
 

VOLUME 22(1), 2023 21 

Date of publication MAR-29, 2023, date of current version OCT-13, 2022. 
www.computingonline.net / computing@computingonline.net 

Print ISSN 1727-6209 
Online ISSN 2312-5381 
DOI 10.47839/ijc.22.1.2875 

Algorithm for Calculation the Carry and 
Borrow Signs in Multi-digit Operations in 

the Parallel Computational Model 
ANDRII TERESHCHENKO1, VALERIY ZADIRAKA2 

1Department of Doctoral Studies V. M. Glushkov Institute of Cybernetics of the National Academy of Sciences, Kyiv, Ukraine (e-mail: teramidi@ukr.net) 
2Department of Optimization of Numerical Methods V. M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, Kyiv, 

Ukraine (e-mail: zvk140@ukr.net) 

Corresponding author: Andrii Tereshchenko (e-mail: teramidi@ukr.net). 

  

 ABSTRACT The fast algorithm to calculate carry signs and borrow signs for implementation of fast multi-digit 
operations in the parallel computational model is proposed. The proposed algorithm also makes it possible to 
predict carry signs in the case of an addition operation and predict borrow signs for a subtraction operation. It is 
shown how the sign prediction algorithm is implemented in operations in which each parallel processor proceeds 
the separate group of words into which multi-digit numbers are divided. The iterative calculations of carry signs 
of grouped words are described. The sign calculation algorithm as component of new modifications of multi-digit 
addition, subtraction, comparison, the sum of three or more numbers in the parallel computational model is 
presented. The sign calculation algorithm provides general approach to the implementation of multiplication, 
division, multiplication by modulo, exponentiation by modulo in the parallel computational model. In the form of 
a table, a general analysis of the complexity of algorithms and an analysis of the complexity by the number of 
single-word operations per processor are given. 
 

 KEYWORDS multi-digit arithmetic; multi-digit addition; multi-digit subtraction; multi-digit comparison; carry 
sign; borrow sign; parallel computational model. 
 

I. INTRODUCTION 
HE need to solve problems with transcomputational 
complexity, when mathematical models with million 

unknowns are calculated, determines the use of modern parallel 
computing systems. It expands the use of arithmetic with large 
numbers [1–7]. In the process of implementation, the operation 
of multiplication by modulo [8] is very dependent on the speed 
of the addition operation, compared with modulo value, and 
subtracted in case of excess. The speed of multi-digit 
multiplication operation [9, 10] determines the speed of 
cryptographic hardware and software [11–16]. In the sequential 
computational model, carry and borrow signs are proceeded by 
the processor automatically. In the parallel computational 
model, the execution time of addition [17], subtraction, and 
comparison operations depends on the methods that account for 
the carry and borrow signs that occur in the corresponding 
digits (machine words) of a multi-digit operation. Performing 
multi-digit operations of addition [18], subtraction, 
comparison, the sum of two or more multi-digit numbers is a 
“bottleneck” in case of implementing methods and algorithms 
in the parallel computational model [19, 20]. 

In 1971 Schmookler and A. Weinberger described the 
generation and propagation functions considering the eight-
digit adders [21]. Adding the function kill C. McGeoch 
described “carry look-ahead” method to add two N-bit integers 
and “carry save” method to add three integers with logarithmic 
complexity of executing operation on the circuit [22]. 

In 1990 R. Floyd and D. Knuth proposed the arithmetic [23] 
dealing with the operations with the speed of addition 
operation. The implementation of mathematical operations 
uses “Addition Machines”. 

Using interference adders, A.V. Anissimov proposed the 
method [24] of addition of positive and negative integers of N 
bits length in N+K steps using K interference transformations. 
The method is based on the probability analysis of the carry 
sign appearance. 

The methods [21–24] are designed to operate on bits. These 
methods are efficiently implemented in hardware. Software 
methods need at least proceeding with words to be efficient. 

This work presents the algorithm for calculating the carry 
signs and the borrow signs, shows the method of using the 
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proposed algorithm in the case of multi-digit operations of 
addition, subtraction, comparison, the sum of three or more 
multi-digit numbers. Defining the algorithm as a separate part 
allows analyzing the efficiency of individual parts, which affect 
the overall efficiency, and which are critical for 
synchronization between processors. 

