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 ABSTRACT Optimum reactive power dispatch (ORPD) significantly impacts the operation and control of electrical 
power systems (EPS) due to its undeniable benefit in the economic operation and reliability of the systems. ORPD is a 
sub-problem of optimal power flow (OPF). The main aim is to reduce/minimize the real power loss. Among the swarm 
intelligence (SI) metaheuristic algorithms is particle swarm optimization (PSO), which has fast convergence speed and 
gives the optimum solution to a particular problem by moving the swarm in the intensification (exploitation) search 
space. Also, the pathfinder algorithm (PFA) mimics the collective movement of the swarms with a leading member. 
Therefore, combining the fast convergence of PSO with PFA to form a hybrid technique is considered a viable approach 
in this study to avoid decreasing PFA searchability when the dimension of the problem increases. In this article, a 
hybrid algorithm based on a particle swarm optimization and pathfinder algorithm (HPSO-PFA) is proposed for the 
first time to study the combination of the control variables (generator voltage, transformer tap, and sizing of reactive 
compensation to obtain the objective function (total real power loss). The proposed method is tested on the IEEE 30 
and 118 bus systems. The losses were reduced to 16.14262 MW and 107.2913 MW for the IEEE 30 and 118 test 
systems. Furthermore, the percentage (%) reduction for the IEEE 30 and 118 test systems are 9.8% and 19.25%, 
respectively. The result demonstrates the performance of HPSO-PFA gives a better solution than the other algorithms. 
 

 KEYWORDS optimum reactive power dispatch HPSO-PFA; pathfinder algorithm (PFA); minimization of power 
loss. 
 

I. INTRODUCTION 
UE to modern equipment running on electricity, electrical 
power systems (EPS) have undergone several 

disturbances. As the demand for electricity goes higher, 
consumption will gradually be higher. EPS is a process of 
generating, transmitting, and distributing electric energy to the 
consumers (house, industry, and transportation use). 
Indisputably, optimum reactive power dispatch ORPD 
significantly impacts the operation and control of EPS due to 
its undeniable benefit in economic operation, security, and 
reliability of the systems. ORPD is a sub-problem of OPF; it is 
a nonlinear optimization problem in a power system involving 
continuous and discrete control variables while obeying the 
equality and inequality constraints [1–6]. The change in 
reactive power generation (RPG) on every load variation in 
power system operation leads to varying/changes in load 
voltage. However, proper/adequate reactive power 
management will maintain the voltage profile at each bus/node. 

The main objective of ORPD is the reduction/minimizing of 
actual/real power loss while keeping the power balance 
equality and inequality constraints. The control variables in 
achieving the objective function are the transformer tap 
settings, generator voltage magnitude, and shunt capacitors. 
Moreover, improvement in voltage profile leads to a reduction 
in real power loss [6]. 

Many methods have been reported in the literature in 
finding the solution to the ORPD problem; such techniques 
include conventional/traditional methods and meta-heuristic 
methods. Some of the conventional methods are gradient-
based, Newton methods, interior point method [7], nonlinear 
programming, quadratic programming [8], and linear 
programming [9, 10]. However, these methods are not accurate 
in dealing with discrete variables and nonlinear 
functions [1, 11]. 

Among the meta-heuristic methods which has high quality 
solutions are: particle swarm optimization (PSO) [12], tight-

D



 Samson A. Adegoke et al. / International Journal of Computing, 21(4) 2022, 403-410 

404 VOLUME 21(4), 2022 

and-cheap conic relaxation approach (TCCR) [13], different 
approaches are semi-definite programming (SDP) [14], 
enhanced Jaya optimization method (e-JAYA) [15], modified 
stochastic fractal search algorithm (MSFSA) [16], improved 
social spider algorithm (ISSA) [17], improved ant lion 
optimizer (IALO) [18], modified version of sine–cosine 
method (ISCA) [19], success history-based adaptive 
differential evolution (SHADE) [20], tree seed algorithm 
(TSA) [21], Jaya optimization algorithm (JAYA) [22, 23], 
backtracking search (BS) method [24], whale optimization 
algorithm (WOA) [25], Gaussian bare-bones water cycle 
optimizer (GBBWCO) [26], moth–flame optimizer (MFO) [6], 
ant lion optimizer (ALO) [27], chaotic krill herd algorithm 
(CKHA) [28], particle swarm optimization with an ageing 
leader and challengers (ALC-PSO) [29], grey wolf optimizer 
(GWO) [2] modified teaching–learning algorithm with 
differential evolution (MTLA-DE) [30], artificial bee colony 
(ABC) [31], gravitational search algorithm (GSA) [32], big 
bang–big crunch (BB-BC) [33], comprehensive learning 
particle swarm optimization (CLPSO) [34].  

The meta-heuristic algorithms are based on two important 
characteristics: diversification (exploration) and intensification 
(exploitation). In diversification, an unknown space is chosen 
for a random search. The best individual is trying to improve 
intensification, but too much intensification stocks into local 
search and converges to local optimal minimal. However, 
balancing diversification and intensification is essential in 
presenting effective algorithms [35–38].  

