

VOLUME 22(1), 2023 21

Date of publication MAR-29, 2023, date of current version OCT-13, 2022.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.22.1.2875

Algorithm for Calculation the Carry and
Borrow Signs in Multi-digit Operations in

the Parallel Computational Model
ANDRII TERESHCHENKO1, VALERIY ZADIRAKA2

1Department of Doctoral Studies V. M. Glushkov Institute of Cybernetics of the National Academy of Sciences, Kyiv, Ukraine (e-mail: teramidi@ukr.net)
2Department of Optimization of Numerical Methods V. M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, Kyiv,

Ukraine (e-mail: zvk140@ukr.net)

Corresponding author: Andrii Tereshchenko (e-mail: teramidi@ukr.net).

 ABSTRACT The fast algorithm to calculate carry signs and borrow signs for implementation of fast multi-digit
operations in the parallel computational model is proposed. The proposed algorithm also makes it possible to
predict carry signs in the case of an addition operation and predict borrow signs for a subtraction operation. It is
shown how the sign prediction algorithm is implemented in operations in which each parallel processor proceeds
the separate group of words into which multi-digit numbers are divided. The iterative calculations of carry signs
of grouped words are described. The sign calculation algorithm as component of new modifications of multi-digit
addition, subtraction, comparison, the sum of three or more numbers in the parallel computational model is
presented. The sign calculation algorithm provides general approach to the implementation of multiplication,
division, multiplication by modulo, exponentiation by modulo in the parallel computational model. In the form of
a table, a general analysis of the complexity of algorithms and an analysis of the complexity by the number of
single-word operations per processor are given.

 KEYWORDS multi-digit arithmetic; multi-digit addition; multi-digit subtraction; multi-digit comparison; carry
sign; borrow sign; parallel computational model.

I. INTRODUCTION
HE need to solve problems with transcomputational
complexity, when mathematical models with million

unknowns are calculated, determines the use of modern parallel
computing systems. It expands the use of arithmetic with large
numbers [1–7]. In the process of implementation, the operation
of multiplication by modulo [8] is very dependent on the speed
of the addition operation, compared with modulo value, and
subtracted in case of excess. The speed of multi-digit
multiplication operation [9, 10] determines the speed of
cryptographic hardware and software [11–16]. In the sequential
computational model, carry and borrow signs are proceeded by
the processor automatically. In the parallel computational
model, the execution time of addition [17], subtraction, and
comparison operations depends on the methods that account for
the carry and borrow signs that occur in the corresponding
digits (machine words) of a multi-digit operation. Performing
multi-digit operations of addition [18], subtraction,
comparison, the sum of two or more multi-digit numbers is a
“bottleneck” in case of implementing methods and algorithms
in the parallel computational model [19, 20].

In 1971 Schmookler and A. Weinberger described the
generation and propagation functions considering the eight-
digit adders [21]. Adding the function kill C. McGeoch
described “carry look-ahead” method to add two N-bit integers
and “carry save” method to add three integers with logarithmic
complexity of executing operation on the circuit [22].

In 1990 R. Floyd and D. Knuth proposed the arithmetic [23]
dealing with the operations with the speed of addition
operation. The implementation of mathematical operations
uses “Addition Machines”.

Using interference adders, A.V. Anissimov proposed the
method [24] of addition of positive and negative integers of N
bits length in N+K steps using K interference transformations.
The method is based on the probability analysis of the carry
sign appearance.

The methods [21–24] are designed to operate on bits. These
methods are efficiently implemented in hardware. Software
methods need at least proceeding with words to be efficient.

This work presents the algorithm for calculating the carry
signs and the borrow signs, shows the method of using the

T

 Andrii Tereshchenko et al. / International Journal of Computing, 22(1) 2023, 21-28

22 VOLUME 22(1), 2023

proposed algorithm in the case of multi-digit operations of
addition, subtraction, comparison, the sum of three or more
multi-digit numbers. Defining the algorithm as a separate part
allows analyzing the efficiency of individual parts, which affect
the overall efficiency, and which are critical for
synchronization between processors.

