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 ABSTRACT A smart wearable ankle sprain prevention device would require an intelligent monitoring system 
that can classify data from the sensors as sprain or non-sprain motion. This paper aims to explore Deep Neural 
Network method, specifically the Long Short Term Memory Fully Convolutional Network (LSTM-FCN) for 
classifying sprain and non-sprain motion. A study is conducted on 11 participants to record sprain and non-sprain 
motions, which are used to train and test the LSTM-FCN model and previously used Support Vector Machine 
(SVM) model. It has been demonstrated that the LSTM-FCN model is more accurate at classifying sprain and non-
sprain motion. The LSTM-FCN also proved to be more useful as its architecture allows for the Class Activation 
Mapping (CAM) method to be employed. The CAM method allows for the identification of temporal regions of 
the time series that contribute most or least to the classification decision of the LSTMFCN. Visualizing the regions 
of high or low contribution makes it easy to see patterns in the data correlation with sprain motion and better 
understand why certain non-sprain data can be misclassified as sprain motion. Overall, LSTM-FCN is found to be 
a viable method for the classification of sprain and non-sprain motion. 
 

 KEYWORDS Ankle Sprain Prevention; Time Series Classification; Long Short Term Memory Fully 
Convolutional Network; Class Activation Mapping. 
 

I. INTRODUCTION 
NKLE sprain continues to be an area of interest in sports 
medicine [1]. It is the most common musculoskeletal 

injury in sports [2], with ankle sprain prevalent in 24 out of 70 
sports [2]. Out of the three types of ankle sprains, lateral or 
inversion ankle sprain is the most common type of ankle sprain, 
involving about 25% of all injuries to the musculoskeletal 
system [3]. Lateral ankle sprains result from excessive 
inversion of the rear foot or a combined plantar flexion and 
adduction of the foot, also known as supination [4]. Damage to 
the ligaments of the foot during ankle sprains initiates changes 
to the joint's biomechanics and modifies neural control of the 
foot [5]. This creates a negative feedback loop, thus increasing 
the probability of reoccurrence of ankle sprains and, 
subsequently, increasing the risk of developing chronic ankle 
instability. Prevention of ankle sprain is therefore important 
given the frequency of occurrence of ankle sprain, the 
associated risk of reinjury, and its long-term effects. 

In recent years, there has been an interest in developing 
smart wearable devices that can identify and correct ankle 
sprain motion before serious ligament injury occurs. The smart 
wearable device would require an intelligent ankle sprain 

monitoring system that can detect different phases of an ankle 
sprain motion, and more importantly, an identification system 
that can classify sprain motion or non-sprain motion from its 
kinematic data.  

With the increasing availability, affordability and reduction 
in size of sensors, it is now possible to attach different sensors 
onto an ankle to detect its time series motion. A univariate time 
series is a sequence of real values of a single sensor ordered 
according to time. When a set of time series data is recorded 
simultaneously by a set of sensors, it is referred to as a 
multivariate time series (MTS). Distance-based methods have 
been used to classify time series data, with Support Vector 
Machine (SVM) being one such distance-based method. For 
binary class data classification, i.e., sprain and non-sprain 
motions, SVM finds the hyper-plane that separates not only the 
two classes but also maximizes the distance between the 
separating hyper-plane and the closest data point of each class. 
Chan et al. [6] suggested using an SVM model to classify three-
dimensional linear acceleration and three-dimensional angular 
velocity data as sprain and non-sprain motion data and obtained 
an accuracy of 93%. Classification using SVM was also 
implemented for similar problems, such as fall detection [7], 
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action classification [8], gait classification [9] and several other 
biomedical applications [10]. 

An increasingly popular alternative to a supervised machine 
learning method is the Deep Neural Network (DNN), and it was 
successfully implemented in various applications, including in 
the field of image recognition [11], text classification [12], 
audio classification [13], health application [14], and speech 
recognition [15]. These networks were designed to learn 
hierarchical representations of the data, and they have also been 
suggested for time series classification [16].  