Therefore, the Pathfinder algorithm (PFA) is a recently 
developed meta-heuristic algorithm that was developed by 
(Yapici and Cetinkaya in 2019) [39]. PFA simulates the 
behavior of the animal group movement and mimics the swarm 
leadership. Depending on the individual leader, the swarm 
moves randomly to find the best food location. The PFA gives 
an effective result to some of the optimization problems. 
Majorly, PFA depends on the size of the problem. When the 
dimension of the problem increases, the performance of the 
PFA is reduced because it depends on mathematical formulas 
[36]. Also, the superiority of PSO is the fast convergence speed 
and fewer parameters to be adjusted, but stock to local optimal 
leads to unsatisfactory results. 

Therefore, the HPSO-PFA is proposed to solve the ORPD 
problem in power system networks to overcome the challenges 
of PSO and PFA mentioned above. Combining PSO and PFA 
enable the prey to jump from the local optimal, which implies 
moving away from undesirable solutions and allows the swarm 
to locate the most prominent food (i.e., exploitation) without 
reduction in the searchability. The performance of the proposed 
method is tested on standard IEEE systems (i.e., IEEE 30 and 
118 bus systems). The effective performance simulation of the 
proposed method is compared with other algorithms, and 
HPSO-PFA demonstrates satisfactory results. The 
contributions of this work are as follows: 
a. Proposed a novel hybrid algorithm based on particle 

swarm optimization and pathfinder algorithm for the first 
time to optimize the control parameter of the ORPD 
problem to minimize real power loss. Also, to overcome 
local optimal, reducing searchability at high dimension 
problem, and premature convergence for the best quality 
solution, effective operation, and reliability of the power 
system network. 

b. The penalty function is effectively considered for 
comparison of the performance by including the line 
constraint, shunt capacitor, and bus voltage. 

c. Comparing the results obtained from the proposed HPSO-
PFA with other algorithms involving hybrid and single 
techniques reveals that the proposed algorithm performed 
better than others.  

The rest of the paper is structured as follows: Section 2 
gives the materials and methods, Section 3 reports the HPSO-
PFA and implementation to ORPD, Section 4 present the result 
and discussion, while the last Section is the conclusion and 
future work recommendation 

II. MATERIALS AND METHODS 

A. OBJECTIVE FUNCTION  
This research aims to minimize the real power loss, which is 
the main target of the ORPD problem, while keeping the 
constraints. Formulation of the ORPD problem as the 
minimizing/reduction function (x, u) is as follows  
 

 𝑓 = 𝑃௟௢௦௦  = 𝑓(x, u) = ∑ 𝐺௞
ேಽ
௄ୀଵ ൫𝑣௜

ଶ  + 𝑣௝
ଶ −

2𝑉௜𝑉௝ cos 𝜃௜௝൯,                                                  (1) 
 
which satisfying 
 

൜
𝑔(𝑥, 𝑢)  = 0

ℎ(𝑥, 𝑢)  ≤ 0
,                                                            (2) 

𝑢௠௜௡ ≤  𝑢 ≤ 𝑢௠௔௫  ,                                                   (3) 
𝑥௠௜௡ ≤  𝑥 ≤ 𝑥௠௔௫ ,                                                   (4) 

 
where 𝑓(x, u) is the objective function to be optimized, 𝑃௟௢௦௦ is 
real total losses, 𝐺௞ is the branch,  𝑁௅ is the overall number of 
transmission losses, K is the branch between bus i and j, 𝜃௜௝  is 
the voltage angle between bus i and j, 𝑉௜ is the voltage at the ith 
bus, 𝑉௝ is the voltage at the jth bus, 𝑔(𝑥, 𝑢) 𝑎𝑛𝑑 ℎ(𝑥, 𝑢) are the 
equality and inequality constraints, 𝑥 is the vector of the 
dependent variables, 𝑢 is the vector of the control variables, and 
min and max are the minima and maximum limit values. 

B. EQUALITY CONSTRAINTS 
The equality constraints in transmission networks are the load 
flow (LF) equations 
 

𝑃௜ − 𝑉௜ ෍ 𝑉௝(𝐺௞

ேಳ

௄ୀଵ

cos 𝜃௜௝ + 𝐵௄ sin 𝜃௜௝) = 0,     (5) 

𝑄௜ − 𝑉௜ ෍ 𝑉௝(𝐺௞

ேಳ

௄ୀଵ

sin 𝜃௜௝ + 𝐵௄ cos 𝜃௜௝) = 0,       (6) 

 
where 𝑁஻ is the overall number of buses/nodes, 𝑃௜  is the real 
power generation, 𝑄௜  is the reactive power generation, and 𝐵௄  
is the mutual susceptance. 

C. INEQUALITY CONSTRAINTS 
The inequality constraints are given in upper and lower limits 
1) Generator constraints: These are the generation of 
bus voltage, together with the generation of real and reactive 
power are kept to their limits 
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𝑉௚௜
௠௜௡ ≤ 𝑉௚௜ ≤ 𝑉௚௜

௠௔௫          𝑖 = 1 … , 𝑁௚,                       (7) 

𝑄௚௜
௠௜௡ ≤ 𝑄௚௜ ≤ 𝑄௚௜

௠௔௫        𝑖 = 1. . . , 𝑁௚,                      (8) 

𝑃௚௜
௠௜௡ ≤ 𝑃௚௜ ≤ 𝑃௚௜

௠௔௫          𝑖 = 1. . . , 𝑁௚,                      (9) 
 