II. PROBLEM STATEMENT AND DEFINITIONS

X , Y ,)(aX , 1,0  ha , – bitwise positive integers. Let

A be qw -bitwise sum of numbers X +Y excluding carry

sign, S be qw -bitwise result of subtraction of X –Y

excluding borrow sign, U be  hqw 2log –bitwise sum of

values)(aX , 1,0  ha . The sequence  01,..., XX q of

elements  




1

0
)2(

w

b

b
b+jwj x=X , 10, q=j , describes

big integer  




1

0
)2(

q

j

jw
jX=X , where

 jww+jwj xxX ,...,1 , 10, q=j , are w-bit words. The

sequences  01,...,YYq ,  01,..., AAq ,  01,..., SSq ,

 01,...,UUq ,  )(),...,(01 aXaX q , 1,0  ha ,

describe big integers Y , A , S , U ,)(aX , 1,0  ha ,

If one word consists of w bits, then let the following big

integers be called q -word numbers: Y , A , S , U ,)(aX ,

1,0  ha . Accordingly, the number U will be q+1-word

number in case of wh 2 .
Using the fast algorithm for calculating carry and borrow

signs, it needs to build fast algorithms for calculating addition

X +Y , subtraction X –Y , comparison X <Y , sum

 




1

0
)(

h

a
aXU in the parallel computational model.

III. CALCULATION CARRY SIGNS IN THE GROUP OF
WORDS IN THE PARALLEL COMPUTATIONAL MODEL

A. PRE-CALCULATED NUMBERS M , T , C

Let us introduce  01,..., MM=M q , where wW 2 ,

Wjjj YX=M  , 10, q=j , to get the addition

YX  of big integers of the length of q words omitting the

carry sign between the words.

Next, let us section the big integers X , Y into groups of

the length of w words. There will be indices 1g , g , 1g

to refer to the groups of the length of w words with indices

1g , g , 1g . For example, the following sequences

 gww+gw XX ,...,1 , gww+gw YY ,...,1 determine groups with

the index g . For describing the statuses of the group with

index g , there are words gT and gС of the length of w bits.

The phrase “with index” will be omitted for simplicity. T and

C of the length of wq=k words describe the whole status

of big integers X , Y .

The number  01,...,TT=T k is calculated in the

following way:

)2(
1

0

b
w

b=
jg t=T 



,














1,0

1,1

WMif

WMif
t

j

j
j ,

 bgwj  , 10, k=g , wq=k , wW 2 . (1)

The number  01,...,CCC k is calculated as follows:
















1

0,1

0,0

)2(
w

gif

gif
=b

b
jg c=C ,



















WYXif

WYXif
c

jj

jj
j

11

11

,0

,1
,

 bgwj  , 10, k=g , wq=k , 00 c . (2)

We will call the carry sign “incoming” in the case of the
carry sign “comes” from the previous word and it needs to be
considered in the present word. We will call “outgoing” carry
sign in the case of transferring the sign to the next word. The
“outgoing” carry sign will be considered in the next word.

B. CARRY SIGN ANALYSIS (“PREDICTION”) OF THE
GROUP OF THE LENGTH OF m WORDS
Let us section into groups of the length of w words the

operation of big integers YX  of the length of q words and

obtain  01,...,TT=T k ,  01,...,CCC k , wq=k , by

formulas (1), (2). The following analysis of T and C helps to
“look-ahead” carry signs that occur between groups.

Lemma 1. If gC and gT describe the group g of the

length of w words  gww+gw XX ,...,1 + gww+gw YY ,...,1 ,

in accordance with (1), (2), and:

WT+C gg  , wW 2 , then the group g “generates”

the carry sign to the next group;

1WTg , wW 2 , then the group g transfers

(“propagates”) the carry sign to the next group;

WTC gg  and 1WTg , wW 2 , then the

group g never transfers (“kills”) the carry sign to the next.

Let us consider the example shown in Fig. 1. gC consists

of 16w bits and the most significant bit is equal to 1. It

means that WYX wgwwgw   22 . The rest of the bits are

not considered. If 16w , then WYX gg   14161416 .

Andrii Tereshchenko et al. / International Journal of Computing, 22(1) 2023, 21-28

VOLUME 22(1), 2023 23

Figure 1. Example of “generating” the carry sign

by the group g to the next group g +1, WT+C gg 

gT has the highest bit equal to 1 in Fig. 1. It means that

111   WYX wgwwgw . If 16w , then

115161516   WYX gg .

C. ITERATIVE CALCULATION OF CARRY SIGNS

Let us consider the example shown in Fig. 2. The value of gC

equal to 1 means that the carry sign comes to the group g from

the group 1g . The value of gT equal to max value of the

word 1W means that each element of the result of

 gww+gw XX ,...,1 + gww+gw YY ,...,1 in accordance to

formula (1) is equal to 1W . The condition of values gC and

gT describes the case of “propagation” of the carry sign.

Figure 2. Example of iterative calculation “incoming” carry
signs of Cg (in the bottom) based on Cg (on the top)

The simple arithmetic operation gC + gT “propagates” the

carry sign to the next group of words but it keeps zeros in gC .

