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 ABSTRACT Over the last two decades, big data analytics has become a requirement in the research industry. Stream 
data mining is essential in many areas because data is generated in the form of streams in a wide variety of online 
applications. Along with the size and speed of the data stream, concept drift is a difficult issue to handle. This paper 
proposes an Enhanced Boosting-like Online Learning Ensemble Method based on a heuristic modification to the 
Boosting-like Online Learning Ensemble (BOLE). This algorithm has been improved by implementing a data instance 
that retains the previous state policy. During the boosting phase of this modified algorithm, the selection and voting 
strategy for an instance is advanced. Extensive experimental results on a variety of real-world and synthetic datasets 
show that the proposed method adequately addresses the drift detection problem. It has outperformed several state-of-
the-art boosting-based ensembles dedicated to data stream mining (statistically). The proposed method improved 
overall accuracy by 1.30 percent to 14.45 percent when compared to other boosting-based ensembles on concept drifted 
datasets. 
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I. INTRODUCTION 
Normally the goal of data analysis is to uncover hidden 
information. In many cases, this knowledge is useful for 
improving the working model or avoiding hazardous situations. 
The meaning of data has changed significantly over the last few 
decades as the sources of data generation have shifted from 
static to dynamic. The rate of data generation has increased 
exponentially as a result of the widespread use of online 
applications and devices, and the nature of data has also 
changed. Data is now referred to as a data stream, and one of 
its most significant characteristics is time. As a result, it 
continues to change over time, becoming increasingly critical 
in assessing. 

Since this data is in the form of streams, it has unique 
properties that make interpreting and using various machine 
learning techniques inappropriate. The following are the main 
data stream processing challenges that need to be resolved, 
according to investigations [1, 2] on data stream mining 
literature:  

1. The speed with which data streams are created implies 
that processing the complete data set may be delayed, or may 
be impossible. 

2. Since the size of the stream is so large, it requires more 
memory than simple applications. 

3. Concept drift happens when the underlying data 
distribution changes in the stream. Because the data is not 
static, the analysis of each and every example across time may 
alter. As a result, each slot’s prediction changes with time, and 
the model constructed for such data must be versatile. 

Classification is the foundation for analysis in most 
applications, such as market trends based on customer 
demands, spam mail rectification, climate change, and share 
market, to name a few [3]. However, an adaptable algorithm is 
needed for classifying data streams because of the enormous 
speed and amount of the data as well as the changing behavior 
of the data. Traditional single classifiers such as SVM [4] and 
Decision trees [5] are not sufficient to deal with all of these 
challenges. Advanced methods, such as adaptive sliding 
windows, data set sampling algorithms, drift detectors, and 
adaptive ensembles, have been developed in the literature to 
face this issue [6–14]. Ensemble classifiers outperformed all of 
these methods. Similarly, to process huge amount of data, more 
memory is required. Despite these drawbacks, ensemble has 
demonstrated its ability to deal with vivid data, has achieved 
high accuracy, and its simple design methods have drawn the 
attention of many researchers[1, 2, 15]. 

Either the short-term or long-term behaviour of a growing 
data stream may be more relevant in the categorization process 
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and it is sometimes impossible to predict which one is more 
important in advance [16]. Expert systems must constantly 
adjust to the new distribution in scenarios where multiple 
changes of concepts occur. If the time it takes to train the model 
is longer, the concept may change, and the developed model 
will become obsolete for new situations. The researchers and 
academicians  made a lot of efforts to solve the problems with 
data stream classification using ensemble methods based on 
online and block based, bagging and boosting concepts [17].   

Learning ensembles for data streams with idea drifts have 
been the subject of many studies, primarily to aid in the 
application of various strategies based on the instructional 
considerations that are covered in it. To better use ensemble 
diversity and address idea drifts, several specifications are 
explored in [18]. These essential considerations make it 
possible to quantify ensemble diversity and, as a result, produce 
novel solutions. According to the findings of this study, 
boosting is a simple but effective method for achieving high 
accuracy by allowing each base expert to work on weighted 
data, and the results are produced by a cumulative policy. 