𝑁௚= Overall number of generators 
2) Reactive power compensation limits 
 

𝑄௖௜
௠௜௡ ≤ 𝑄௖௜ ≤ 𝑄௖௜

௠௔௫      𝑖 = 1 … , 𝑁஼ ,                       (10) 
 

𝑁஼= Overall number of reactive power compensation 
3) Transformer tap ratio constraints 
 

𝑇௞
௠௜௡ ≤ 𝑇௞ ≤ 𝑇௞

௠௔௫     𝑖 = 1 … , 𝑁் ,                   (11) 
 

𝑁்= Overall number of transformers 
 

4) Line flow limits 
 

 𝑉௞௜
௠௜௡ ≤ 𝑉௞௜ ≤ 𝑉௞௜

௠௔௫        𝑖 = 1 … , 𝑁஻  ,                    (12) 
𝑆௞ ≤ 𝑆௞

௠௔௫          𝑖 = 1 … , 𝑁௄ ,                                  (13) 
 
where 𝑁௄ is the load flow branch, and  𝑉௞௜  is the voltage of the 
load bus/node. 

The dependent variable constraints are added to the 
objective function to avoid unrealistic solutions. The self-
constraints are the control variable, but the dependent variable 
is violated. Therefore, the objective function and penalty factor 
can be expressed together, as shown in the equation (14). 

 

𝑓 = 𝑓 + 𝜆௏ ෍(𝑉௜

ேಳ

௄ୀଵ

− 𝑉௜
௟௜௠)² + 𝜆௚ ෍(𝑄௚௜

ேಳ

௄ୀଵ

− 𝑄௚௜
௟௜௠

+ 𝜆் ෍(𝑆௜

ேಳ

௄ୀଵ

− 𝑆௜
௟௜௠)².                              (14) 

 
         Here, 
 

𝜆௏ , 𝜆௚, 𝜆்   are the penalty factors,                    (15) 

 𝑉௜
௟௜௠ = ቊ

𝑉௜
௟௜௠ , 𝑖𝑓 𝑉௜ < 𝑉௜

௠௜௡

𝑉௜
௟௜௠ , 𝑖𝑓 𝑉௜ > 𝑉௜

௠௔௫
,                               (16) 

𝑄௚௜
௟௜௠ = ቊ

𝑄௚௜
௟௜௠ , 𝑖𝑓 𝑄௚௜ < 𝑄௚௜

௠௜௡

𝑄௚௜
௟௜௠ , 𝑖𝑓 𝑄௚௜ > 𝑄௚௜

௠௔௫
,                               (17) 

 

𝑆௜
௟௜௠ = ቊ

𝑆௜
௟௜௠ , 𝑖𝑓 𝑆௜ < 𝑆௜

୫୧୬            

𝑆௜
௟௜௠ , 𝑖𝑓 𝑆௜ > 𝑆௜

௠௔௫
.                       (18) 

D. THE PFA 
The PFA is a swarm intelligence technique based on the 
swarm’s movement with a leader-member and was proposed 
by [39]. The leader-member is called the pathfinder. PFA 
allows all the swarms to move toward any location in the search 
area by following the pathfinder and moving randomly in the 
search space. When a member’s best optimum place is located, 
this individual member is chosen as a leader/pathfinder. PFA 
has three stages: initialization, the position of the pathfinder, 
and the position of followers. The initialization allows all the 
prey members to move randomly in the search area, as given in 
(19). The pathfinder position enables the prey to move to 

another location, and the present best solution is compared to 
the previous one. Equation (20) moved the pathfinder to the 
next position. Lastly, equation (21) was used to update the 
position of the follower. When the follower chooses the best 
solution, the pathfinder replaces the follower. PFA has the 
advantage of encouraging the random movement of all 
members. However, it has the disadvantage of reducing the 
searchability performance at high-dimension problems. 
Therefore it restricted the intensification and diversification of 
the ORPD problem [36]. 
 

  𝑥௜,௝
ீ =  𝑥௝

௠௜௡  + 𝑟𝑎𝑛𝑑൫𝑥௝
௠௔௫  − 𝑥௝

௠௜௡  ൯,                         (19) 

𝑥௣
௞ାଵ =  𝑥௣

௞  + 2𝑟ଷ൫𝑥௣
௞  − 𝑥௜

௞ିଵ ൯ + 𝐴 ,                           (20) 

𝑥௜
௞ାଵ =  𝑥௜

௞  + 𝑅ଵ൫𝑥௝
௞  − 𝑥௜

௞ ൯ + 𝑅ଶ൫𝑥௣
௞  − 𝑥௜

௞ ൯ + 𝜀,    (21) 

𝑅ଵ = 𝛼𝑟ଵ and 𝑅ଶ = 𝛽𝑟ଶ,                                         (22) 

𝜀 =  ൬1 −  
𝑘

𝑘௜

൰ 𝑢ଵ𝐷௜௝ ,                                                (23) 

𝑘௜ = 𝑘௠௔௫ ,                                                                  (24) 
  𝐷௜௝ = ฮ𝑥௜ − 𝑥௝ฮ,                                                      (25) 

𝐴 =  𝑢ଶ𝑒
ି

ଶ௞
௞೔ ,                                                             (26) 

 
where 𝑅ଵ and 𝑅ଶ are random variables,  𝑥௣ is the vector 
position of the pathfinder,  k is the current iteration, 𝑥௜  𝑎𝑛𝑑 𝑥௝  
are the positioned vector of members i and j, A and 𝜀 are 
fluctuation and vibration coefficient, respectively, 
𝑟ଵ 𝑎𝑛𝑑 𝑟ଷ are random variables between (0,1), 𝛼 and 𝛽 are 
chosen between (1,2), 𝑘௠௔௫  is the total number of iterations, 
𝐷௜௝  is the distance between two members and 𝑢ଵ 𝑎𝑛𝑑 𝑢ଶ are 
random vectors between (-1, 1), A is the fluctuation 
coefficients, 𝜀 is the vibration coefficients. 