Fig. 2 also shows one step of “propagation” of carry sign inside
the group of the length of 16w words. It needs bitwise
operation to calculate “incoming” carry signs for every word in
the group of words. It is proposed the iterative formula to get
carry signs for each word one by one:

Wgggg TCCC 1)( , wW 2 ,

where “ 1 ” is left shift bits (toward the highest bit)
operation. It needs w iterations to calculate all carry signs
inside the group of the length of w words.

IV. PARALLEL ADDITION AND SUBTRACTION

A. PARALLEL CALCULATION OF THE CARRY AND
BORROW SIGNS
Let us first consider the algorithm that is used as part of further
algorithms for implementing multi-digit operations.

Algorithm 1. Calculation of carry and borrow signs of the
result of operations between big integers of the length of w
words based on “prediction” of the carry and borrow signs
between groups.

Params: Values q , w , k , wW 2 , V ,

 01,...,MM=M q ,  0,...,CC=C k .

Output: Updated  0,...,CC=C k .

Step 1.  01,...,TT=T k , where)2(
1

0

b
w

=b
jg t=T 



,









VMif

VMif
t

j

j
j ,0

,1
, bgwj  , 10, wq=g .

// “Look-ahead” of the carry and borrow signs

Step 2. For g from 0 to 1 wqg

Step 3. If WT+C gg  , then 111   gg СC

Step 4. End for g .

// Iterative calculation carry and borrow signs
Step 5. For g from to 1 kg

Step 6. For r from 0 to 1 wr

Step 7.
Wgggg TCCC 1)( .

Step 8. End for r .
Step 9. End for g .

The feature of Algorithm 1 is that the vector

 0,...,CC=C k is updated and returned. The input

parameter k looks redundant as wq=k , but in the case of

implementing multi-digit comparison operation, this parameter
will be zero to exclude the execution of the part that corrects
the word signs (steps 5–9), and in this way greatly increases the
speed of the multi-digit comparison operation of two numbers
comparing with the execution time of multi-digit addition and
subtraction operations. When the comparison operation of

numbers X <Y precedes its subtraction X –Y , the

parameter k will be non-zero.

B. PARALLEL ADDITION ALGORITHM

Algorithm 2. Calculation of the addition of big numbers X +

Y of length of q words with “prediction” of carry signs.

Params: Values q , w , wq=k , wW 2 ,

 01,..., XXX q ,  01,...,YYY q .

Output:  01,..., AA=A q ; 1c , if qwYX 2 .

Step 1.  01,...,MM=M q , where

Wjjj YX=M  , 10, q=j .

Step 2.  01,...,,0 CC=C k , where
















1

0,1

0,0

)2(
w

gif

gif
=b

b
jg c=C ,













WYXif

WYXif
c

jj

jj
j

11

11

,0

,1
,

bgwj  , 10, k=g .

// “Look-ahead” of the carry signs

Step 3. C Algorithm1(q , w , wq=k , W ,

1WV ,  01,...,MM=M q ,  0,...,CC=C k).

 Andrii Tereshchenko et al. / International Journal of Computing, 22(1) 2023, 21-28

24 VOLUME 22(1), 2023

// Calculate the result
Step 4. For g from 0 to 1 kg

Step 5. gtemp Cc  .

Step 6. For r from 0 to 1 wr

Step 7.
W

temprgwrgw cMA
2

  .

Step 8. 1 temptemp cc .

Step 9. End for r .
Step 10. End for g .

Step 11. kСc  .

Steps 1, 2, 3, 4–11 are parallelized in case of distributing
the calculation.

C. COMPLEXITY OF ADDITION ALGORITHM
Let us first consider the lemma 2 before analyzing the
complexity of Algorithm 1.

Lemma 2 [25]. In case of WX j 1 , WY j 1 ,

WY+X jj  11 , where wW 2 , it is correct that,

)()(11   jj YXYXXY ,
Wjj Y+X=XY 11  .

Comment. The expression WY+X jj  11 needs two-

word addition and the following two-word comparison.
Lemma 2 allows replacing with four single operations:
addition, two comparisons, and one logical “or” operation.

Theorem 1. In Algorithms 1 and 2, the number of single

operations has the form kqqO 614)(2,1  , where big

integers consist of kwq  words, the word consists of w
bits.