One such deep learning architecture for classifying time 
series is the Long Short Term Memory-Fully Convolutional 
Network (LSTM-FCN) proposed by Karim et al. [17]. The 
LSTM-FCN architecture combines a Fully Convolutional 
Network (FCN), known for its high performance in time-series 
classification, with the Long Short Term Memory (LSTM) to 
learn temporal dependencies in the sequences, making it 
suitable for classifying multivariate time series data. LSTM-
FCNs have been used for other time series classification 
problems, including driver identification for in-vehicle 
software systems [18], sound classification [19], hardware 
monitoring [20], and human motion recognition [21]. 
However, it has not been used to classify sprain and non-sprain 
motion. 

The LSTM-FCN architecture can be trained to learn hidden 
discriminative features from raw time series without any 
feature engineering of the input data. However, the black-box 
effect of the LSTM-FCN model makes it difficult to understand 
how the LSTM-FCN decides to classify the data. One of the 
ways of reducing the black-box effect is by employing a Class 
Activation Maps (CAM), with the convolutional layers of the 
CAM used to detect regions of the input data that contribute to 
the class label.  

In this paper, data collection is conducted on 11 participants 
to record sprain and non-sprain motions, which are used to train 
and test the LSTM-FCN for the classification of sprain and 
non-sprain motions. An investigation is also performed to find 
the optimum features that give the highest classification 
accuracy. Lastly, the use of CAM to identify temporal regions 
of interest is also explored. 

II. METHODOLOGY 
Ankle kinematics data that can be utilized for the classification 
of sprain and non-sprain motions are not widely available, and 
hence, data collection is performed to be used for the 
classification task. These data are then processed and combined 
into three datasets, to compare the efficacy of the different 
sensor data for the classification task. These datasets are then 
used to test and train the classification models: the LSTM-FCN 
and the popular SVM models. Lastly, the CAM method is 
implemented on the LSTM-FCN model, to give insights on the 
different portion of the time-series data that are crucial for the 
success of the task. 

A. DATA COLLECTION AND PROCEDURE 

EXPERIMENTAL PROCEDURE 
A study is conducted to obtain a suitable dataset for classifying 
sprain and non-sprain motions, which has been approved by the 
university ethics committee. Eleven volunteers (five males and 
six females) were recruited as participants, with the participants 

required to fill in a questionnaire, including height, weight and 
history of ankle sprain information, prior to the study. 
Participants who had previously suffered a sprain on their right 
ankle were requested to rate the severity of their ankle sprains 
on a one to five where 1 being not severe and 5 being very 
severe, with additional questions posed to rate the severity of 
their ankle sprain. These questions include the following one: 
if they had experienced any pain or instability and its duration. 

Participants were also asked if they were still active in any 
sports. Selected details of the participants are given in Table 1, 
with the eleven participants having a mean height of 161 cm 
(standard deviation of 11cm) and a mean weight of 67kg 
(standard deviation of 24kg). 

Table 1. Selected Details of the Participants 

Participant 
Number 

Height 
(cm) 

Weight 
(kg) 

Active 
in 

sports
? 

History 
of an 
ankle 

sprain? 

Severity 
of 

Sprain 

1 183 78 No Yes 2 
2 154 50 Yes Yes 2 
3 153 59 Yes Yes 1 
4 165 64 No Yes 3 
5 152 35 No Yes 2 
6 149 52 No Yes 2 
7 161 95 No Yes 2 
8 155 96 No Yes 2 
9 163 70 No Yes 1 

10 179 89 Yes Yes 3 
11 159 65 Yes Yes 4 

 
Each participant performed a total of 100 trials: 50 trials of 

simulated supination sprain motion and 50 trials of non-sprain 
motion. Simulated supination sprain motions were performed 
on the tilting platform which had been previously designed and 
fabricated [22]. Each participant was required to place their feet 
on the rotating disc of the supination sprain simulator shoulder-
width apart and weight evenly distributed on both feet, 
whereupon their right foot was then suddenly inverted by 20 
degrees. The tilting angle was reduced if the participant showed 
signs of discomfort. Between each trial, subjects were allowed 
sufficient rest to prevent fatigue. 