In order to categorize data streams with various drift 
patterns, this paper provides an enhanced boosting ensemble 
algorithm in conjunction with a drift detector. 

Fig. 1 depicts the boosting-based ensemble construction 
with a standard drift identifier. This research seeks to enhance 
boosting ensemble classification method for data stream 
mining. Standard methods like classification accuracy and 
correctness (kappa) requirements are used to assess the 
suggested algorithms. An experimental comparison of known 
and available boosting classification techniques with proposed 
Enhanced Boosting-like Online Learning Ensemble is 
conducted in this research. 
 

 

Figure 1. Conventional Ensemble Classifier with Drift 
Detector 

The remainder of the paper is structured as follows. An 
introduction of data stream mining and associated research in 
ensemble learning and boosting based classification for data 
streams are presented in Section 2. A thorough explanation of 
the proposed Ensemble algorithm’s design and guiding 
principles may be found in Section 3. A complete experimental 
examination on a sizable number of data streams, including 
streams with concept drift, is presented in Section 4. Section 5 
concludes by summarizing the last thoughts and indicating 
potential future research directions. 

II.  LITERATURE REVIEW 
Ensemble methods are a powerful technique for improving the 
precision and robustness of single models: Many classifiers are 
combined to form an ensemble, and it is expected that the 
ensemble will perform better at classification than a single 
method. The conventional techniques of boosting and bagging 
are employed to increase the accuracy of other algorithms 
(weak learners). To provide various randomly generated 
bootstrap samples for training, bagging adopts resampling from 
the training set with repetitions. In contrast, Boosting modifies 
the variety provided to train each member based on prior 
expectations as a way to produce various distributions over the 
training data [13].  

Among the many ensemble methods proposed by 
researchers, the Online Bagging and Boosting method 
proposed by Oza and Russell [19] is a watershed moment in the 
history of data stream classification. In this, input is paired in 
the online bagging method for training set Z(x, y). The number 
of iterations, as well as the machine learning method M, is 
fixed. The machine learning technique used may be a decision 
tree, SVM, random forest, etc. A bootstrap sample of the same 
size N is drawn from training set Z for each iteration, and a 
learning method M is applied to it. Model L is determined by 
each base classifier (Bc). After repeating the process k times, it 
will add the sample (xi, yi) to the training set and update all of 
the base classifiers, returning the ensemble  
L←(Bc1, Bc2, …..Bcn). The majority vote of all predictors is 
used to classify the data stream.  

The Online Boosting algorithm [19] operates on instances 
generated using the Poisson distribution. If there is a change in 
samples, it updates the subsequent base classifier (Bc). The 
training instances possess weigh ts that are allotted to base 
experts Bc in the following order: Bc1, Bc2,....Bcn. If the base 
expert Bc1 misclassifies the training instances, half of the total 
weight is assigned to the misclassified instances for the next 
training set, while the remaining half weight is assigned to the 
correctly classified instances.  

Carvalho Santos et al. proposed the Adaptable Diversity-
based Online Boosting (ADOB) [20] algorithm, which is a 
modified version of the online AdaBoosting method that is 
primarily concerned with the problem of abrupt and frequent 
concept drift. This method distributes instances more 
efficiently among experts, allowing it to adapt to concept drifts 
more quickly. This is accomplished by decreasing the value of 
poison distribution (λ) when the classification is correct and 
increasing it when it is incorrect. It has used adaptive window 
mechanism (ADWIN) to detect drift. The authors contend that 
this tactic generally tends to increase the ensemble’s accuracy 
following idea drifts, particularly when these drifts are sudden. 
Last but not the least, ADOB, like the majority of boosting 
techniques, only permits a classifier (weak hypothesis) to vote 
if its error is up to 50% and ceases voting when one member 
violates this requirement. Thus, ADOB technique improves 
classifier accuracy while reducing execution time and memory 
usage.  