Proof. Assume that single operation (bitwise, addition,
comparison) is executed equally in terms of CPU time. To find
T in step 1 of Algorithm 1, it is needed to execute q

operations of comparison VM j  and q bitwise operations

b
jt 2 . In step 1 of Algorithm 1, q2 operations must be

performed. In step 3 of Algorithm 1, it is needed to perform

WTC gg  operation on two words to avoid overflow of

the result. According to Lemma 2, this operation is simplified

with)()(gg TCTCCT  , where
Wgg T+C=CT ,

the calculation of which needs four single operations. Step 3 of
Algorithm 1 requires k5 operations to take into account

111   gg СC ,. Operations qkw 33  are required to

perform the loop in step 7 of Algorithm 1. The modulo

calculation
Wjjj YX=M  , wW 2 , in bits matches

the machine word. So, the step 1 of Algorithm 2 involves q

operations. To find C in step 2 of Algorithm 2, considering
Lemma 2 and similarly to step 3 of Algorithm 1, it is needed

q5 operations. Step 5 of Algorithm 2 is performed k times.

1 The number of operations marked in parentheses are not parallelized.

To calculate steps 7 and 8 of Algorithm 2, qkw 33  single

operations are executed.
The number of single-word operations for performing

algorithms is kqqkqqqkq 61435352  .

Theorem 2. In Algorithms 1 and 2, the number of single
operations performed by one processor in case of distribution
of calculations among k processors is as follows:

1514)(2,1  kwqO processor , where kwq  – the length

of big integers in words, the word consists of w bits.
Proof. Distributing the calculation among k processors,

each processor will perform its operations with an index
(variable) g , which eliminates loops at all algorithm steps.

Step 1 of Algorithm 2 does not have an index g , but the

computations can also be evenly distributed among all
processors, so the number of operations performed by one
processor will be k times less than the total number of all
single-word operations at each step. The exception is step 3 of
Algorithm 1, which must be performed as many times as the
number of processors used to “propagate” the carry sign from
the group with the zero index to the group with the largest
index. The step 3 corresponds to the synchronization of signs
between processors, each of which processes its own group of
words. Therefore, k5 is kept in the expression1

1514/3/

/5//3)5(/2




kwkqkk

kqkqkqkkq

D. PARALLEL SUBTRACTION ALGORITHM
Algorithm 3. Calculation of subtraction of big integers

X –Y of the length of q words with “prediction” of borrow

signs.

Params: Values q , w , wq=k , wW 2 ,

 01,..., XXX q ,  01,...,YYY q .

Output: 1c , if YX  ;  01,..., SS=S q .

Step 1.  01,...,MM=M q , where

Wjjj YX=M  , 10, q=j .

Step 2.  01,...,,0 CC=C k , where
















1

0,1

0,0

)2(
w

gif

gif
=b

b
jg c=C ,













11

11

,0

,1

jj

jj
j YXif

YXif
c ,

bgwj  , 10, k=g , wq=k .

// “Prediction” of the borrow signs

Step 3. C Algorithm1(q , w , wq=k , W , 0V ,

 01,...,MM=M q ,  0,...,CC=C k).

// Calculate the result
Step 4. For g from 0 to 1 kg

Step 5. gtemp Cc  .

Andrii Tereshchenko et al. / International Journal of Computing, 22(1) 2023, 21-28

VOLUME 22(1), 2023 25

Step 6. For r from 0 to 1 wr

Step 7.
W

temprgwrgw cMS
2

  .

Step 8. 1 temptemp cc .

Step 9. End for r .
Step 10. End for g .

Step 11. kСc  .

Algorithms 2 and 3 are almost the same. Small differences

are in step 1 to calculate jM (
Wjjj YX=M  ,

Wjjj YX=M ), in step 2 for jc (













WYXif

WYXif
c

jj

jj
j

11

11

,0

,1
,













11

11

,0

,1

jj

jj
j YXif

YXif
c), in

step 3 different parameters (1WV , 0V), in step

7 (
W

temprgwrgw cMA
2

  ,

W
temprgwrgw cMS

2
 ).

C. COMPLEXITY OF SUBTRACTION ALGORITHM
Theorem 3. In Algorithms 1 and 3, the number of single

operations is as follows: kqqO 611)(3,1  , where big

integers consist of kwq  words, the word consists of w
bits.

Theorem 4. In Algorithms 1 and 3, the number of single
operations performed by one processor when distributing
calculations among k processors looks as follows:

1511)(3,1  kwqO processor , where kwq  – the length

of big integers in words, the word consists of w bits.
The proofs of theorems 3 and 4 take place by analogy with

theorems 1 and 2, considering that the calculation jc requires

one-word comparison operation in step 2 of Algorithm 3.