II. PROBLEM STATEMENT AND DEFINITIONS 

X , Y , )(aX , 1,0  ha , – bitwise positive integers. Let 

A  be qw -bitwise sum of numbers X +Y  excluding carry 

sign, S  be qw -bitwise result of subtraction of X –Y  

excluding borrow sign, U  be  hqw 2log –bitwise sum of 

values )(aX , 1,0  ha . The sequence  01,..., XX q  of 

elements  




1

0
)2(

w

b

b
b+jwj x=X , 10, q=j , describes 

big integer  




1

0
)2(

q

j

jw
jX=X , where 

 jww+jwj xxX ,...,1 , 10, q=j , are w-bit words.  The 

sequences  01,...,YYq ,  01,..., AAq ,  01,..., SSq , 

 01,...,UUq ,  )(),...,( 01 aXaX q , 1,0  ha , 

describe big integers Y , A , S , U , )(aX , 1,0  ha , 

If one word consists of w  bits, then let the following big 

integers be called q -word numbers: Y , A , S , U , )(aX , 

1,0  ha . Accordingly, the number U  will be q+1-word 

number in case of wh 2 . 
Using the fast algorithm for calculating carry and borrow 

signs, it needs to build fast algorithms for calculating addition 

X +Y , subtraction X –Y , comparison X <Y , sum 

 




1

0
)(

h

a
aXU  in the parallel computational model.  

III. CALCULATION CARRY SIGNS IN THE GROUP OF 
WORDS IN THE PARALLEL COMPUTATIONAL MODEL  

A. PRE-CALCULATED NUMBERS M , T , C   

Let us introduce  01,..., MM=M q , where wW 2 , 

Wjjj YX=M  , 10, q=j , to get the addition 

YX   of big integers of the length of q  words omitting the 

carry sign between the words. 

Next, let us section the big integers X , Y into groups of 

the length of w  words. There will be indices 1g , g , 1g  

to refer to the groups of the length of w  words with indices 

1g , g , 1g . For example, the following sequences

 gww+gw XX ,...,1 , gww+gw YY ,...,1  determine groups with 

the index g . For describing the statuses of the group with 

index g , there are words gT  and gС  of the length of w  bits. 

The phrase “with index” will be omitted for simplicity. T  and 

C  of the length of wq=k  words describe the whole status 

of big integers X , Y .  

The number  01,...,TT=T k  is calculated in the 

following way: 
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 bgwj  , 10, k=g , wq=k , wW 2 .  (1) 

 

The number  01,...,CCC k  is calculated as follows:  
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We will call the carry sign “incoming” in the case of the 
carry sign “comes” from the previous word and it needs to be 
considered in the present word. We will call “outgoing” carry 
sign in the case of transferring the sign to the next word. The 
“outgoing” carry sign will be considered in the next word. 

B. CARRY SIGN ANALYSIS (“PREDICTION”) OF THE 
GROUP OF THE LENGTH OF m  WORDS 
Let us section into groups of the length of w  words the 

operation of big integers YX   of the length of q  words and 

obtain  01,...,TT=T k ,  01,...,CCC k , wq=k , by 

formulas (1), (2). The following analysis of T  and C  helps to 
“look-ahead” carry signs that occur between groups. 

Lemma 1. If gC  and gT  describe the group g  of the 

length of w  words  gww+gw XX ,...,1 + gww+gw YY ,...,1 , 

in accordance with (1), (2), and: 

WT+C gg  , wW 2 , then the group g  “generates” 

the carry sign to the next group; 

1WTg , wW 2 , then the group g  transfers 

(“propagates”) the carry sign to the next group; 

WTC gg   and 1WTg , wW 2 , then the 

group g  never transfers (“kills”) the carry sign to the next. 