Barros et al. improved ADOB and named it Boosting-like 
Online Learning Ensemble (BOLE) [21]. All previously 
designed online boosting methods were based on the same 
classifier selection criterion, which was that the error should be 
less than a certain threshold value (below 50 percent). This 
condition removes moderately behaving classifiers directly. 
Another disadvantage of the previous system is that it removes 
incorrectly classified instances, which is an ineffective strategy 
in an online environment where each instance has an impact on 
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the outcome. In the case of BOLE, there are two different 
parameters "breakVotes" and "errorBound" that restrict 
classifiers for voting and avoid negative voting by using the 
"weightShift" parameter, which has a range of 0.0 to 5.0.  

Pelossof et al. created an Online Coordinate Boosting 
algorithm (OCBoost) that modifies Oza and Russell’s 
algorithm [22] by cancelling weak hypothesis selection criteria. 
OCBoost uses approximated product term as reference instead 
of the previous technique of storing margins of all previous 
instances. Using the standard weight policy, the initial weight 
of each instant is set to one, giving all instants equal weights. 
For updating the classifier’s weight, a different method of 
approximation of two error weights is used. All of these 
changes increased the effectiveness of OCBoost over previous 
findings. 

As can be noted, not all ensemble methods can handle all 
sorts of concept drift, as can be seen in earlier boosting 
techniques. Similarly, the boosting strategies give the samples 
weights based on current prediction. Consequently, this could 
result in some data instances being underweighted, which will 
impact the classification’s accuracy. For this purpose, this 
paper proposes a boosting-based ensemble method which is a 
modified version of the Boosting-like online Learning 
Ensemble (BOLE) [21] in which retain Previous State (PS) 
policy is used to improve consecutive results. As a result, in 
order to allocate weight for instances, the proposed method 
keeps an instance classification record of both the current as 
well as previous states. 

III. MATERIAL AND METHODOLOGY 
In this paper, we propose an enhanced version of the Boosting-
like Online Learning Ensemble (BOLE) [22], which we have 
renamed as an Enhanced Boosting-like Online Ensemble that 
retains Previous State (EBOLE-PS). It is an online data stream 
classification method that employs the ensemble method, 
boosting, and drift detection techniques. Hoeffding trees as 
base learner are applied as expert classifiers for ensemble 
construction, and a drift detector is used to handle concept 
change to improve accuracy. 

A. ENSEMBLE CONSTRUCTION 
It has been observed that traditional data mining techniques 
have failed to process stream data, making the task difficult. In 
the case of data stream classification, a simple classification 
method degrades its performance due to variations in the target 
concepts. One method for addressing this issue is to develop an 
adaptive learning method using ensemble of classifiers, which 
employs multiple classifiers. In dealing with the large volume 
and concept variation problem in data streams, ensemble-based 
classifiers outperform single classification and are more 
accurate.  

Boosting ensembles are designed as follows: The data 
instances (DI) are initially fed to the first base classifier with 
equal weights (DI*Wi) and the weights of instances are 
updated after each iteration by a policy in which incorrectly 
classified data instances (DIe) receive the highest weights for 
the next round (DIe*Wh). In contrast, correctly classified 
instances (DIc) will receive lower weights (DIc*Wl). This 
technique is beneficial for lowering false positive rates by 
increasing the selection probability of incorrectly classified 
instances to judge more times. 

The proposed method builds an ensemble using 10 
hoeffding trees as base learners and the same ensemble 
construction rule as the BOLE and ADOB methods. Before 

processing a new set of data instances, the base experts (h) are 
sorted ascending to achieve more accurate results. 
Simultaneously, the assumption is made that if a less accurate 
classifier can correctly predict results; there is no need to 
recheck results from more accurate classifiers.  