V. PARALLEL COMPARISON

The comparison operation is a slightly more complicated
operation than the subtraction operation, since two subtraction
operations must be performed to determine the smaller number
from the numbers X and Y . If 0YX , then YX  ,

otherwise, if 0 XY , then XY  , otherwise X and Y
are the same. The equivalent of the comparison operation is the
operation that returns three values: –1, 0, +1 for cases YX 
, YX  , YX  . The comparison can be simplified. For this,
one subtraction operation to determine the occurrence of a
borrow sign can be replaced with an operation of checking the
equivalence of numbers.

A. PARALLEL COMPARISION ALGORITHM
Algorithm 4. Comparison of big integers X , Y , which
consist of q words, with “look-ahead” of borrow signs.

Params: Values  01,..., XXX q ,  01,...,YYY q ,

wq=k , wW 2 ; 1W=EQg , 0=Cg , k0,=g .

Output: 1CF , if YX  ; 1EQ , if YX  .

Step 1.  01,...,MM=M q , where

Wjjj YX=M  , 10, q=j .

Step 2.  01,...,CC=C k , 














1

0,1

0,0

)2(
w

gif

gif
=b

b
jg c=C ,













11

11

,0

,1

jj

jj
j YXif

YXif
c , bgwj  , 10, k=g .

// “Look-ahead” of borrow signs

Step 3. C Algorithms1(q , w , 0=k , W , 0V ,

 01,...,MM=M q ,  0,...,CC=C k).

// “Look-ahead” of the equivalent of groups of words
Step 4. For g from 0 to kg 

Step 5. gggg TEQEQEQ   11 .

Step 6. End for g .

Step7.








0,0

1,1

k

k

Cif

Cif
CF ,









0,0

1,1

k

k

EQif

WEQif
EQ

Although)2(
1

0

bw

=b jg t=T  
 defined and computed in

the middle of Algorithm 1, for simplicity we assume that
Algorithms 1 and 4 share the same memory space. Note that in

step 3 of Algorithm 4, there is a parameter 0=k to exclude
the loop of correcting the word-wise carry signs (steps 5–9 of
Algorithm 1), which is the reserve of optimization.

B. COMPLEXITY OF COMPARISION ALGORITHM
Theorem 5. In Algorithms 1 and 4, the number of single

operations looks as follows: 278)(4,1  kqqO , where

kwq  – the length of big integers in words, the word

consists of w .
Proof. Assume that single operation (bitwise, addition,

comparison) is executed equally in terms of CPU time. By
analogy with theorem 1, steps 1–4 of algorithm take k5
single-word operations. Steps 5–9 are not performed because

the parameter 0=k . Step 1 of Algorithm 4 requires q

operations. The modulo calculation operations

Wjjj YX=M  , wW 2 , in bits matches the machine

word. To find C in step 2 of Algorithm 4, q comparison

operations and q bitwise operations are necessary. Step 5 of

Algorithm 4 is performed k times and requires k2
operations. Step 7 requires 2 one-word operations to calculate.

The total number of single-word operations for performing
algorithms is 27522252  kqkqqkq .

Theorem 6. In Algorithms 1 and 4, the number of single
operations performed by one processor in case of distribution
of calculations among k processors is as follows:

455)(4,1  kwqOпроцеоср , where kwq  – the length of

big integers in words, the word consists of w bits.

 Andrii Tereshchenko et al. / International Journal of Computing, 22(1) 2023, 21-28

26 VOLUME 22(1), 2023

Proof. Calculating on k processors, step 1 of Algorithm 1
and steps 1 and 2 of Algorithm 4 can be evenly distributed
among all processors, so the number of operations performed
by one processor will be k times less. Step 3 of Algorithm 1
and step 5 of Algorithm 4 need to be performed as many times
as there are processors involved to “propagate” the borrow sign
from the group with the zero index to the group with the largest
index, which corresponds to the synchronization of signs
between the processors, each of which processes its own group
of words. Therefore, k5 is kept. Step 7 of Algorithm 4 cannot
be parallelized, so term 2 is also kept in the expression2

455

)2(/2/2/)5(/2




kw

kkkqkqkkq

VI. PARALLEL SUM OF THREE OR MORE MULTI-DIGIT
NUMBERS

Let us find the sum G of h big integers 
1

0

)(
h

=a
jj aX=G ,

10, q=j , wh 2 . Considering the carry sign of addition

operation each element of jG , 10, q=j , is longer than

one word. Let us try to build the calculation to stick to formulas
(1) and (2) as much as possible. For this purpose, we introduce

q+1-word big integer H , where  WGH jj 1 ,

wW 2 , ,01q=j , 00 H , and then

 01,...,MM=M q is based on new G , H ,

W
jWjj HG=M  , wW 2 , 10, q=j .

