rows it got from Big Query and
perform a bulk insert operation to the Elasticsearch API.

The main Cloud Function will finish its execution by
publishing a message on a topic. In the message published on
this topic, there is a predetermined number of messages to be
processed. The topic has a push-type subscription that will
automatically execute a Cloud Function, passing the received
message. Said Cloud Function would request the Cloud
Function Pull analyzed above, which is in charge of taking a
pre-established number of messages from the topic with the
pull subscription and publishing them on the topic with the
push subscription. With this last action, a new cycle of
extracting messages with date/time from a topic begins, making
a query to Big Query to obtain data according to the date/time
and inserting it into Elasticsearch. The process ends when there
are no more messages to extract from the topic with the pull
subscription.

V. RESULTS AND DISCUSSION

A. IMPLEMENTATION, CONFIGURATION AND
DEPLOYMENT
Fig. 2 shows the followed process to deploy the architecture
presented in the previous section. Each of the following items
will be explained below.

Sergio Laureano Gutiérrez et al. / International Journal of Computing, 21(3) 2022, 369-376

VOLUME 21(3), 2022 373

Figure 2. Organization of work carried out.

1) Code Application
This part indicates the implementation of the proposed

architecture, which was carried out in Typescript to take
advantage of this programming language features such as ease
of debugging, faster development, and modularity when dealing
with applications deployed on the web.

Client libraries of Google Big Query were used to
implement search functions and query execution on datasets;
Google Pub / Sub, to push and pull messages on different topics;
and finally, Elasticsearch performed bulk operations and basic
queries on the date.

The iowa_liquor_sales dataset from the public project
bigquery-public-data was selected to perform the functional test
of the implemented architecture, which has a table called sales
with 1,9118,960 records to date (Aug. 15, 2021). This dataset
contains wholesale liquor purchases in Iowa by retailers for sale
to individuals since Jan. 1, 2012. There are wholesale liquor
orders from all supermarkets, liquor stores, convenience stores,
etc., with details about the store, the exact location, brand, and
size of the liquor, and the number of bottles ordered.

2) Google Cloud Platform Project
It covers the configuration of the Project in Google Cloud

Platform, for which after creating a project, the Pub/Sub API
was enabled, and one topic of pull-type was created along with
its subscription and 2 of the push type. These last two topics
receive a subscription generated by the cloud functions that will
be deployed later. The Google Cloud Scheduler cron needs the
HTTP endpoint that refers to the function they will execute,
created after functions deployment.

3) Elastic Cloud configuration
The next phase focuses on deploying a cluster in Elastic

Cloud, which was created under the services of Amazon Web
Services, with an I/O Optimized hardware profile in version
7.14.0. Elasticsearch has two instances, each with 120GB of
storage, 4GB of RAM, and 2.2 vCPUs.

Once the Cluster was created and configured, the index was
created to store the documents inserted after being extracted
from Big Query. The console provided by Elastic Cloud: Dev
Tools was used. Query DSL was used to perform the operations.
Fig. 3 shows the operation for creating mappings based on the
data types that the dataset had configured.

4) Deploy Firebase Cloud Functions
The next part contemplates the deployment of the

application already with the access to the project configured in
Google Cloud Platform, the dataset selected in Big Query, and
the Cluster deployed in Elastic Cloud, such as the endpoints and
index with which it will work in Elasticsearch. We use Firebase
services since it allows the deployment of cloud functions in the
Typescript language. The configuration of the Firebase CLI is
done by linking our already created project in Google Cloud
Platform and enabling the Cloud Functions API. To display the
functions, use the command:

firebase deploy –only functions

Figure 3. Elasticsearch mappings creation.

This displays the functions created in our application,
generating their respective endpoints. According to the
architecture, two of these have to push topics as triggers, which
will be invoked as soon as an onPublish() event, thus generating
the missing subscriptions mentioned above.

5) Execute Cloud Functions
Subsequently, we execute the functions. Although we have

the crons generated with Google Cloud Scheduler that can
already point to the endpoints of the deployed functions, they
will be performed directly to determine the functionality of the
architecture. There are two endpoints to refer to: /sync and /pull.