The working of a proposed EBOLE-PS ensemble consists 
of three major parts: 

A.1 CLASSIFIER VOTES 
The weights of ensemble get calculated after each iteration. The 
technique of weight calculation is as follows:  

i. Lamda (λ) is a Poisson distribution variable that is 
unique to each input data instance.  

ii. 𝜆sc,m  is the sum of the λ values for correctly 
classified examples by the base model at stage m and; 

iii. 𝜆sw,m  is the sum of incorrectly classified instances.  
iv. If both these values (λsc,m  and λsw,m ) are non-zero, 

then error is calculated as follows using a simple 
formula as in (1): 

 

Ԑ𝑚 = (ʎsw,m )/(ʎsc,m  +  ʎsw,m ).    (1) 
 

It means, Error ← (wrongly classified instances) / (Total 
Instances).This calculation is based on the current 
classification results.  

If Error (Ԑm) < 50% then using ADOB classification 
method βm is calculated as in (2). 
 

𝛽𝑚 =
Ԑ௠

(ଵି Ԑ௠)
.    (2) 

 

In each iteration, the ensemble weight is calculated using 
formula in (3). 
 

𝐿𝑚 (ẋ) =  ẏlog ቀ
ଵ

ஒ୫
ቁ.   (3) 

 

Finally, all the prediction of classifiers is arranged in 
ascending order based on its weight and highest weight 
prediction is selected for the next phase. 

 

Algorithm 1: Accuracy calculation modified 
version (train on instance)  

Input: ensemble size N, instance I 
Output: Expert arranged as per accuracy 

1. accuracy[] ← N 
2. for m ← 1 to N do 

a. λsw,m  ← ( λsw,m +  λoldsw,m  )/ 2 
b. λsc,m  ← (λsc,m  + λoldsc,m  )/ 2 
c. accuracy[m] ← λsc,m + λsw,m  

3. if  (accuracy[m] != 0.0) 
a. accuracy[m]←(λsc,m 

/accuracy[m]) 
4. End 

A.2 BOOSTING STRATEGY 
This section describes how the proposed method evolved from 
existing boosting methods. As previously stated, Adaboost is 
the foundation of online boosting algorithms that handle stream 
classification.  

In any boosting algorithm, instances are weighted based on 
their prediction accuracy at each iteration. The most incorrectly 
predicted instances are given a higher weight. For instance 
voting, our proposed approach takes into account not only 
current predictions but also previous predictions. Assuming 
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boldly that instances that have been repeatedly misclassified 
should be given more weight than those that have recently been 
misclassified. Algorithm 1 depicts the pseudo-code for the 
retain previous state (PS) policy for the java method 
getVotesForInstance, which is part of the boosting algorithms 
implemented in the MOA [23] framework.  

Here 𝜆sc,m  𝑎𝑛𝑑  𝜆sw,m are used to indicate correctly and 
wrongly predicted instance votes respectively. These two 
variables are available in original method which keeps track of 
current instance prediction. We have added two extra 

parameters (𝜆oldsw,m 𝑎𝑛𝑑 𝜆oldsc,m ) to this by taking 
previous state classification results into account. So that the 
instances that are repeatedly misclassified should be given 
higher weight. The proposed method uses an average of current 
and previous results to add recurrently incorrect predictions and 
thus increase the weight of such instances. The average weight 
of correct and incorrect classification is considered for each 
instance. As shown in the algorithm line number 2.a and 2.b 
part, the average of two continuous results is used to calculate 
the final weight of instances. 

 

ℎ(𝑚) = ෎ ቆ
஛sc,m 

஛sc,m ା ஛sw,m 
ቇ

ஶ

௠ୀଵ

.  (4) 

 
As shown in (4) weight of each classifier is calculated based 

on prediction accuracy. 

A.3 DRIFT DETECTOR METHOD 
The proposed method uses a different concept drift detection 
method based on error distance rather than a window-based 
method. The same method was used by the BOLE-based 
algorithm. 

We decided that EBOLE-PS would use Drift Detection 
Method  DDM [24] after reviewing the results of a recent 
comparison of concept drift detectors [25], which leads to the 
conclusion that the (DDM) is a good choice in all sorts of 
datasets. Algorithm 2 demonstrates the operation of DDM in 
simple steps.  