The calculation  01,...,TT=T k is not changed, where

)2(
1

0

b
w

b=
jg t=T 



,














1,0

1,1

WMif

WMif
t

j

j
j , bgwj  ,

10, k=g , wq=k , wW 2 .

The calculation  01,...,CCC k is a little bit different

in the conditions:
















1

0,1

0,0

)2(
w

gif

gif
=b

b
jg c=C ,
















WGHif

WGHif
c

Wjj

Wjj

j
11

11

,0

,1

bgwj  , 10, k=g , wq=k , 00 c . (3)

A. PARALLEL ALGORITHM TO SUM BIG INTEGERS
By analogy to the “method with the saving of carry signs” [22],
which operates on bits, there is algorithm 5, which operates on
words.

2 The number of operations marked in parentheses are not parallelized.

Algorithm 5. Calculating the sum of h big integers)(aX

, 1,0  ha , of the length of q words with “saving” and

“predicting” carry signs.

Params: Values q , w , h , wq=k , wW 2 ,)(aX ,

1,0  ha .

Output:  0,...,UU=U q .

Step 1.  01,...,GG=G q , where 
1

0

)(
h

=a
jj aX=G ,

10, q=j .

Step 2.  0,,..., 1HH=H q , where  WGH jj 1 ,

10, q=j .

Step 3.  01,...,MM=M q , where

Wjjj HG=M  , 10, q=j .

Step 5.  01,...,,0 CC=C k , where
















1

0,1

0,0

)2(
w

gif

gif
=b

b
jg c=C ,
















WGH

WGHif
c

Wjj

Wjj

j
11

11

if,0

,1

bgwj  , 10, k=g , wq=k .

// “Look-ahead” of the carry signs

Step 6. C Algorithm1(q , w , wq=k , W ,

1WV ,  01,...,MM=M q ,  0,...,CC=C k).

// Calculation of the result

Step 7. knn СHU  .

Step 8. For g from 0 to 1 kg

Step 9. gCc temp .

Step 10. For r from 0 to 1 wr

Step 11.
W

rgwrgw cMU
2temp  .

Step 12. 1temptemp  cc .

Step 13. End for r .
Step 14. End for g .

B. COMPLEXITY OF THE ALGORITHM OF THE SUM OF
NUMBERS
Theorem 7. In Algorithms 1 and 5, the number of single

operations looks as follows: 16142)(5,1  kqqhqO ,

where big integers consist of kwq  words, h – the number

of big integers, the word consists of w bits.
Proof. Assume that single operation (bitwise, addition,

comparison) is executed equally in terms of CPU time.
Algorithm 5 differs from Algorithm 2 in the additional steps 1
and 2, in which additional numbers H and G are calculated

to save the carry signs. It needs qh2 operations in step 1 to

Andrii Tereshchenko et al. / International Journal of Computing, 22(1) 2023, 21-28

VOLUME 22(1), 2023 27

“save” all carry signs. In step 2, the operation  WG j

extracts the high word, and in step 3, the modulo operation

Wjjj YX=M  , wW 2 , in bits matches the machine

word, so step 2 does not require arithmetic operations, and step
3 requires q single-word additions. Finally, there is the

following expression:

16142

3152352




kqqh

qkqqqhqkq

Theorem 8. In Algorithms 1 and 5, the number of single

operations performed by one processor during the distribution
of calculations among k processors looks as follows:

25142)(5,1  kwwhqO processor , where h – the

number of big integers, big integers consist of kwq  words,

the word consists of w bits.
Proof. Calculating on k processors, step 1 of Algorithm 1

and steps 1–5 of Algorithm 5 can be evenly distributed among
all processors, so the number of operations performed by one
processor will be k times less. Step 3 of Algorithm 1 must be
performed as many times as there are processors involved in
“propagating” the carry signs from the group with the zero
index to the group with the largest index, which corresponds to
the synchronization of signs between the processors, each of
which processes its own group of words. Therefore, k5 is
kept. Step 7 of Algorithm 5 cannot be parallelized, so term 1 is
also kept in the expression

25142

/3/)1(/5//2

/3)5(/2






kwwh

kqkkkqkqkqh

kqkkq

VII. IMPELEMENTATIONS
Using the sign calculation algorithm, the described

algorithms of addition, subtraction, comparison, the sum of
three or more multi-digit numbers are included in the
mathematical library which is developed and used in the
Department of optimization of numerical methods of V.M.
Glushkov Institute of Cybernetics of the National Academy of
Sciences of Ukraine. The described algorithms are used as
components of multi-digit operations of multiplication,
multiplication by modulo, exponentiation by modulo
implemented in the parallel computational model.