E.  MODIFIED PFA (mPFA) 
The Modified PFA was proposed [40]. A and 𝜀 are the 
fluctuation and the vibration coefficients, which are modified 
for a better search, since both have the capability for random 
movements and transition between diversification and 
intensification. Therefore, there should be a proper value for A 
and 𝜀 to maintain the random movement. Hamza Yapici has 
proposed the value for both A and 𝜀 as 𝜀 = 0.1𝜀 and A= 
0.001A 

F.  THE PSO 
Among the SI techniques is PSO, inspired by the social 
behaviors of birds and fish schooling. In PSO, each 
individual/particle moves with velocity and keeps the best 
position within the search space. The best position of each 
particle of the population/swarm is communicating with other 
particles. The swarm moved randomly in the d-dimensional 
search area, and each particle kept/maintained the velocity and 
position [41]. Each particle updates its position and velocity at 
every iteration and learns from its own/personal position and 
the swarm's overall best position [42]. The updated velocity 
and position are defined by equations (27) and (31). The 
advantage of PSO is that it has few parameters to be tuned. It 
has a low computational burden and fast convergence and does 
not require preconditions such as differentiability or continuity 
objective functions. However, PSO still encountered some 
demerits, such as premature convergence and inability to tend 
to the global optimal. The reason is in two ways 1). When 
particles converge to the local optimal in the search space, they 
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cannot move out. 2). When particles are attracted too much to 
the swarm leader, they will quickly converge without exploring 
the different search spaces [43]. 
 

𝑉௜
௞ାଵ =  φ൫𝑤ଵ𝑣௜

௞  + 𝑐ଵ𝑟ଵ  ൫𝑝௕௘௦௧ − 𝑠௜
௞൯ + 𝑐ଶ𝑟ଶ  ൫𝑔௕௘௦௧ −

𝑠௜
௞൯ ൯,                                                                                   (27) 

 
where φ and 𝑤ଵ, 
 

φ =
2

ห2 − ψ − ඥψଶ − 4ψห
.                                         (28) 

ψ = 𝑐ଵ + 𝑐ଶ                                                                     (29) 
  

𝑤ଵ = 𝑤௠௔௫ −
𝑤௠௔௫ − 𝑤௠௜௡

𝑖𝑡𝑒𝑟௠௔௫

× 𝑧.                                (30) 

𝑠௜
௞ାଵ = 𝑠௜

௞ + 𝑉௜
௞.                                                              (31) 

III.  THE PROPOSED HPSO-PFA 
The most prominent task in the meta-heuristic algorithm is to 
obtain an optimum solution balance between diversification 
and intensification. Therefore, PSO and PFA are merged to 
form a new algorithm. The hybrid algorithm is expected to 
perform well in local and global search and gives better results 
than single algorithms.  

PSO can converge faster, and it requires fewer parameters 
to be tuned. This makes it easy to combine with other 
algorithms to form a hybrid method. It controls the balance 
between the local and global search space. A disadvantage of 
PSO is that it stocks to local optimal. On the other hand, PFA 
has the advantage of transits between the exploration 
(diversification) and exploitation (intensification) phases, 
which makes all members move randomly. A disadvantage of 
PFA is that there is a decrease in searchability as the dimension 
of the problem increases. At the start of every iteration, a global 
exploration of the search area is necessary to examine the wide 
area for perspective solutions and then look for a prominent 
solution in the search area. PSO can quickly identify the 
promising region in the search area, while PFA is used to move 
the swarm to another phase to locate the best solution. The best 
solution of PFA is then combined with the velocity of PSO to 
obtain the most prominent solution. A new hybrid is proposed 
to overcome the shortcomings of PSO and PFA. Therefore, 
combining the fast convergence of PSO with PFA to form a 
hybrid technique is considered a viable alternative method to 
avoid decreasing PFA searchability when the dimension of the 
problem increases.  

However, HPSO-PFA enables the new solution to produce 
in the iteration process, thus encouraging movement from the 
diversification and intensification stage. It was observed from 
this work that HPSO-PFA did not stock to local optimal, and 
searchability did not reduce at the high dimension problem, i.e., 
at the higher test bus system. Therefore, HPSO-PFA has the 
advantage of attaining global optimum. 

In the prey movement of PFA, the prey moves randomly to 
look for a prominent solution; if the prey cannot get a superior 
solution, the position of PFA is updated, and the prey that gets 
a better solution is chosen as a pathfinder/leader. The position 
of the follower is also updated for a better search space. After 
that, the pathfinder is combined with PSO velocity to improve 
the search space when looking for a better solution. The 
flowchart of HPSO-PFA represents Fig. 1. 