Algorithm 2 : Drift detector Method 
Input : Classifiers prediction (yes, no), Alert level, D- 

Danger level 
Output : Flag(Alert, Danger) 

1. For each input batch 
E  – Errors Distance (Average) ←1 
N – Incorrectly classified instances ←0 
Sq – Mean Square Error  (Average) ← 0 
d – Standard deviation of error ←1 
i← i+1 

2. If (classifier prediction is wrong) 
i. N ← N+1 

ii. E ← ((N-1)*E +i)/ N 
iii. Sq ← ((N-1 ) * Sq + i2)/ 

N 
iv. D ← Sqrt(Sq – E2) 

End if 
3. If (( Ei+di ) greater than or equal to (Emin+ 2* 

dmin)) 
Flag ←  Alert 

4. If (( Ei+di ) greater than or equal to  (Emin+ 
3* dmin)) 

Flag ←  Danger 
5. Return Flag  

Thus, proposed EBOLE-PS works on instance selection 
strategy and allows more classifiers to vote. It also employs the 
error-based concept drift detection method DDM, resulting in 
a greater ensemble accuracy. Fig. 2 shows a flowchart of the 
system’s overall work flow. 
 

 

Figure 2. Flowchart of overall working of EBOLE-PS 

IV. DATASETS 
This section described the datasets used in the comparative 
analysis of the performance of the existing methods and the 
proposed EBOLE-PS method. Four real-world datasets and 
four artificial datasets with unpredictability, noise, and a large 
amount of data are chosen. All of the datasets chosen are also 
freely available online, with the majority of them available on 
the MOA website [23]. 

A. REAL-WORLD DATASETS 
The selected four Real datasets are with varying sizes and 
unknown drift.  

Adult dataset with 15 attributes and 2 classes is highly 
imbalanced. It falls under the binary classification problem. 

Electricity dataset contains data from the electricity market 
of Australian New South Wales, with 45,312 instances and 
eight attributes.   

KDDCUP’99 dataset, which was collected for The Third 
International Knowledge Discovery and Data Mining Tools 
Competition, contains 42 different attributes and two classes.   

Cover type stores data collected for a 30-meter square of 
forest from the US Forest Service (USFS) Region. It has over 
500,000 instances with 54 attributes and many classes.   

B. SYNTHETIC DATASETS 
The 4 different synthetic datasets LED, Hyper plane, SEA, Sine 
with different drifts have been selected for the experiment.  
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LED: This data set, which has 24 parameters and 10 
classes, is an example of gradual drift. For the experiment we 
used it with two different sets of it by random seed parameter 
as 1 and 4. 

Hyper plane: This is a binary class dataset with d-
dimensional space that constantly changes position and 
orientation. For the experiment, we created two versions of this 
dataset, one with 5% and one with 10% noise. 

SEA: This dataset illustrates abrupt concept drift.   
Sine: It is an example of a dataset with abrupt concept drift.  

All these synthetic data streams can be generated using 
MOA [23] framework. 

IV. EXPERIMENTAL CONFIGURATION 
This section describes the experiments that were carried out in 
order to test and evaluate the proposed EBOLE-PS algorithm. 
It is specifically compared to boosting-based ensembles 
OCBoost, OzaBoostAdwin, ADOB, and the base method 
BOLE to perform comparative analysis. 

The Interleaved Test-Then-Train methodology is used to 
test instances before using them for training. This procedure 
ensures that each instance has passed through both phases. 
Because both ADOB and BOLE methods take less time and use 
less memory, the proposed modified method is only compared 
in terms of accuracy and kappa measure. All methods are based 
on boosting ensemble concepts; they have the same parameters, 
making comparison simple. We chose Hoeffding Tree as base 
classifiers with a number of experts set to ten. 

The experiments are run on an Intel Core i5 processor with 
4GB of main memory and Windows 10 64-bit. OZABOOST 
ADWIN and ADOB used the ADWIN drift detector to identify 
concept drifts. The formal parameter of ADWIN is, which 
indicates the maximum global error, and its default value is set 
to 0.002. 

BOLE and EBOLE-PS, on the other hand, use Drift 
Detector Method DDM, as drift detector. All of these base 
methods and drift detector codes are available with the MOA 
framework. 