Non-sprain motion data collected include walking, jogging, 
stepping down, jump landing and cutting. Each non-sprain 
motion contributed to 10 trials, totaling 50 non-sprain trials. 
These motions were chosen because they are common in sports 
and daily activities. For walking, participants were requested to 
walk for approximately four meters at their preferred speed, 
whilst for jogging, participants were requested to jog on the 
spot for about 10 seconds. 

Fig. 1 shows the participants performing selected non-
sprain motions. For stepping down non-sprain motion (Fig. 
1(a)), participants were requested to stand on a 30cm platform 
before stepping down from the platform with their right foot 
first. For jump landing, participants were requested to jump as 
high as possible and land on both feet, as depicted in Fig. 1(b). 
For cutting, participants were asked to run for approximately 
seven meters and then cut 90 degrees to their right, as shown in 
Fig. 1(c). For participants who were not active in sports and did 
not know how to perform the cutting motion correctly, the 
researcher would stand in front of the participants to 'block' 
them as they ran forward to force them to cut to the right. 
Participants were given time to rest in between trials.  
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(a) 

 
(b) 

 
(c) 

Figure 1. Non-Sprain Motions with (a) Participant stepping down from a 30cm platform, (b) Participant 
performing jump landing motion, and (c) Participant (P) performing cutting motion with the researcher (R) 

blocking the participant. 

 
A total of 1,155 trial data were collected, as seen in Fig. 2. 

Data cleansing was performed to remove data discrepancies, 
including recording errors and time-syncing errors. 1,122 trials 
were included in the final dataset (550 non-sprain motion trials 
and 572 sprain motion trials). 

 

 

Figure 2. Flowchart of trials recorded and included in the 
experiment 

EXPERIMENTAL SETUP 
Three types of sensors: Inertial Measurement Units (IMU), flex 
sensors and Force Sensitive Resistors (FSR), were used to 
collect the time-series data. Gyroscopes and accelerometers are 
the most used sensors for monitoring foot kinematics during 
supination; whereby Preatoni et al. [23] did a systematic review 
on wearable sensors in injury studies, and all six studies on 
ankle sprain monitoring had used accelerometers, gyroscopes 
or both. Pressure sensors were also used to monitor ankle sprain 
and other lower limb injuries in some studies, with Fong et al. 
[24] suggesting the implantation of three pressure sensors in the 
soles of sports shoes for estimating and monitoring ankle 
supination. Flex sensors were not used in ankle sprain 
prevention research; however, they were used in wrist injury 
research to measure flexion/extension of the wrist [25].  

Three FSRs were attached approximately at the fourth or 
fifth metatarsal-phalangeal joint (FSR1), the third metatarsal-
phalangeal joint (FSR2), and the second or third distal phalange 
(Position 98) on the right sole of the participants' shoes (FSR3), 

P R P R 

Total recordings = 1155 

Trials excluded = 33 

Total included = 1122 

Non-sprain motion trials = 550  
Cutting = 108 
Jogging = 111 
Jump landing = 110 
Stepping down = 111 
Walking = 110 

Sprain motion trials 
= 572 
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to give PFSR1, PFSR2, and PFSR3 as shown in Fig. 3. The 
three force-sensitive resistors were attached to the right shoe 
sole of the participants, with the FSRs calibrated to 
measure pressure (N/cm2). 
 

  

Figure 3. Location of the three FSRs on the right sole of the 
shoe 

In addition to recording pressure, the pressure values at 
these three points were also used to calculate supination torque 
𝑆𝑢𝑝𝑇 (Nm) [24]: 

 

𝑆𝑢𝑝𝑇 (𝑁𝑚) =  −2.068 + 0.910 (𝑃ிௌோଵ)
+ 1.318 (𝑃ிௌோଶ)
+ 1.549 (𝑃ிௌோଷ). 

(1) 

 
Additionally, two flex sensors, which detect the contraction 

of the leg muscles, were used to measure the inversion angle of 
the foot, with the flex sensors calibrated to measure the 
inversion angle in degrees. The flex sensors were placed in a 
paper sleeve, with the sleeve attached behind the medial 
malleus and the lateral malleus of the participants' foot, as seen 
in Fig. 4. Positions of the medial and lateral malleus were 
determined by palpitating the foot of the participants. The flex 
sensors were not directly attached to the participant's foot to 
allow free movement of the foot during inversion. 