Let us consider the example shown in Fig. 1. gC  consists 

of 16w  bits and the most significant bit is equal to 1. It 

means that WYX wgwwgw   22  . The rest of the bits are 

not considered. If 16w , then WYX gg   14161416 .  
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Figure 1. Example of “generating” the carry sign   

by the group g  to the next group g +1, WT+C gg    

gT  has the highest bit equal to 1 in Fig. 1. It means that 

111   WYX wgwwgw . If 16w , then 

115161516   WYX gg . 

C. ITERATIVE CALCULATION OF CARRY SIGNS 

Let us consider the example shown in Fig. 2. The value of gC  

equal to 1 means that the carry sign comes to the group g  from 

the group 1g . The value of gT  equal to max value of the 

word 1W  means that each element of the result of 

 gww+gw XX ,...,1 + gww+gw YY ,...,1  in accordance to 

formula (1) is equal to 1W . The condition of values gC  and 

gT  describes the case of “propagation” of the carry sign. 

 

 

Figure 2. Example of iterative calculation “incoming” carry 
signs of Cg (in the bottom) based on Cg (on the top) 

The simple arithmetic operation gC + gT  “propagates” the 

carry sign to the next group of words but it keeps zeros in gC . 

Fig. 2 also shows one step of “propagation” of carry sign inside 
the group of the length of 16w  words. It needs bitwise 
operation to calculate “incoming” carry signs for every word in 
the group of words. It is proposed the iterative formula to get 
carry signs for each word one by one: 

 

 
Wgggg TCCC 1)(  , wW 2 ,  

 
where “ 1 ” is left shift bits (toward the highest bit) 
operation. It needs w  iterations to calculate all carry signs 
inside the group of the length of w  words. 

IV. PARALLEL ADDITION AND SUBTRACTION  

A. PARALLEL CALCULATION OF THE CARRY AND 
BORROW SIGNS 
Let us first consider the algorithm that is used as part of further 
algorithms for implementing multi-digit operations. 

Algorithm 1. Calculation of carry and borrow signs of the 
result of operations between big integers of the length of w  
words based on “prediction” of the carry and borrow signs 
between groups. 

Params: Values q , w , k , wW 2 , V , 

 01,...,MM=M q ,  0,...,CC=C k . 

Output:  Updated  0,...,CC=C k . 

Step 1.  01,...,TT=T k , where )2(
1

0

b
w

=b
jg t=T 



, 






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VMif

VMif
t
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j ,0

,1
, bgwj  , 10, wq=g . 

// “Look-ahead” of the carry and borrow signs  

Step 2.  For g  from 0 to 1 wqg  

Step 3.      If WT+C gg  , then 111   gg СC  

Step 4.  End for g . 

// Iterative calculation carry and borrow signs 
Step 5.  For g  from to 1 kg  

Step 6.      For r  from 0 to 1 wr  

Step 7.          
Wgggg TCCC 1)(  . 

Step 8.      End for r . 
Step 9. End for g . 

The feature of Algorithm 1 is that the vector  

 0,...,CC=C k  is updated and returned. The input 

parameter k  looks redundant as wq=k , but in the case of 

implementing multi-digit comparison operation, this parameter 
will be zero to exclude the execution of the part that corrects 
the word signs (steps 5–9), and in this way greatly increases the 
speed of the multi-digit comparison operation of two numbers 
comparing with the execution time of multi-digit addition and 
subtraction operations. When the comparison operation of 

numbers X <Y  precedes its subtraction X –Y , the 

parameter k  will be non-zero. 

B. PARALLEL ADDITION ALGORITHM 

Algorithm 2. Calculation of the addition of big numbers X +

Y of length of q  words with “prediction” of carry signs. 

Params: Values q , w , wq=k , wW 2 , 

 01,..., XXX q ,  01,...,YYY q . 

Output:  01,..., AA=A q ; 1c , if qwYX 2 . 

Step 1.  01,...,MM=M q , where 

Wjjj YX=M  , 10, q=j . 

Step 2.  01,...,,0 CC=C k , where 


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bgwj  , 10, k=g . 

// “Look-ahead” of the carry signs  

Step 3. C Algorithm1( q , w , wq=k , W , 

1WV ,  01,...,MM=M q ,  0,...,CC=C k ). 
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// Calculate the result 
Step 4.  For g  from 0 to 1 kg  

Step 5.    gtemp Cc  . 

Step 6.    For r  from 0 to 1 wr  

Step 7.         
W

temprgwrgw cMA
2

  .  

Step 8.         1 temptemp cc . 

Step 9.     End for r . 
Step 10. End for g . 