The DDM parameters for the BOLE are as follows: n is the 
minimum number of processed instances before a drift can be 
detected which is set to 7, w is the standard deviation to raise 
warnings which is set to 1.2, and d is the out-control level 
which is set to 1.95. For our method, we set DDM to the same 
value as of based BOLE method (n = 7, w=1.2 and d=1.95)   

V. RESULTS AND DISCUSSION 
Every method has been run ten times to compute accuracy, 
execution time, and memory utilisation. For the final 
comparison, the average of all metrics is used. 

A. ACCURACY ANALYSIS 
Table 1 shows the accuracy of prediction achieved for 
OCBOOST, OZABOOST ADWIN, ADOB, BOLE, and 
EBOLE-PS. All are put through their paces on both artificial 
and real-world datasets. In the case of an LED dataset with one 
concept drift, EBOLE-PS performed the best (73.41 percent), 
followed by BOLE and OZABOOST. The ADOB method has 

degraded performance, whereas OCBOOST has performed the 
worst, with an average accuracy of 17.53 percent. 

All methods’ performance deteriorated with the addition of 
four more drifts in the LED dataset. However, EBOLE-PS 
performed well in this case as well, with only a 0.23 percent 
drop from a single drift LED data set. OCBOOST performance, 
on the other hand, is the worst in both cases. 

The hyper plane dataset comes in two versions: one with 
5% noise and one with 10% noise. In the presence of 5% noise, 
OCBOOST performed well, with the highest average accuracy 
of 89.5%, closely followed by EBOLE-PS, which is followed 
by BOLE, OZABOOST, and ADOB. In the case of Hyper 
(10% noise), as more noise is added to the data, the methods 
take a little longer to detect changes with slow recovery. 
OCBOOST’s performance has been reduced by about 4%, but 
it still has a high accuracy. EBOLE-PS has a slightly lower 
accuracy of 0.08 percent than OCBOOST. These two methods 
have been followed by the BOLE, ADOB, and OZABOOST. 
Examples of gradual drift include Hyper plane and LED 
datasets. In a general analysis based on overall performance, 
the methods that performed well were: EBOLE-PS, BOLE, 
OZABOOST, ADOB, OCBOOST, with differences in LED 
dataset ranging from 0.43 percent to 55.79 percent, and 
differences in Hyper plane dataset ranging from 0.67 percent to 
10.34 percent. 

SEA and Sine datasets are with abrupt drift where average 
performance of all methods is above 80%. In the SEA dataset, 
EBOLE-PS had the highest accuracy (87.87%), followed by 
OCBOOST, BOLE, ADOB, and OZABOOST. The difference 
between high and low accuracy ranges from 0.93 percent to 
4.23 percent. In comparison to other datasets, SINE dataset 
accuracy is greater than 97 percent using all tested methods. It 
may be due to symmetric nature of this dataset. OCBOOST has 
a score of 98.99 percent, while BOLE has a score of 97.84 
percent. 

The results in Table 1 show that the suggested EBOLE-PS 
approach has better performance accuracy than all of the 
compared approaches when the average of all results is 
considered. In the case of synthetic datasets, we employed 
hyper plane with 5% and 10% noise to see how noise affected 
ensemble performance. However, the results show that noise 
has no effect on the proposed method’s performance. Similarly, 
in the case of the LED dataset, drifts have grown, although 
EBOLE-PS still outperforms other ensemble approaches. 

To summarise the overall accuracy comparison, in the case 
of abrupt dataset like Sine, OCBOOST and EBOLE-PS 
perform better, followed by BOLE, ADOB, and OZABOOST. 
EBOLE-PS yielded the best results for gradual drifted datasets, 
but LED yielded different results than Hyper plane. In terms of 
LED, OCBOOST was the worst performer. ADOB has also 
demonstrated extremely low accuracy. In comparison, 
OCBOOST has provided excellent performance for hyper 
planes. 