An IMU (x-io technologies) was used to obtain angular 
velocity and linear acceleration during the trials. Chan et al. [6] 
suggested that positioning the motion sensors on the medial 
malleus would give the highest signal strength. However, 
attaching the housed IMU directly to the medial malleolus 
would have caused discomfort and restricted movement of the 
foot, and as such, the IMU was slipped into the side of the 
participant's shoe below the medial malleolus, as seen in Fig. 
5, with tape used to secure and prevent the IMU from slipping 
out of the shoe during movement. 

A total of 11 features were recorded: angular velocity in the 
X-axis (GyroX), Y-axis (GyroY) and Z-axis (GyroZ), linear 
acceleration in the X-axis (AccX), Y-axis (AccY), and Z-
axis(AccZ), inversion angle from the flex sensors on the medial 
side (Flex1) and lateral side (Flex2), pressures at FSR1, FSR2 
and FSR3. Supination Torque (SupT) was calculated from 
FSR1, FSR2 and FSR3. 

 

 
(a) 

 

(b) 

Figure 4. Flex sensor attached to participant's foot (a) medial 
view of the foot. X is the position of the medial malleolus. (b) 

lateral view. The asterisk (*) is the position of the lateral 
malleolus.  

 

Figure 5. Position of the housed IMU below the medial 
malleolus of the foot 

Data from the FSRs and flex sensors were collected using 
an Arduino microcontroller, whilst data from the IMU were 
collected using the provided IMU Graphical User Interface 
(GUI). Recorded data were manually synchronized according 
to the Local Coordinated Time. All data from a particular trial 
were combined into one comma-separated value file (.csv), 
with the time-series data segmented to 1 second. 

Three datasets were constructed, which are shown in Table 
2. Dataset A has 𝐹஺ = 4 features consisting of kinematic data: 
angular velocity in the y-axis, inversion angle and supination 
torque. These data were used in our previous work for the 
demonstration of the tilting platform [22]. Dataset B has 𝐹஻ =
4 features corresponding to data from the tri-axial gyroscope 
and accelerometer of the IMU. Finally, dataset C consists of all 
𝐹஼ = 11 features recorded, with the exception of Supination 
Torque, as it is a function of FSR1, FSR2 and FSR3, which 
have been included in the 11 features of dataset C. 

 

X 

* 
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Table 2. The Three Datasets and Their Features 

Dataset 
Number of 
Features 

(𝑭𝒊, 𝒊 ∈ {𝑨, 𝑩, 𝑪} ) 
Features included 

A 4 GyroY, Flex1, Flex2, SupT 

B 6 GyroX, GyroY, GyroZ, AccX, AccY, 
AccZ 

C 11 
GyroX, GyroY, GyroZ, AccX, AccY, 

AccZ, Flex1, Flex2, FSR1, FSR2, 
FSR3 

B. CLASSIFICATION MODELS 
Two classification models are considered: SVM and LSTM-
FCN models.  SVM was used in previous studies on the 
classification of sprain and non-sprain motions. LSTM-FCN 
was shown to give high accuracy in classifying time series, 
albeit not for ankle sprain classification, as well as its structure 
which allows for the implementation of the CAM method.  

SUPPORT VECTOR MACHINE (SVM) 
A binary SVM model is trained to classify either sprain or non-
sprain motions from sensor data. SVM maps data points onto a 
high-dimensional space and finds the optimal hyperplane that 
divides the data into two classes. A radial basis function kernel 
was used, defined by, 

 

 𝑅𝐵𝐹(𝑥௜ , 𝑥௜
ᇱ) = 𝑒

ቌି
ቛೣ೔షೣ೔

ᇲቛ
మ

మ഑మ ቍ




 

where ‖𝑥௜ − 𝑥௜
ᇱ‖ଶ is the squared Euclidean distance between 

feature i of different classes, and σ2 is the variance of the data 
array. For the SVM model, time-series training and testing data 
𝑥௜(𝑡), ∀𝑖, 𝑡, were first converted into the frequency domain 
representation, 𝑋௜(𝑓) using Discrete Fourier Transform (DFT). 
The frequency domain representations display important 
spectral information related to the motion. A similar pre-
processing procedure was adopted in previous fall detection 
studies [7] and ankle sprain classification [6].  