The first function extracts the last date inserted in
Elasticsearch, and when it does not find any data because it will
be the first insert, it will search for reference in Big Query,
obtaining the first date of the dataset. Then, it generates several
messages containing one day each, taking a start date and an end
date with respect. These messages are deposited in the pull
topic, ending the execution of the function. After this, the Pull
function is executed, extracting messages inserted in the pull
topic through the subscription generated and going through all
the processes designated in the architecture (Fig. 1) to insert the
records Elasticsearch.

This process is monitored by the logs that the functions
generate and are visible from the Google Cloud console or the
Firebase console.

After finishing the Pull function execution, it was verified
that the data was inserted correctly into Elasticsearch.

 Sergio Laureano Gutiérrez et al. / International Journal of Computing, 21(3) 2022, 369-376

374 VOLUME 21(3), 2022

Figure 4. Cloud Functions logs monitoring from Firebase
console.

6) Create Visualizations
Finally, with the migrated data from Big Query to

Elasticsearch, visualizations were designed in Kibana (part of
the Elastic suite) and added to a dashboard, through which
metrics can be obtained. Data analysis can be obtained
performed on the dataset iowa_liquor_sales.

B. RESULTS ANALYSIS AND DISCUSSION
Execution of the Sync function took 5,882 seconds, inserting

3510 messages in the pull topic. It is referred to the 3510 days
between the first date of the dataset 01-03-2012 and the
execution date 08-13-2021.

The 3510 messages published were synchronized with
Elasticsearch using the Pull function, executed on 08-13-2021
at 13:45, ending precisely at 15:02:49. Fig. 5 represents the
number of unacknowledged messages pulled in the time since
the start of the Pull function.

Figure 5. Unacknowledged messages pulled from pull topic.

Pull execution triggers the parallel execution of multiple
threads with OnPublishMain, which is in charge of inserting the
records extracted from Big Query in a specific date range into
Elasticsearch. In Fig. 6, it is possible to see its execution, in
which none of its invocations exceeded 1.5s.

Figure 6. OnPublishMain function execution.

In turn, the OnPublishSecundary function is responsible for
extracting more messages that are still in the topic pull,
restarting the process completely, ending when there are no
more messages in the topic. Fig. 7 shows its execution, and none
of its invocations exceeded 1.5s either.

Figure 7. OnPublishSecundary function execution.

After complete execution, 19, 118, 960 documents were
inserted in Elasticsearch.

Table 1. Obtained Measurements after insertion in
Elasticsearch

Metric Value

Documents inserted 19,118,960

(%) Effectiveness insertion 100%

Execution time 77 m.

Insertion rate docs/min 248,298.181

Insertion rate docs/sec 4,138.303

Fig. 8 shows the creation of the dashboard in Kibana, part of

the ELK suite. This dashboard works with the 19,118,960
documents inserted in the index sales at the end of the Cloud
Functions execution.

We added five visualizations that contain the location of the
stores/buyers within the history of 2012 to date, the annual cost
in taxes vs the total sales value, the percentage of the best-selling
bottle packs, the number of bottles sold per month, and the
average value in total sales per month since 2012.

Figure 8. Kibana Dashboard.

VI. CONCLUSIONS
The extraction and analysis of large volumes of data generated
over time is a latent need. Such activity has value in decision-
making for companies, historical variables, and parameters for
research, among other applications, so many elements must be
considered to perform these operations in the best way.
Although storing large amounts of data is not a problem, models
must be designed based on appropriate tools to access them
correctly.

The purpose of this paper is to present a Cloud Services
architecture that integrates Big Query with Elasticsearch
through the use of Pub/Sub and Cloud Functions. Combining
these platforms, it seeks to take advantage of the capacity and
ease of inserting documents in Elasticsearch, its search speed,
and the comprehensive catalogue of options to create
visualizations in different Dashboards that its suite offers us. In

Sergio Laureano Gutiérrez et al. / International Journal of Computing, 21(3) 2022, 369-376

VOLUME 21(3), 2022 375

this way, a robust and scalable application is generated to handle
large volumes of data stored in Big Query and transport it to our
analysis and visualization engine in Elasticsearch.