Step 11. kСc  . 

Steps 1, 2, 3, 4–11 are parallelized in case of distributing 
the calculation. 

C. COMPLEXITY OF ADDITION ALGORITHM 
Let us first consider the lemma 2 before analyzing the 
complexity of Algorithm 1. 

Lemma 2 [25]. In case of WX j 1 , WY j 1 , 

WY+X jj  11 , where wW 2 , it is correct that, 

)()( 11   jj YXYXXY , 
Wjj Y+X=XY 11  . 

Comment. The expression WY+X jj  11  needs two-

word addition and the following two-word comparison. 
Lemma 2 allows replacing with four single operations: 
addition, two comparisons, and one logical “or” operation. 

Theorem 1. In Algorithms 1 and 2, the number of single 

operations has the form kqqO 614)(2,1  , where big 

integers consist of kwq   words, the word consists of w  
bits. 

Proof. Assume that single operation (bitwise, addition, 
comparison) is executed equally in terms of CPU time. To find 
T  in step 1 of Algorithm 1, it is needed to execute q  

operations of comparison VM j   and q  bitwise operations 

b
jt 2 . In step 1 of Algorithm 1, q2  operations must be 

performed. In step 3 of Algorithm 1, it is needed to perform 

WTC gg   operation on two words to avoid overflow of 

the result. According to Lemma 2, this operation is simplified 

with )()( gg TCTCCT  , where 
Wgg T+C=CT , 

the calculation of which needs four single operations. Step 3 of 
Algorithm 1 requires k5  operations to take into account 

111   gg СC ,. Operations qkw 33   are required to 

perform the loop in step 7 of Algorithm 1. The modulo 

calculation 
Wjjj YX=M  , wW 2 , in bits matches 

the machine word. So, the step 1 of Algorithm 2 involves q  

operations. To find C  in step 2 of Algorithm 2, considering 
Lemma 2 and similarly to step 3 of Algorithm 1, it is needed 

q5  operations. Step 5 of Algorithm 2 is performed k  times. 

 
1 The number of operations marked in parentheses are not parallelized.  

To calculate steps 7 and 8 of Algorithm 2, qkw 33   single 

operations are executed. 
The number of single-word operations for performing 

algorithms is kqqkqqqkq 61435352  . 

Theorem 2. In Algorithms 1 and 2, the number of single 
operations performed by one processor in case of distribution 
of calculations among k  processors is as follows:

1514)(2,1  kwqO processor , where kwq   – the length 

of big integers in words, the word consists of w  bits. 
Proof. Distributing the calculation among k  processors, 

each processor will perform its operations with an index 
(variable) g , which eliminates loops at all algorithm steps. 

Step 1 of Algorithm 2 does not have an index g , but the 

computations can also be evenly distributed among all 
processors, so the number of operations performed by one 
processor will be k  times less than the total number of all 
single-word operations at each step. The exception is step 3 of 
Algorithm 1, which must be performed as many times as the 
number of processors used to “propagate” the carry sign from 
the group with the zero index to the group with the largest 
index. The step 3 corresponds to the synchronization of signs 
between processors, each of which processes its own group of 
words. Therefore, k5  is kept in the expression1  

 

1514/3/

/5//3)5(/2




kwkqkk

kqkqkqkkq
 

D. PARALLEL SUBTRACTION ALGORITHM 
Algorithm 3. Calculation of subtraction of big integers  

X –Y  of the length of q  words with “prediction” of borrow 

signs. 

Params: Values q , w , wq=k , wW 2 , 

 01,..., XXX q ,  01,...,YYY q . 

Output: 1c , if YX  ;  01,..., SS=S q . 

Step 1.  01,...,MM=M q , where 

Wjjj YX=M  , 10, q=j . 

Step 2.  01,...,,0 CC=C k , where 


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bgwj  , 10, k=g , wq=k . 

// “Prediction” of the borrow signs 

Step 3. C Algorithm1( q , w , wq=k , W , 0V , 

 01,...,MM=M q ,  0,...,CC=C k ). 

// Calculate the result 
Step 4. For g  from 0 to 1 kg  

Step 5.    gtemp Cc  . 
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Step 6.    For r  from 0 to 1 wr  

Step 7.         
W

temprgwrgw cMS
2

  .  