LONG SHORT TERM MEMORY-FULLY CONVOLUTIONAL 
NETWORK 
Karim et al. [17] proposed the LSTM-FCN, with general 
architecture as shown in Fig. 6, with the FCN block augmented 
by an LSTM block [17]. The datasets were reshaped in a 3D 
array (𝑠, 𝑇௪௜௡ௗ௢௪ , 𝐹௜), where 𝑠 represents the sample, 𝑇௪௜௡ௗ௢௪  
is the lookback period and 𝐹௜ is the number of features in 
dataset  𝑖 ∈ {𝐴, 𝐵, 𝐶}. A lookback period of 𝑇௪௜௡ௗ௢௪ = 400 is 
taken. The input sizes onto the LSTM-FCN model for datasets 
A, B and C are (400, 4), (400, 6) and (400, 11), respectively. 

 
Figure 6. Architecture of LSTM-FCN model (adapted from [17]) and the CAM method, which uses the activation of the  filters of 

the last convolutional layer, Sk, and the weights of the output, 𝒘𝒌
𝒄  

Similar to other deep learning models, the LSTM-FCN 
model does not require any feature engineering. However, 
input data is commonly normalized, by transforming its value 
to be between 0 and 1, using the Min-Max scaler in equation 
(3), before feeding into the LSTM-FCN model [26]. The 
normalization equation is given as  

 

𝑦௝(𝑡) =
௫ೕ(௧)ି௫೔,೘೔೙

௫೔,೘ೌೣି௫೔,೘೔೙
, (3) 

 

where 𝑥௝(𝑡) and 𝑦௝(𝑡) are the original and normalised values of 
feature j at time t, respectively, whilst 𝑥௜,௠௜௡and 𝑥௜,௠௔௫ are the 
minimum and maximum values of feature i for all t, 
respectively. After pre-processing, the normalized time series 
input is fed onto the LSTM-FCN model as multivariate time 
series data. A dropout rate of the LSTM block is set to 0.8, as 
suggested by Karim et al. [17]. 

The FCN block views the time series as a univariate time 
series with multiple time steps. In the LSTM-FCN architecture, 
the FCN block consists of three stacked temporal convolutional 
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blocks with filter sizes of 128, 256, and 128 and kernel sizes of 
8, 5 and 3, respectively. Each temporal convolutional block 
consists of a temporal convolutional layer, which is 
accompanied by batch normalization (BN) followed by a 
rectified linear (ReLU) activation function. Batch 
normalization is a method of normalizing the layers' inputs by 
re-centering and rescaling [27]. Finally, global average pooling 
(GAP) is applied after the last temporal convolutional block, 
with the GAP layer outputting the spatial average of the feature 
map of each unit at the last convolutional layer. 

The output of the global pooling layer and the LSTM block 
are then concatenated and passed onto a softmax layer, with the 
softmax function normalizing the network's output to a 
probability distribution over the predicted output class. The 
training epoch of the LSTM-FCN is set to 20, with batch size 
set to 128. 

CLASS ACTIVATION MAPPING (CAM) METHOD 
The use of CAM was first introduced by Zhou et al. [28] for 
image classification. CAM highlights parts of an image that 
contribute the most to a given class identification. Wang et al. 
[29] introduced a one-dimensional CAM for time series 
classification by using it to find the contributing temporal 
regions in the raw data for the specific label. CAM is 
implemented after the training and testing of the LSTM-FCN 
model have been completed. The CAM method uses the 
averaged feature map of each unit after global average pooling 
(GAP) and the weights of the final softmax function, as shown 
in Fig. 6. In the LSTM-FCN, GAP outputs the spatial average 
of the feature map of each unit at the last convolutional layer. 
For a time series, let 𝑆௞(𝑡) represents the activation of filter k 
in the last convolutional layer at temporal location t. The output 
of the following GAP (fk) was given by [29].  
 