A.  IMPLEMENTATION OF HPSO-PFA TO ORPD PROBLEM 
1. Initialization of the parameters 
2. Run Newton Raphson (NR) LF and calculate the fitness 
3. Update counter, i.e., iter = iter +1 
4. Update  𝐺௕௘௦௧  and 𝑃௕௘௦௧ 
5. Check the control variable if it’s in a permissible range 
6. Store the best fitness 
7. Generate new followers and pathfinder, as given in 
equations (21 and 20). 
8. Select the best solution and generate the new one. 
9. Update the velocity and position given in equations (27) 
and (31). 
10. Run the NR method LF 
11. Then select and store the best value 
12. Is the stopping criteria satisfied? If not, go back to step 2, 
and if YES, move to step 13 
13. Display the result and stop 
 

 
Figure 1. Flow chart of HPSO-PFA 

IV. RESULT AND DISCUSSION 

A.  THE IEEE 30 TEST SYSTEM WITH 12 CONTROL 
VARIABLES 
The IEEE 30 bus system consists of 4 transformer tabs, 2 
reactive power compensation, and 6 generator buses/nodes. 
The total number of the control variable is 12, and the initial 
power loss is 17. 8984 MW [44, 45]. Table. 1. Give the settings 
of the algorithms. The value of the limit control variables of the 
system is shown in Table 2. For this test system, the simulation 
was run for 30 independent trials. The minimum 𝑃௟௢௦௦ of PFA 
is 17.4450 MW, PSO is 16.1980 MW, and the HPSO-PFA is 
16.14262 MW. The convergence curve of the algorithms of the 
test system is given in Fig. 2. Table 3 illustrates the comparison 
of the best control variable of the IEEE 30 bus system after 
optimization.  

To show the superiority of the proposed algorithm, the 
minimum 𝑃௟௢௦௦, maximum 𝑃௟௢௦௦, mean, and standard deviation 
(STD) are given in Table 4. Subbaraj and  Rajnarayanan  [44] 
reported a minimum loss of 16.3896 MW, and  Liang et al. [45] 
reported their minimum loss to be 16.4939 MW. By 
comparison, this literature reported the minimum losses higher 
than the losses obtained from the proposed algorithm in this 
study. It can be seen that HPSO-PFA gives a better loss 
reduction than all the algorithms, thereby suggesting the 
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superiority of the technique used in this study. A details 
comparison with other algorithms is presented in Table 4.  

Therefore, HPSO-PFA is more effective in power loss 
reduction. The percentage (%) loss reduction of PFA is 2.52%, 
mPFA is 2.6%, PSO is 9.5%, and HPSO- PFA is 9.8%. HPSO-
PFA gives a higher percentage loss reduction, giving it 
superiority over the others. 

Table 1. Settings of the algorithms 

Parameter name Value 
Number of iterations 200 
Particle number 50 
Acceleration constant for PSO 𝐶ଵ = 𝐶ଶ = 2 
Constriction factor 0.729 

𝑊௠௔௫ 0.9 
𝑊௠௜௡ 0.4 

A 0.001A 
𝜀 0.1𝜀 

 

 
Figure 2. Convergence curve of IEEE 30 bus system 

Table 2. The setting of control variables of the test system 
[45] 

Control variables Maximum (p.u) Minimum (p.u) 
The voltage of the load bus  1.05 0.95  
The voltage of the generator 
(Vg) bus 

1.1 0.9  

Transformer tab 1.1 0.9  
 𝑄஼ଵ଴ 0.2 0 
 𝑄஼ଶସ 0.04 0 

Table 3. Best control variable of the IEEE 30 bus system 

Control 
variable 

Algorithms 
HPSO-PFA EP [44] SARGA [44] PSO [46] 

𝑉𝑔ଵ 1.1015 - - 1.0995 
𝑉𝑔ଶ 1.0863 1.097 1.094 1.0778 
𝑉𝑔ହ 1.0542 1.049 1.053 1.0459 
𝑉𝑔଼ 1.0609 1.033 1.059 1.0576 
𝑉𝑔ଵଵ 1.1001 1.092 1.099 1.0526 
𝑉𝑔ଵଷ 1.1001 1.091 1.099 1.0330 
𝑇଺ିଽ 1.0433 1.01 0.99 1.0050 
𝑇଺ିଵ଴ 0.9210 1.03 1.03 1.0239 
𝑇ସିଵଶ 1.0546 1.07 0.98 1.0183 
𝑇ଶ଼ିଶ଻ 0.9803 0.99 0.96 0.9927 
𝑄௖ଵ଴ 0.0408 0.19 0.19 0.1840 
𝑄௖ଶସ 0.0421 0.04 0.04 0.1315 

 
 
 

 

Table 4. Comparison of HPSO-PFA with other algorithms 

Algorithms Minimum  
 𝑃௟௢௦௦MW 

Maximum
 𝑃௟௢௦௦MW 

Mean STD % loss 
reductio
n 

PFA 17.4469 17.982 17.71445 0.37844 2.52 
mPFA 17.4413 17.9762 17.70875 0.37823 2.6 
PSO 16.1980 18.214 17.206 1.42553 9.5 
HPSO-
PFA 

16.14262 17.1065 16.62456 0.68157 9.8 

DE [47] 16.2184 16.6060 - 0.089508                   
- 

DE-
ABC[47] 