Step 8.         1 temptemp cc . 

Step 9.     End for r . 
Step 10. End for g . 

Step 11. kСc  . 

Algorithms 2 and 3 are almost the same. Small differences 

are in step 1 to calculate jM  (
Wjjj YX=M  ,

Wjjj YX=M  ), in step 2 for jc  (
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YXif
c ), in 

step 3 different parameters ( 1WV , 0V ), in step  

7 (
W

temprgwrgw cMA
2

  , 

W
temprgwrgw cMS

2
  ). 

C. COMPLEXITY OF SUBTRACTION ALGORITHM 
Theorem 3. In Algorithms 1 and 3, the number of single 

operations is as follows: kqqO 611)(3,1  , where big 

integers consist of kwq   words, the word consists of w  
bits. 

Theorem 4. In Algorithms 1 and 3, the number of single 
operations performed by one processor when distributing 
calculations among k  processors looks as follows: 

1511)(3,1  kwqO processor , where kwq   – the length 

of big integers in words, the word consists of w  bits. 
The proofs of theorems 3 and 4 take place by analogy with 

theorems 1 and 2, considering that the calculation jc  requires 

one-word comparison operation in step 2 of Algorithm 3. 

V. PARALLEL COMPARISON  

The comparison operation is a slightly more complicated 
operation than the subtraction operation, since two subtraction 
operations must be performed to determine the smaller number 
from the numbers X  and Y . If 0YX , then YX  , 

otherwise, if 0 XY , then XY  , otherwise X  and Y  
are the same. The equivalent of the comparison operation is the 
operation that returns three values: –1, 0, +1 for cases YX 
, YX  , YX  . The comparison can be simplified. For this, 
one subtraction operation to determine the occurrence of a 
borrow sign can be replaced with an operation of checking the 
equivalence of numbers. 

A. PARALLEL COMPARISION ALGORITHM 
Algorithm 4. Comparison of big integers X , Y , which 
consist of q  words, with “look-ahead” of borrow signs. 

Params: Values  01,..., XXX q ,  01,...,YYY q , 

wq=k , wW 2 ; 1W=EQg , 0=Cg , k0,=g . 

Output: 1CF , if YX  ; 1EQ , if YX  . 

Step 1.  01,...,MM=M q , where 

Wjjj YX=M  , 10, q=j . 

Step 2.  01,...,CC=C k , 
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c , bgwj  , 10, k=g . 

// “Look-ahead” of borrow signs  

Step 3. C Algorithms1( q , w , 0=k , W , 0V , 

 01,...,MM=M q ,  0,...,CC=C k ). 

// “Look-ahead” of the equivalent of groups of words 
Step 4.  For g  from 0 to kg   

Step 5.      gggg TEQEQEQ   11 . 

Step 6.  End for g . 

Step7.

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Although )2(
1

0

bw

=b jg t=T  
 defined and computed in 

the middle of Algorithm 1, for simplicity we assume that 
Algorithms 1 and 4 share the same memory space. Note that in 

step 3 of Algorithm 4, there is a parameter 0=k  to exclude 
the loop of correcting the word-wise carry signs (steps 5–9 of 
Algorithm 1), which is the reserve of optimization. 

B. COMPLEXITY OF COMPARISION ALGORITHM 
Theorem 5. In Algorithms 1 and 4, the number of single 

operations looks as follows: 278)(4,1  kqqO , where 

kwq   – the length of big integers in words, the word 

consists of w . 
Proof. Assume that single operation (bitwise, addition, 

comparison) is executed equally in terms of CPU time. By 
analogy with theorem 1, steps 1–4 of algorithm take k5  
single-word operations. Steps 5–9 are not performed because 

the parameter 0=k . Step 1 of Algorithm 4 requires q  

operations. The modulo calculation operations 

Wjjj YX=M  , wW 2 , in bits matches the machine 

word. To find C  in step 2 of Algorithm 4, q  comparison 

operations and q  bitwise operations are necessary. Step 5 of 

Algorithm 4 is performed k  times and requires k2  
operations. Step 7 requires 2 one-word operations to calculate. 