Cloud architecture was designed that uses Google Cloud
Platform services, making use of Pub/Sub for the creation of
topics and subscriptions which store and deliver messages to the
Cloud Functions that invoke them. These Cloud Functions are
in charge of performing insert operations in Elasticsearch, query
data in Big Query, and handling errors in architecture. In this
sense, the execution of the functions can be automated with the
creation of Cloud Schedulers, generating a robust, automatic
execution and completely monitorable application. This
architecture facilitates error management by implementing load
management and message forwarding mechanisms by itself and
being self-scalable by using Google cloud services such as
Pub/Sub

An experiment was performed by integrating a Big Query
public dataset containing 19,118,960 records with an Elastic
cloud cluster. Elasticsearch inserted as documents 100% of
records received with an insertion rate of 4,138,303 documents
per second, indicating the robustness and versatility of the
deployed architecture. Likewise, visualizations were designed
for data analysis with Kibana, part of the Elastic suite.

To summarize, large volumes of data contain valuable
information in different areas, so their analysis must be carried
out using carefully selected tools and methodologies. For this,
the integration of storage and analysis platforms can be done by
using architectures that take advantage of the potential of cloud
services and carry out insertion and query operations, among
others, efficiently and quickly. The architecture presented in the
article achieves the integration of Big Query with Elasticsearch
through Pub/Sub and Cloud Functions thanks to the Google
Cloud Platform services, demonstrating its scalability,
robustness, and high performance.

References
[1] Q. Na, J. Lou, Y. Yang, D. Su, J. Wu, and J. Zeng, “A big data

technology-based approach to power neural network analysis,” in
Proceedings of the 9th Frontier Academic Forum of Electrical
Engineering, Singapore, 2021, pp. 677–688. https://doi.org/10.1007/978-
981-33-6606-0_62.

[2] Atta-ur-Rahman, S. Dash, A. Kr. Luhach, N. Chilamkurti, S. Baek, and
Y. Nam, “A neuro-fuzzy approach for user behaviour classification and
prediction,” Journal of Cloud Computing, vol. 8, no. 1, p. 17, 2019.
https://doi.org/10.1186/s13677-019-0144-9.

[3] Seagate Technology LLC, “Seagate advises global business leaders and
entrepreneurs to sharpen focus on data critical to the success of global
business impact,” Business Wire, a Berkshire Hathaway company, Apr.
04, 2017. [Online]. Available at:
https://www.businesswire.com/news/home/20170403006056/en/Seagate
-Advises-Global-Business-Leaders-and-Entrepreneurs-to-Sharpen-
Focus-on-Data-Critical-to-the-Success-of-Global-Business-Impact.

[4] N. Feng and Q. Yin, “Research on computer software engineering
database programming technology based on virtualization cloud
platform,” Proceedings of the 2020 IEEE 3rd International Conference
of Safe Production and Informatization (IICSPI), 2020, pp. 696–699.
https://doi.org/10.1109/IICSPI51290.2020.9332454.

[5] O. Debauche, S. A. Mahmoudi, N. D. Cock, S. Mahmoudi, P.
Manneback, and F. Lebeau, “Cloud architecture for plant phenotyping
research,” Concurrency and Computation: Practice and Experience, vol.
32, no. 17, p. e5661, 2020. https://doi.org/10.1002/cpe.5661.

[6] U. Suthakar, L. Magnoni, D. R. Smith, and A. Khan, “Optimised lambda
architecture for monitoring scientific infrastructure,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 6, pp. 1395–1408, 2021.
https://doi.org/10.1109/TPDS.2017.2772241.

[7] L. dos S. Dourado, R. S. Miranda, A. P. F. de Araujo, and E. Ishikawa,
“Performance evaluation of big data applications in cloud providers,”
Proceedings of the 2020 15th Iberian Conference on Information Systems

and Technologies (CISTI), 2020, pp. 1–6.
https://doi.org/10.23919/CISTI49556.2020.9140855.

[8] B. Kotecha and H. Joshiyara, “Handling non-relational databases on big
query with scheduling approach and performance analysis,” Proceedings
of the 2018 Fourth International Conference on Computing
Communication Control and Automation (ICCUBEA), 2018, pp. 1–5.
https://doi.org/10.1109/ICCUBEA.2018.8697561.