16.2163 16.2164 - 2.34E-05 - 

ABC [47] 16.2325 17.693 - 0.34919 - 
PSO [46] 16.1810 - - - - 
DE [45] 16.4939 - - - - 
EP [44] 16.3896 - - - - 

B.  THE IEEE 118 BUS SYSTEM 
To prove the performance of HPSO-PFA in a large test case 
system, the IEEE 118 test system was used. The system 
contains 77 control variable, of which 9 is transformer taps (5–
8, 25–26, 17–30, 37–38, 59– 63, 61–64, 65–66, 68–69, 80–81), 
54 generators (1, 4, 6, 8, 10, 12, 15, 18, 19, 24, 25, 26, 27, 31, 
32, 34, 36, 40, 42, 46, 49, 54, 55, 56, 59, 61, 62, 65, 66, 69, 70, 
72, 73, 74, 76, 77, 80, 85, 87, 89, 90, 91, 92, 99, 100, 103, 104, 
105, 107, 110, 111, 112, 113, 116 ), and 14 reactive 
compensations (5, 34, 37, 44, 45, 46, 48, 74, 79, 82, 83, 105, 
107, 110). The limit of the control variable has been reported 
[6]. Furthermore, the load demand and base case is  𝑃௟௢௦௦ are 
given below 
 

 𝑃௟௢௔ௗ = 4242 MW,  
𝑄௟௢௔ௗ

= 1438 MVar, 

 𝑃௟௢௦௦ =  132.863 MW. 
 
The settings of the algorithms are the same as the one given 

in Table 1, except for the number of iterations that were set to 
300 in this case. For the test system, the simulation was run for 
30 independent trials. From the simulation result, HPSO-PFA 
offers outstanding development in minimizing real power loss. 
The losses significantly reduce from 132.863 MW of the base 
case to 107.2913 MW. The convergence curve of the IEEE 118 
bus system is shown in Fig. 3. The best control variable after 
optimization is given in Table 5. By comparing the result of the 
proposed approach with some algorithms like MFO, chaotic 
parallel vector evaluated interactive honey bee mating 
optimization (CPVEIHBMO), HPFA, CLPSO, and GWO; the 
proposed HPSO-PFA gives an outstanding smallest/lowest 
power loss result. Comparing HPSO-PFA with CPVEIHBMO, 
CLPSO, GWO, MFO, and HPFA gives 12.65%, 17.81%, 
10.05%, 6.88%, and 0.6%, respectively. This achievement 
proved the superiority of the proposed hybrid approach since it 
gives a more desirable solution with the lowest power loss in 
solving the ORPD problem 

Table 6 illustrate the minimum, maximum, mean, and STD 
of real power loss with other techniques, and it can be seen that 
HPSO-PFA gives the most superior result. Table 7 illustrates 
the percentage (%) of reduction with different techniques; by 
comparison, the proposed method gives 19.247%, while MOF, 
CPVEIHBMO, CLPSO, and GWO give 12.37%, 6.6%, 1.43%, 
and 9.19%, respectively. However, this also indicates the 
achievement of HPSO-PFA in power loss reduction. 
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Figure 3. Convergence curve of IEEE 118 bus system 

Table 5. Comparison of result with other methods of IEEE 
118 bus system after optimization 

Control 
variables 

HPSO-
PFA 

MFO [6] GWO 
[2] 

GSA 
[32] 

CPVEI
HBMO 
[5] 

FA-
APTFPSO
#4 [48] 