The total number of single-word operations for performing 
algorithms is 27522252  kqkqqkq . 

Theorem 6. In Algorithms 1 and 4, the number of single 
operations performed by one processor in case of distribution 
of calculations among k  processors is as follows: 

455)(4,1  kwqOпроцеоср , where kwq   – the length of 

big integers in words, the word consists of w  bits. 
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Proof. Calculating on k  processors, step 1 of Algorithm 1 
and steps 1 and 2 of Algorithm 4 can be evenly distributed 
among all processors, so the number of operations performed 
by one processor will be k  times less. Step 3 of Algorithm 1 
and step 5 of Algorithm 4 need to be performed as many times 
as there are processors involved to “propagate” the borrow sign 
from the group with the zero index to the group with the largest 
index, which corresponds to the synchronization of signs 
between the processors, each of which processes its own group 
of words. Therefore, k5 is kept. Step 7 of Algorithm 4 cannot 
be parallelized, so term 2 is also kept in the expression2  

 

 
455

)2(/2/2/)5(/2




kw

kkkqkqkkq
 

VI. PARALLEL SUM OF THREE OR MORE MULTI-DIGIT 
NUMBERS 

Let us find the sum G  of h  big integers 
1

0

)(
h

=a
jj aX=G , 

10, q=j , wh 2 . Considering the carry sign of addition 

operation each element of jG , 10, q=j , is longer than 

one word. Let us try to build the calculation to stick to formulas 
(1) and (2) as much as possible. For this purpose, we introduce 

q+1-word big integer H , where  WGH jj 1 , 

wW 2 , ,01q=j , 00 H , and then 

 01,...,MM=M q  is based on new G , H , 

W
jWjj HG=M  , wW 2 , 10, q=j .  

The calculation  01,...,TT=T k  is not changed, where 

)2(
1

0

b
w

b=
jg t=T 



,














1,0

1,1

WMif

WMif
t

j

j
j , bgwj  , 

10, k=g , wq=k , wW 2 . 

The calculation  01,...,CCC k  is a little bit different 

in the conditions: 

 
















1

0,1

0,0

)2(
w

gif

gif
=b

b
jg c=C ,
















WGHif

WGHif
c

Wjj

Wjj

j
11

11

,0

,1
 

bgwj  , 10, k=g , wq=k , 00 c .   (3) 

A. PARALLEL ALGORITHM TO SUM BIG INTEGERS 
By analogy to the “method with the saving of carry signs” [22], 
which operates on bits, there is algorithm 5, which operates on 
words. 

 
2 The number of operations marked in parentheses are not parallelized. 

Algorithm 5. Calculating the sum of h  big integers )(aX

, 1,0  ha , of the length of q  words with “saving” and 

“predicting” carry signs. 

Params: Values q , w , h , wq=k , wW 2 , )(aX , 

1,0  ha . 

Output:  0,...,UU=U q . 

Step 1.  01,...,GG=G q , where 
1

0

)(
h

=a
jj aX=G , 

10, q=j . 

Step 2.  0,,..., 1HH=H q , where  WGH jj 1 , 

10, q=j . 

Step 3.  01,...,MM=M q , where 

Wjjj HG=M  , 10, q=j . 

Step 5.  01,...,,0 CC=C k , where 
















1

0,1

0,0

)2(
w

gif

gif
=b

b
jg c=C ,
















WGH

WGHif
c

Wjj

Wjj

j
11

11

if,0

,1
 

bgwj  , 10, k=g , wq=k . 

// “Look-ahead” of the carry signs  

Step 6. C Algorithm1( q , w , wq=k , W , 

1WV ,  01,...,MM=M q ,  0,...,CC=C k ). 

// Calculation of the result 

Step 7. knn СHU  . 

Step 8. For g  from 0 to 1 kg  

Step 9.      gCc temp . 

Step 10.     For r  from 0 to 1 wr  

Step 11.          
W

rgwrgw cMU
2temp  .  

Step 12.          1temptemp  cc . 

Step 13.      End for r . 
Step 14. End for g . 