The mathematical library is developed using technologies
C# (user interface), C++ (low level calculations), OpenCL
(GPU level) and implemented in Security Service of Ukraine.

VIII. CONCLUSIONS
This paper presents the fast algorithm to calculate carry (or
borrow) signs in the parallel computational model. As shown
the algorithm could be used to build fast multi-digit operations
of addition, subtraction, comparison, the sum of three or more
multi-digit numbers in parallel computational model. The
paper analyzes the overall complexity of modified multi-digit
operations [25] and complexity in the parallel computational
model for one processor that uses vector operations of length
16. The analysis of parts that can be parallelized is studied in
the form of theorems 2, 4, 6, 8. The summary analysis of the
complexity is provided in the form of a table. Complexity
analysis has shown that in the case when the number of
involved processors increases proportionally to the length of
number, then the number of single-word operations performed
by a single parallel processor is almost unchanged. The
algorithm allows building more complicated multi-digit
operations, such as multiplication, division, multiplication by
modulo, exponentiation by modulo in the parallel
computational model.

Table 1. Priori estimates of the overall complexity based on the number of single-word operations when implementing
multi-digit operations in the parallel computational model, where big integers consist of kwq  words, h – the number

of big integers, the word consists of w bits

Multi-digit
operation

Overall complexity Number of operations for
one processor

The number of operations for one processor using

vector operations of the length 16w
Addition 14q+6k 14w+5k+1 5k+225

Substraction 11q+6k 11w+5k+1 5k+177
Comparison 5q+7k+2 5w+5k+4 5k+84

Sum of numbers 2qh+14q+6k+1 2wh+14w+5k+2 5k+226+32h

References

[1] R. K. Richards, Arithmetic Operations in Digital Computers. New York:
Van Nostrand, 1955.

[2] O. L. MacSorley, “High-speed arithmetic in binary computers,” Proc.
IRE, vol. 49, Jan., pp. 67–91, 1961.
https://doi.org/10.1109/JRPROC.1961.287779.

[3] M. Flynn, S. Oberman, Advanced Computer Arithmetic Design. Wiley,
2001, 344 p.

[4] J. E. Robertson, Theory of Computer Arithmetic Employed in the Design
of the New Computer at the University of Illinois, Urbana: Digital
Computer Lab., University of Illinois, June 1960.

[5] I. Koren, Computer Arithmetic Algorithms, AK Peters Ltd, 2001, 296 p.

[6] V. Kumar, et al., “A unified architecture for BCD and binary
adder/subtractor,” Proceedings of the 14th Euromicro Conference on
Digital System Design. Architectures, Methods and Tools. (DSD 2011),
Oulu, pp. 426–429, 2011. https://doi.org/10.1109/DSD.2011.58.

[7] V. S. Knyazkov, K. S. Isupov, “Parallell multiple-precision arithmetic
based on residue number system,” Program Syst. Theor. Appl., vol. 7,
issue 28, pp. 61–97, 2016. https://doi.org/10.25209/2079-3316-2016-7-
1-61-97.

[8] P. Montgomery, “Modular multiplication without trial division,”
Mathematics of Computation, vol. 4, no. 170, pp. 519–521, 1985.
https://doi.org/10.1090/S0025-5718-1985-0777282-X.

[9] G. Jaberipur, A. Kaivani, “Improving the speed of parallel decimal
multiplication,” IEEE Transactions on Computers, vol. 58, issue 11, pp.
1539–1552, 2009. https://doi.org/10.1109/TC.2009.110.

 Andrii Tereshchenko et al. / International Journal of Computing, 22(1) 2023, 21-28

28 VOLUME 22(1), 2023

[10] A. Schonhage and V. Strassen, “Schnelle Multiplication grosser Zahlen,”
Computing, vol. 7, no. 3–4, pp. 281–292, 1971.
https://doi.org/10.1007/BF02242355.

[11] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. IT-22, pp. 472–492, 1976.
https://doi.org/10.1109/TIT.1976.1055638.

[12] B. Schneier, Applied Cryptography. John Wiley & Sons, New York,
1996. 467 p.