 𝑉𝑔ଵ 1.0566 1.0173 1.0204 0.9600 0.9926 1.0141 
 𝑉𝑔ସ 1.0809 1.0402 1.0257 0.9620 1.0108 0.9494 
 𝑉𝑔଺ 1.0703 1.0292 1.0208 0.9729 1.0037 1.0013 
 𝑉𝑔଼ 1.0898 1.0600 1.0419 1.0570 0.9976 1.0044 
 𝑉𝑔ଵ଴ 1.0996 1.0374 1.0413 1.0885 1.0215 1.0111 
 𝑉𝑔ଵଶ 1.0669 1.0250 1.0232 0.9630 1.0093 0.9937 
 𝑉𝑔ଵହ 1.0600 1.0268 1.0207 1.0127 1.0075 0.9898 
 𝑉𝑔ଵ଼ 1.0608 1.0298 1.0270 1.0069 1.0259 0.9567 
 𝑉𝑔ଵଽ 1.0593 1.0275 1.0204 1.0003 0.9943 1.0300 
 𝑉𝑔ଶସ 1.0793 1.0483 1.0137 1.0105 1.0179 0.9540 
 𝑉𝑔ଶହ 1.0999 1.0600 1.0270 1.0102 1.0177 1.0383 
 𝑉𝑔ଶ଺ 1.1004 1.0600 1.0386 1.0401 0.9990 0.9656 
 𝑉𝑔ଶ଻ 1.0561 1.0267 1.0188 0.9809 1.0084 0.9229 
 𝑉𝑔ଷଵ 1.0476 1.0101 1.0138 0.9500 0.9838 0.9169 
 𝑉𝑔ଷଶ 1.0542 1.0226 1.0135 0.9552 0.9827 1.0238 
 𝑉𝑔ଷସ 1.0804 1.0556 1.0261 0.9910 1.0065 0.9379 
 𝑉𝑔ଷ଺ 1.0773 1.0548 1.0261 1.0091 1.0190 0.9936 
 𝑉𝑔ସ଴ 1.0592 1.0419 1.0125 0.9505 1.0267 0.9173 
 𝑉𝑔ସଶ 1.0641 1.0429 1.0233 0.9500 0.9865 0.9242 
 𝑉𝑔ସ଺ 1.0859 1.0450 1.0272 0.9814 1.0084 1.0113 
 𝑉𝑔ସଽ 1.0982 1.0589 1.0401 1.0444 1.0035 1.0638 
 𝑉𝑔ହସ 1.0761 1.0284 1.0230 1.0379 0.9806 0.9865 
 𝑉𝑔ହହ 1.0752 1.0289 1.0221 0.9907 0.9969 1.0216 
 𝑉𝑔ହ଺ 1.0761 1.0283 1.0226 1.0333 0.9881 0.9221 
 𝑉𝑔ହଽ 1.1001 1.0512 1.0379 1.0099 1.0197 1.0496 
 𝑉𝑔଺ଵ 1.0996 1.0534 1.0241 1.0925 0.9956 1.0092 
 𝑉𝑔଺ଶ 1.0954 1.0506 1.0199 1.0393 1.0064 1.0007 
 𝑉𝑔଺ହ 1.1005 1.0596 1.0465 0.9998 0.9883 0.9703 
 𝑉𝑔଺଺ 1.1012 1.0600 1.0378 1.0355 1.0101 0.9861 
 𝑉𝑔଺ଽ 1.1005 1.0600 1.0501 1.1000 0.9931 0.9961 
 𝑉𝑔଻଴ 1.0729 1.0600 1.0243 1.0992 1.0127 0.9676 
 𝑉𝑔଻ଶ 1.0668 1.0526 1.0187 1.0014 1.0145 0.9431 
 𝑉𝑔଻ଷ 1.0693 1.0600 1.0397 1.0111 1.0174 0.9368 
 𝑉𝑔଻ସ 1.0632 1.0600 1.0170 1.0476 1.0025 0.9653 
 𝑉𝑔଻଺ 1.0595 1.0390 1.0080 1.0211 0.9842 1.0033 
 𝑉𝑔଻଻ 1.0865 1.0502 1.0192 1.0187 0.9914 1.0075 
 𝑉𝑔଼଴ 1.1002 1.0600 1.0329 1.0462 1.0257 0.9617 
 𝑉𝑔଼ହ 1.0992 1.0600 1.0224 1.0491 0.9876 1.0407 
 𝑉𝑔଼଻ 1.1003 1.0599 1.0361 1.0426 1.0213 0.9594 
 𝑉𝑔଼ଽ 1.1019 1.0600 1.0558 1.0955 1.0069 0.9824 
 𝑉𝑔ଽ଴ 1.0847 1.0431 1.0290 1.0417 1.0298 0.9726 
 𝑉𝑔ଽଵ 1.0848 1.0496 1.0127 1.0032 0.9839 0.9744 
 𝑉𝑔ଽଶ 1.0984 1.0600 1.0360 1.0927 1.0021 0.9606 
 𝑉𝑔ଽଽ 1.0837 1.0551 1.0297 1.0433 0.9853 0.9589 
 𝑉𝑔ଵ଴଴ 1.0888 1.0584 1.0360 1.0786 1.0281 0.9846 
 𝑉𝑔ଵ଴ଷ 1.0704 1.0442 1.0232 1.0266 0.9802 1.0369 

 𝑉𝑔ଵ଴ସ 1.0552 1.0333 1.0180 0.9808 1.0187 0.9931 
 𝑉𝑔ଵ଴ହ 1.0499 1.0281 1.0176 1.0163 1.0209 0.9853 
 𝑉𝑔ଵ଴଻ 1.0318 1.0161 1.0201 0.9987 1.0234 0.9057 
 𝑉𝑔ଵଵ଴ 1.0388 1.0215 1.0207 1.0218 0.9842 0.9361 
 𝑉𝑔ଵଵଵ 1.0431 1.0280 1.0261 0.9852 1.0000 0.9529 
 𝑉𝑔ଵଵଶ 1.0206 1.0042 1.0066 0.9500 0.9930 0.9198 
 𝑉𝑔ଵଵଷ 1.0666 1.0350 1.0251 0.9764 1.0200 0.9417 
 𝑉𝑔ଵଵ଺ 1.0999 1.0484 1.0342 1.0372 1.0016 0.9524 
 𝑇 ିହ 0.9850 1.01360 1.0208 1.0659 1.0255 0.9595 

 𝑇ଶ଺ିଶହ 1.0901 1.10000 1.0279 0.9534 0.9891 1.0012 
 𝑇ଷ଴ିଵ଻ 1.0153 1.00380 1.0323 0.9328 0.9932 0.9378 
 𝑇ଷ଼ିଷ଻ 0.9798 0.98263 1.0209 1.0884 0.9873 0.9699 
 𝑇଺ଷିହଽ 0.9539 0.98430 1.0091 1.0579 0.9868 0.9879 
 𝑇଺ସି଺ଵ 1.0338 1.01390 1.0366 0.9493 1.0235 0.9810 
 𝑇଺ହି଺଺ 1.0555 1.10000 1.0301 0.9975 1.0090 0.9999 
 𝑇଺଼ି଺ଽ 0.9693 1.10000 1.0234 0.9887 1.0075 0.9987 
 𝑇 ଵି଼଴ 0.9769 0.96831 1.0211 0.9801 0.9872 1.0002 