B. COMPLEXITY OF THE ALGORITHM OF THE SUM OF 
NUMBERS  
Theorem 7. In Algorithms 1 and 5, the number of single 

operations looks as follows: 16142)(5,1  kqqhqO , 

where big integers consist of kwq   words, h  – the number 

of big integers, the word consists of w  bits. 
Proof. Assume that single operation (bitwise, addition, 

comparison) is executed equally in terms of CPU time. 
Algorithm 5 differs from Algorithm 2 in the additional steps 1 
and 2, in which additional numbers H  and G  are calculated 

to save the carry signs. It needs qh2  operations in step 1 to 



Andrii Tereshchenko et al. / International Journal of Computing, 22(1) 2023, 21-28  

VOLUME 22(1), 2023 27 

“save” all carry signs. In step 2, the operation  WG j  

extracts the high word, and in step 3, the modulo operation 

Wjjj YX=M  , wW 2 , in bits matches the machine 

word, so step 2 does not require arithmetic operations, and step 
3 requires q  single-word additions. Finally, there is the 

following expression:  
 

16142

3152352




kqqh

qkqqqhqkq
 

 
Theorem 8. In Algorithms 1 and 5, the number of single 

operations performed by one processor during the distribution 
of calculations among k  processors looks as follows: 

25142)(5,1  kwwhqO processor , where h  – the 

number of big integers, big integers consist of kwq   words, 

the word consists of w  bits. 
Proof. Calculating on k  processors, step 1 of Algorithm 1 

and steps 1–5 of Algorithm 5 can be evenly distributed among 
all processors, so the number of operations performed by one 
processor will be k  times less. Step 3 of Algorithm 1 must be 
performed as many times as there are processors involved in 
“propagating” the carry signs from the group with the zero 
index to the group with the largest index, which corresponds to 
the synchronization of signs between the processors, each of 
which processes its own group of words. Therefore, k5  is 
kept. Step 7 of Algorithm 5 cannot be parallelized, so term 1 is 
also kept in the expression 

 

25142

/3/)1(/5//2

/3)5(/2






kwwh

kqkkkqkqkqh

kqkkq

 

VII. IMPELEMENTATIONS 
Using the sign calculation algorithm, the described 

algorithms of addition, subtraction, comparison, the sum of 
three or more multi-digit numbers are included in the 
mathematical library which is developed and used in the 
Department of optimization of numerical methods of V.M. 
Glushkov Institute of Cybernetics of the National Academy of 
Sciences of Ukraine. The described algorithms are used as 
components of multi-digit operations of multiplication, 
multiplication by modulo, exponentiation by modulo 
implemented in the parallel computational model.  

The mathematical library is developed using technologies 
C# (user interface), C++ (low level calculations), OpenCL 
(GPU level) and implemented in Security Service of Ukraine. 

VIII. CONCLUSIONS 
This paper presents the fast algorithm to calculate carry (or 
borrow) signs in the parallel computational model. As shown 
the algorithm could be used to build fast multi-digit operations 
of addition, subtraction, comparison, the sum of three or more 
multi-digit numbers in parallel computational model. The 
paper analyzes the overall complexity of modified multi-digit 
operations [25] and complexity in the parallel computational 
model for one processor that uses vector operations of length 
16. The analysis of parts that can be parallelized is studied in 
the form of theorems 2, 4, 6, 8. The summary analysis of the 
complexity is provided in the form of a table. Complexity 
analysis has shown that in the case when the number of 
involved processors increases proportionally to the length of 
number, then the number of single-word operations performed 
by a single parallel processor is almost unchanged. The 
algorithm allows building more complicated multi-digit 
operations, such as multiplication, division, multiplication by 
modulo, exponentiation by modulo in the parallel 
computational model. 

Table 1. Priori estimates of the overall complexity based on the number of single-word operations when implementing 
multi-digit operations in the parallel computational model, where big integers consist of kwq   words, h  – the number 

of big integers, the word consists of w  bits 

Multi-digit 
operation 

Overall complexity Number of operations for 
one processor 

The number of operations for one processor using 

vector operations of the length 16w  
Addition 14q+6k 14w+5k+1 5k+225 

Substraction 11q+6k 11w+5k+1 5k+177 
Comparison 5q+7k+2 5w+5k+4 5k+84 

Sum of numbers 2qh+14q+6k+1 2wh+14w+5k+2 5k+226+32h 
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