[13] T. Elgamal, “A public-key cryptosystem and a signature scheme based
on discrete logarithms,” IEEE Trans. Inform. Theory, vol. IT-31, no. 4,
pp. 469–472, 1985. https://doi.org/10.1109/TIT.1985.1057074.

[14] S. R. Dusse and B. S. Kalisky, “A cryptographic library for the Motorola
DSP 56000,” Advances in Cryptology, Eurocrypt’90, Lect. Notes
Comput. Sci., pp. 230–244, 1990. https://doi.org/10.1007/3-540-46877-
3_21.

[15] B. Arazi, “On primality testing using purely divisionless operations,” The
Computer Journal, vol. 37, no. 3, pp. 219–222, 1994.
https://doi.org/10.1093/comjnl/37.3.219.

[16] S. Kumaravel and R. Marimuthu, “VLSI implementation of high
performance RSA algorithm using vedic mathematics,” Proceedings of
the International Conference on Computational Intelligence and
Multimedia Applications (ICCIMA 2007), Sivakasi, India, 2007, pp. 126-
128. https://doi.org/10.1109/ICCIMA.2007.238.

[17] Y. Bassil, A. Barbar, “Sequential and parallel algorithms for the addition
of big-integer numbers,” International Journal of Computational
Science, vol. 4, no. 1, pp. 52–69, 2010.

[18] L. Dadda, “Multioperand parallel decimal adder: A mixed binary and
BCD approach,” IEEE Transactions on Computers, vol. 56, no. 10, pp.
1320–1328, 2007. https://doi.org/10.1109/TC.2007.1067.

[19] M. Véstias, N. Horácio, “Improving the area of fast parallel decimal
multipliers,” Microprocessors and Microsystems, vol. 61, pp. 96–107,
2018. https://doi.org/10.1016/j.micpro.2018.05.015.

[20] A. K. Cherri, “Optical carry-free addition and borrow-free subtraction
based on redundant signed-digit numbers,” Proceedings of the IEEE 1993
National Aerospace and Electronics Conference-NAECON 1993, pp.
1094-1099 vol.2, 1993. https://doi.org/10.1109/NAECON.1993.290789.

[21] M. S. Schmookler and A. Weinberger, “High speed decimal addition,”
IEEE Transactions on Computers, vol. C-20, no. 8, pp. 862–866, 1971.
https://doi.org/10.1109/T-C.1971.223362.

[22] C. McGeoch, “Parallel addition,” The American Mathematical Monthly,
vol. 100, issue 9, pp. 867–871, 1993. https://doi.org/10.2307/2324666.

[23] R. Floyd, D. Knuth, “Addition machines,” SIAM Journal on Computing,
vol. 19, issue 2, pp. 329–340, 1990. https://doi.org/10.1137/0219022.

[24] A. V. Anisimov, “Carryless addition,” Cybernetics and Systems Analysis,
vol. 32, pp. 153–163, 1996. https://doi.org/10.1007/BF02366527.

[25] V. K. Zadiraka, A. M. Tereshchenko, “Calculating the sum of multidigit
values in the parallel computational model,” Cybernetics and Systems
Analysis, vol. 58, pp. 473–480, 2022. https://doi.org/10.1007/s10559-
022-00478-7.

ANDRII TERESHCHENKO, graduated
Sumy State University in 1995. Since
1995 working in information
technologies. 2005–2016 APL
software developer at the Kyiv office
of the company SimCorp (Denmark).
Since 2016, C# (.NET) software
developer of the company “Infopulse
Ukraine”. Defended thesis “The fast
proceedings algorithms of multi-digit

arithmetic” in 2010. Specialist in computational mathematics,
orthogonal transformations of Fourier, Walsh. Author of 22
scientific works.

VALERIY ZADIRAKA, graduated the
Faculty of Mechanics and
Mathematics of T.G. Shevchenko Kyiv
State University and since then has
been working at the V.M.Glushkov
Institute of Cybernetics of NAS of
Ukraine. 1981-2017, a professor of the
Department of Computational
Mathematics, since 2001 professor of
the Department of Automated
Information Processing Systems and

Management of Igor Sikorsky Kyiv Polytechnic Institute.
Academician of the National Academy of Sciences of Ukraine
(2015), doctor of physical and mathematical sciences (1981),
professor (1992), head of the numerical methods optimization
department of V. M. Glushkov Institute of Cybernetics of the
National Academy of Sciences of Ukraine (1988). Specialist in
computational mathematics, theory of Fourier integrals, digital
signal processing, cybersecurity. Author of more than 380
scientific works, including 25 books, student books and
scientific manuals. Supervisor for 6 doctors and 19 candidates
of sciences.