 𝑄஼ହ 0.1210 0 -39.76 0 0 1.2528 
 𝑄஼ଷସ 0.1443 0 13.79 7.4600 6.0111 0.4362 
 𝑄஼ଷ଻ 0.1164 -0.03126 -24.73 0 0 3.5249 
 𝑄஼ସସ 0.0645 10 9.957 6.0700 6.0057 2.1925 
 𝑄஼ସହ 0.1377 0 9.868 3.3300 3.0001 1.5462 
 𝑄஼ସ଺ 0.1342 0 9.919 6.5100 5.9838 2.2228 
 𝑄஼ସ଼ 0.1248 0.000842 14.89 4.4700 3.9920 0.8434 
 𝑄஼଻ସ 0.1319 0.220540 11.972 9.7200 7.9862 1.3999 
 𝑄஼଻ଽ 0.0184 20 19.649 14.250 13.9892 2.6851 
 𝑄஼଼ଶ 0.2292 0 19.890 17.490 17.9920 1.0367 
 𝑄஼଼ଷ 0.1725 10 9.9515 4.2800 4.0009 2.4714 
 𝑄஼ଵ଴ହ 0.0209 0 19.968 12.040 10.9825 2.8861 
 𝑄஼ଵ଴଻ 0.0381 6 5.9136 2.2600 2.0251 1.8803 
 𝑄஼ଵଵ଴ 0.2073 6 5.8834 2.9400 2.0272 3.2001 

Table 6. Comparison with other techniques 

Algorithms Minimum  
 𝑃௟௢௦௦ 𝑀𝑊 

Maximum
 𝑃௟௢௦௦ 𝑀𝑊 

Mean STD 

PFA 120.1287 123.425 121.7769 2.3308 
mPFA 115.0687 119.213 117.1409 2.9305 
PSO 117.9129 123.873 120.8930 4.2144 
HPSO-PFA 107.2913 119.567 113.4292 8.6802 
mPFA [40] 117.0690 118.0053 117.3823 0.2969 
SDP [14] 113.17 - - - 
MSFS [16] 114.6351 116.6677 115.4278 0.4678 
IALO [18] 114.795 - 117.299 - 
ALO [18] 116..86 - 119.712 - 
HPFA [36] 108.090 109.2265 - 0.5974 
ISSA [17] 114.5297 121.1127 115.651 1.4889 
MFO [6] 116.4254 - - - 
GSA [32] 127.76 - - - 
FA-
APTFPSO#4 
[48] 

129.8815 146.6919 136.9296 4.2154 

ALC-PSO 
[29] 

121.53 132.99 - - 

Table 7. Comparison of percentage of reduction after 
optimization 

Algorith
ms 

Base 
case 

HPSO-PFA MOF [6] GWO [2] CPVEIH
BMO [5] 

CLPSO 
[34] 

 𝑃௟௢௦௦ 
MW 

132.863 107.2913 116.4254 120.65 124.098 130.96 

% of loss 
reduction 

 19.247 12.37 9.19 6.60 1.43 

V.  CONCLUSION AND FUTURE WORK 
In this research, a novel HPSO-PFA was proposed to find the 
solution to the ORPD problem. The PSO and PFA parameters, 
the maximum number of iterations, and the population size 
were done at the initialization stage. PFA was used to move the 
swarm to the next position. The best result was combined with 
the velocity of PSO to update and give the most optimum result. 
HPSO-PFA has fast convergence speed and offers the most 
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prominent solution. Also, it can attain a good balance between 
diversification and intensification in the search location. The 
ORPD problem is a constraint optimization problem in which 
real power losses have been considered the objective function. 
The HPSO-PFA has been examined and tested on the standard 
IEEE 30 and 118 bus test system, and the result was compared 
with other algorithms that suggest the superiority of the HPSO-
PFA algorithm. The real power loss of HPSO-PFA is 16.14262 
MW, PFA is 17.4469 MW, mPFA is 17.4413 MW, and PSO is 
16.1980 MW for IEEE 30 bus system. The reduction 
percentage for PFA, mPFA, PSO, and HPSO-PFA are 2.52%, 
2.6%, 9.5%, and 9.8%, respectively. HPSO-PFA has a high 
percentage of loss reduction of 9.8%, IEEE 30 bus/node 
system. Also, for the IEEE 118 test system, the base case loss 
is 132.863 MW, HPSO-PFA, PSO, PFA, and mPFA reduce the 
losses to 107.2913 MW, 117.9129 MW, 120.1287 MW, and 
115.0687 MW, respectively. 

Furthermore, the percentage (%) reduction for the IEEE 118 
test system are 19.25%, 11.25%, 9.59%, and 13.39% for 
HPSO-PFA, PSO, PFA, and mPFA, respectively. HPSO-PFA 
proved effective in large/extensive test systems in minimizing 
power loss. It can be seen from the simulation result that 
HPSO-PFA has an adequate high capacity in global search and 
adequate converge rate in reducing losses than others. 
Moreover, the comparison shows the superiority of the 
proposed HPSO-PFA over the other techniques. The future 
work is to test the proposed HPSO-PFA on the multi-objective 
function. 
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