[9] N. Newman, S. Gilman, M. Burdumy, M. Yimen, and O. Lattouf, “A
novel tool for patient data management in the ICU – Ensuring timely and
accurate vital data exchange among ICU team members,” International
Journal of Medical Informatics, vol. 144, p. 104291, 2020.
https://doi.org/10.1016/j.ijmedinf.2020.104291.

[10] L. Chen, N. Zhang, H.-M. Sun, C.-C. Chang, S. Yu, and K.-K. R. Choo,
“Secure search for encrypted personal health records from big data
NoSQL databases in cloud,” Computing, vol. 102, no. 6, pp. 1521–1545,
2020. https://doi.org/10.1007/s00607-019-00762-z.

[11] M. Bendechache, S. Svorobej, P. T. Endo, A. Mihai, and T. Lynn,
“Simulating and evaluating a real-world elasticsearch system using the
RECAP DES simulator,” Future Internet, vol. 13, no. 4, Art. no. 4, 2021.
https://doi.org/10.3390/fi13040083.

[12] G. Papadimitriou et al., “End-to-end online performance data capture and
analysis for scientific workflows,” Future Generation Computer Systems,
vol. 117, pp. 387–400, 2021.
https://doi.org/10.1016/j.future.2020.11.024.

[13] S. Ren, J.-S. Kim, W.-S. Cho, S. Soeng, S. Kong, and K.-H. Lee, “Big
data platform for intelligence industrial IoT sensor monitoring system
based on edge computing and AI,” Proceedings of the 2021 International
Conference on Artificial Intelligence in Information and Communication
(ICAIIC), 2021, pp. 480–482.
https://doi.org/10.1109/ICAIIC51459.2021.9415189.

[14] G. Zhao, S. Hassan, Y. Zou, D. Truong, and T. Corbin, “Predicting
performance anomalies in software systems at run-time,” ACM Trans.
Softw. Eng. Methodol., vol. 30, no. 3, pp. 33:1-33:33, 2021.
https://doi.org/10.1145/3440757.

[15] E. Bugingo, D. Zhang, Z. Chen, and W. Zheng, “Towards decomposition
based multi-objective workflow scheduling for big data processing in
clouds,” Cluster Comput, vol. 24, no. 1, pp. 115–139, 2021.
https://doi.org/10.1007/s10586-020-03208-w.

[16] J. Ding, “Development of computer-aided English listening system based
on BS architecture,” Computer-Aided Design and Applications, vol. 19,
no. S1, pp. 93–104, 2022. https://doi.org/10.14733/cadaps.2022.S1.93-
104.

[17] D. Gandhi, “Analyzing open source GitHub repositories towards
technology acceptance model,” Pace University, the Michael L.
Gargano, 18th Annual Research Day, May 8th, 2020, pp. 1-6.

[18] X. Tian, T. Zhang, X. Zhuang, and X. He, “Research and implementation
of campus network search engine based on scrapy framework and
elasticsearch,” 2020, pp. 4193–4198.
https://doi.org/10.1109/CCDC49329.2020.9164582.

[19] H. Falatiuk, M. Shirokopetleva and Z. Dudar, “Investigation of
architecture and technology stack for e-archive system,” Proceedings of
the 2019 IEEE International Scientific-Practical Conference Problems of
Infocommunications, Science and Technology (PIC S&T), 2019, pp. 229-
235. https://doi.org/10.1109/PICST47496.2019.9061407.

[20] H.-L. Truong, “Integrated analytics for IIoT predictive maintenance
using IoT big data cloud systems,” Proceedings of the 2018 IEEE
International Conference on Industrial Internet (ICII), 2018, pp. 109–
118. https://doi.org/10.1109/ICII.2018.00020.

[21] M. Jaiswal, “Software architecture and software design,” International
Research Journal of Engineering and Technology (IRJET), vol. 6, issue
11, pp. 2452–2454, 2019. https://doi.org/10.2139/ssrn.3772387.

[22] O. Sievi-Korte, I. Richardson, and S. Beecham, “Software architecture
design in global software development: An empirical study,” Journal of
Systems and Software, vol. 158, 110400, 2019.
https://doi.org/10.1016/j.jss.2019.110400.