EBOLE-PS has fared better while analysing real-world data 
sets for the Adult and Covertype datasets. Due to its updating 
technique, EBOLE-PS had recorded higher accuracy in the 
Cover type and Adult dataset with 87.7% and 83.16% 
respectively.  
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The effectiveness of the proposed approach is demonstrated 
by the consistent results for a number of datasets, in situations 
with both gradual and abrupt concept drifts, as well as for real-
world datasets. For example, the results for LED datasets (i=1 
and i=4) varied dramatically, with differences ranging from 
55.71 percent in the case of OCBOOST and EBOLE-PS to 
17.43 percent in the case of ADOB and EBOLE-PS. The 
obtained accuracies for Covertype is high among the all 
compared algorithms. Furthermore, the 73.41 percent accuracy 
obtained in the LED (i=4) dataset is boldly stated to be the 
highest for this dataset in the case of all compared online 
ensemble methods. Besides that, EBOLE-PS is consistently 
performing to near accurate than the other two tested ensemble 
methods as well as the original methods ADOB and BOLE. 
Finally, the overall performance of EBOLE-PS is consistently 
high and comparable to that of BOLE. 

To verify overall performance, each ensemble’s average 
accuracy on all types of datasets is calculated. We can observe 
that the EBOLE-PS technique outperformed OCBOOST, 
OZABOOST ADWIN, ADOB, and BOLE by 14.45%, 4.79%, 
12.67%, and 1.30% respectively. 

We can state that the proposed system has produced good 
results for various types of drifts as well as data of various sizes. 
To make these findings more concrete, we consider another 
comparison parameter, the Kappa measure. The Kappa 
measure is used to determine how accurately a system operates 
by considering the correct and total results. The kappa formula 
is as shown in (5) and (6). 

 

𝐾𝑜 =
஼௢௥௥௘௖௧௟௬ ௖௟௔௦௦௜௙௜௘ௗ ௜௡௦௧௔௡௖௘௦.

்௢௧௔௟ ௜௡௦௧௔௡௖௘௦
.                    (5) 

𝐾ₑ = ቀ
ା௩௘ ௧௘௦௧௜௡௚

ଵ଴଴
∗

ା௩௘  ௧௥௔௜௡௜௡௚

ଵ଴଴
ቁ + ቀ

ି௩௘ ௧௘௦௧௜௡௚

ଵ଴଴
∗

ି௩௘  ௧௥௔௜௡௜௡௚

ଵ଴଴
ቁ.           (6) 

 
Table 2 displays the results of the kappa measure obtained 

by the proposed method as well as all boosting algorithms. 
The performance of ensemble is also checked by increasing 

size of datasets. We used synthetic datasets of 100K, 200K, and 
500K instances, respectively. On all the ensembles, Table 3 
provides the average performance metric for different instance 
sizes. It is clear from the results that in the case of abrupt drift, 
such as Sine and SEA datasets, accuracy is higher for 200K and 
500K instances, whereas in the case of gradual drift, such as 
Hyper plane and LED, prediction becomes more accurate as 
size increases. 

Figs. 3, 4 and 5 compare the accuracy of ensembles for the 
Adult, Hyperplane, and SEA datasets. As demonstrated in the 
diagram, EBOLE-PS has obtained good accuracy from the start 
on the Adult dataset, and its performance has steadily improved 
following drift. Due to the gradual drift in the hyperplane 
dataset all other approaches degrade performance, whereas 
EBOLE-PS maintains its stability. On the SEA dataset, all 
algorithms showed fluctuation at first abrupt drift point, but 
only ADOB and EBOLE-PS were able to cope with the 
fluctuations and maintain their performance. The suggested 
system recognizes changes over time and adjusts to changing 
environments to handle the concept drift issue, as seen in all 
three graphs. 

 

Figure 3 Comparison of classification accuracy on ADULT 
datasets 

 

Figure 4 Comparison of classification accuracy on Hyper 
plane datasets 

 

Figure 5 Comparison of classification accuracy on SEA 
datasets 
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Table 1. Average Accuracy in percentage on Real world and Synthetic Datasets for OCBOOST, OZABOOST ADWIN, 
ADOB, BOLE and proposed EBOLE-PS. 

Datasets OCBOOST OZABOOST ADOB BOLE EBOLE-PS 

LED(i=4) 17.53 71.9 55.81 72.89 73.24 

LED(i=1) 17.53 55.71 55.81 72.89 73.41 

Hyper plane (5%) 89.5 79.68 78.04 84.68 88.36 

Hyper plane (10%) 83.66 72.79 78.04 79.93 83.58 

SEA 86.94 83.64 84.23 86.33 87.87 

Sine 98.39 98.33 98.34 97.84 98.31 

Covertype 59.7 85.41 31.87 87.68 87.7 

Adult 81.47 80.82 82.11 81.82 83.16 

KDDCup99 92.99 96.04 95.46 94.14 95.81 

Electricity 90.77 90.71 76.56 91.75 91.52 

Average 71.85 81.50 73.63 85.00 86.30 

 

Table 2. Accuracy in terms of Kappa measure percentage on Real worlds and Synthetic Datasets for OCBOOST, 
OZABOOOST, ADOB, BOLE and proposed EBOLE-PS. 

Datasets OCBOOST OZABOOST ADOB BOLE EBOLE-PS 

LED(i=4) 8.38 68.77 50.9 69.88 70.26 

LED(i=1) 79.01 59.36 56.08 59.86 67.16 

Hyper plane (5%) 70.95 64.01 63.67 69.7 72.99 

Hyper plane (10%) 96.75 96.64 96.65 95.65 96.59 

SEA 32.75 78.43 15.23 81.65 81.67 

Sine 46.58 46.77 51.5 51.89 54.39 

Cover type 85.72 91.91 90.74 88.04 91.52 

Adult 81.06 80.92 48.8 83.11 82.64 

 

Table 3. Accuracy in percentage on Synthetic Datasets with 100K, 200K and 500K instances for ADOB, BOLE and 
proposed EBOLE-PS 

Datasets Instance size ADOB BOLE EBOLE-PS 

LED 
100K 55.81 72.89 73.24 

200K 54.31 73.81 73.87 

Hyper plane 

100K 79.72 84.68 88.36 

200K 79.72 85.17 88.39 

500K 63.01 86.07 88.66 

SEA 

100K 84.23 86.33 87.87 

200K 85.62 88.39 89.11 

500K 85.48 88.14 88.96 

Sine 

100K 98.34 97.84 98.31 

200K 98.82 98.47 98.82 

500K 99.26 99.06 99.29 

 

VI. CONCLUSIONS 
Data stream classification is one of the most widely used 
mining techniques for various online data analyses today. The 
boosting strategy is always given better results when it comes 
to speeding up the mining process. The proposed method 
improved classification process accuracy in boosting base 
ensemble classifiers. This paper proposes preserving “results of 
previous stage” strategies in order to improve the accuracy of 
online boosting methods, especially in different concept drifts 
scenarios. More specifically, we investigated the effects of 
retaining previous data instance classification records for the 
next phase so that only the current prediction does not receive 
more weight. This phenomenon is used to keep track of 
incorrectly classified instances so that they can be tested more 
frequently, resulting in better outcomes due to more 
rectification. The results show that the proposed changes to the 

weighting strategy of boosting method improved prediction 
accuracy. 

The effect of drift detector`s parameterization on final 
accuracy over different types of datasets could also be 
investigated, and thus the system’s current performance could 
be improved. Further to that, we have not thoroughly examined 
the impact of changing the drift detectors’ warning level and 
instance limit, which may have an effect on the drift detection 
percentages.  

Current ensembles function with data streams generated by 
stream generators, but real-world data may have difficulties 
like as imbalanced classes, missing values, outliers, and so on, 
necessitating the development of a full-proof framework that 
addresses data pre-processing. 

To summarize the above, the proposed innovative approach 
EBOLE-PS, can be viewed as an experimental reorganization 
of the boosting concept algorithmic solution, which may lead 
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to a demonstrably better ensemble technique in the future. 
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