[23] S. Stoja, S. Vukmirovič, and B. Jelačić, “Publisher/subscriber
implementation in cloud environment,” 2013, pp. 677–682.
https://doi.org/10.1109/3PGCIC.2013.116.

[24] Google Cloud, “Pub/Sub: A Google-scale messaging service,” Google
Cloud, 2021. [Online]. Available at:
https://cloud.google.com/pubsub/architecture.

[25] Amazon Web Services, Inc., “What is Pub/Sub messaging?” Amazon
Web Services, Inc., 2021. [Online]. Available at:
https://aws.amazon.com/pub-sub-messaging/

[26] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless
execution of scientific workflows: Experiments with HyperFlow, AWS
Lambda and Google cloud functions,” Future Generation Computer

 Sergio Laureano Gutiérrez et al. / International Journal of Computing, 21(3) 2022, 369-376

376 VOLUME 21(3), 2022

Systems, vol. 110, pp. 502–514, 2020.
https://doi.org/10.1016/j.future.2017.10.029.

[27] E. Van Eyk, A. Iosup, S. Seif, and M. Thömmes, “The spec cloud group’s
research vision on FAAS and serverless architectures,” 2017, pp. 1–4.
https://doi.org/10.1145/3154847.3154848.

[28] V. Lakshmanan and J. Tigani, Google BigQuery: The Definitive Guide:
Data Warehousing, Analytics, and Machine Learning at Scale, O’Reilly
Media, Inc., 2019.

[29] V.-A. Zamfir, M. Carabas, C. Carabas, and N. Tapus, “Systems
monitoring and big data analysis using the elasticsearch system,”
Proceedings of the 2019 22nd International Conference on Control
Systems and Computer Science (CSCS), 2019, pp. 188-193.
https://doi.org/10.1109/CSCS.2019.00039.

[30] S. Gupta and R. Rani, “A comparative study of elasticsearch and
CouchDB document oriented databases,” Proceedings of the 2016
International Conference on Inventive Computation Technologies
(ICICT), 2016, vol. 1, pp. 1–4.
https://doi.org/10.1109/INVENTIVE.2016.7823252.

[31] A. Yang, S. Zhu, X. Li, J. Yu, M. Wei, and C. Li, “The research of policy
big data retrieval and analysis based on elastic search,” Proceedings of
the International Conference on Artificial Intelligence and Big Data
(ICAIBD), 2018, pp. 43-46.
https://doi.org/10.1109/ICAIBD.2018.8396164.

[32] R. Kuc and M. Rogozinski, Elasticsearch Server, Packt Publishing Ltd,
2013.

[33] P. P. I. Langi, Widyawan, W. Najib, and T. B. Aji, “An evaluation of
Twitter river and Logstash performances as elasticsearch inputs for social
media analysis of Twitter,” Proceedings of the 2015 International
Conference on Information & Communication Technology and Systems
(ICTS), 2015, pp. 181-186. https://doi.org/10.1109/ICTS.2015.7379895.

[34] M. S. Divya and S. K. Goyal, “ElasticSearch: An advanced and quick
search technique to handle voluminous data,” Compusoft, vol. 2, no. 6, p.
171, 2013.

[35] B. Dixit, Mastering Elasticsearch 5.x, Packt Publishing Ltd, 2017.

SERGIO LAUREANO GUTIÉRREZ,
Bs. Systems Engineering from
National University of Saint
Augustine of Arequipa, Peru. He is
currently doing an internship in
Sociedad Minera Cerro Verde as a
Control System Analyst Apprentice
and also works as a Web Developer
for many software factories in Peru
and Chile. He is part of international
research being carried out at the

National University of Saint Augustine, which focus is Smart
Mobility. His current research interests include Cloud
Computing, Big Data, Networking, Data Mining and the Internet
of Things.

YASIEL PÉREZ VERA is a
researcher in the Department of
System Engineering and
Informatics of the National
University of Saint Augustine,
Arequipa, Peru. He is also working
as a Head of the Software
Engineering Program at La Salle
University, Arequipa, Peru. He
obtained his Project Management

Master’s and Bachelor’s Computer Engineering Degree in the
University of Informatics Science, La Havana, Cuba. His
research interests include Machine Learning, Cloud Computing
and Databases. He is a certified Cisco DevNet Associate.