 𝑓௞ =  ∑ 𝑆௞(𝑡).௧  

A weighted sum of these values is inputted into a softmax 
layer to generate the final output, with the input to the softmax 
function given by [29]: 

 

 𝑔௖ =  ∑ 𝑤௞
௖

௞ ∑ 𝑆௞(𝑡)௧ , 

where 𝑤௞
௖ indicates the weight of the final softmax function for 

the output from filter k and class c. The CAM (CAMc) for class 
c was given by [29]: 
 

 𝐶𝐴𝑀௖ =  ∑ 𝑤௞
௖𝑆௞(𝑡).௧  

Hence, CAMc indicates the importance of the activation at 
temporal location ti leading to the classification of the time 
series to a certain class (c), in this case, either sprain or non-
sprain. The CAM outputs, CAMc = {z1,z2,…,zn}, were 
rescaled so that the CAM values would fall between -1 and 1 
using (7), where min(CAMc) and max(CAMc) are the 
minimum, and maximum values of CAM outputs, respectively, 
whilst zi and Zi are the original and normalized CAM, 
respectively, 

 

 𝑍௜ = 2 ቀ 
௭೔ି୫୧୬(஼஺ெ೎)

୫ୟ୶(஼஺ெ೎)ି୫୧୬(஼஺ெ೎)
ቁ − 1 

III. RESULTS AND DISCUSSIONS 

A. CLASSIFICATION OF SPRAIN AND NON-SPRAIN 
MOTIONS 
The data were manually labelled to correspond to either non-
sprain or sprain motions. After pre-processing, 70% (785 trials) 
of the dataset was randomly set aside for training the 
classification models to identify either sprain or non-sprain 
motions, whilst 30% (337 trials) were used for testing. The 
testing dataset was assigned an index number to ease the 
identification of trial data (whether it was sprain or non-sprain, 
type of non-sprain motion) for analysis.  

Of the 337 trials in the testing dataset, 183 and 154 were 
sprain and non-sprain motions, respectively. The accuracy, 
precision, recall, and f1-score of the SVM and LSTM-FCN 
models on the three datasets are given in Table 3, with 
confusion matrices of the SVM and LSTM-FCN models on 
dataset A, dataset B, and dataset C, tabulated in Table 4(a), 4(b) 
and 4(c), respectively.  

 

Table 3. Accuracy, precision, recall, and f1-score of SVM 
and LSTM-FCN models on the three datasets  

 Dataset A Dataset B Dataset C 

 SVM 
LSTM
-FCN 

SVM 
LSTM
-FCN 

SVM 
LSTM
-FCN 

Accuracy 0.976 0.976 0.982 0.997 0.988 0.997 

Precision 0.989 0.983 0.978 0.995 0.984 0.995 

Recall 0.967 0.973 0.989 1.000 0.995 1.000 

F1 score 0.978 0.978 0.984 0.997 0.989 0.997 

Table 4. Confusion matrices for the SVM and LSTM-FCN 
models on (a) Dataset A, (b) Dataset B and (c) Dataset C 

(a) Class Predicted by 
SVM 

Class Predicted by 
LSTM-FCN 

Non-
Sprain 

Sprain 
Non-

Sprain 
Sprain 

A
ct

ua
 C

la
ss

 

N
on

-s
pr

ai
n Stepping down 29 1 30 0 

Cutting 24 1 22 3 
Jogging 33 0 33 0 
Walking 35 0 35 0 

Jump Landing 31 0 31 0 
Sprain 6 177 5 178 

(b) Class Predicted by 
SVM 

Class Predicted by 
LSTM-FCN 

Non-
Sprain 

Sprain 
Non-

Sprain 
Sprain 

A
ct

ua
 C

la
ss

 

N
on

-s
pr

ai
n Stepping down 27 3 30 0 

Cutting 24 1 24 1 
Jogging 33 0 33 0 
Walking 35 0 35 0 

Jump Landing 31 0 31 0 
Sprain 2 181 0 183 

(c) Class Predicted by 
SVM 

Class Predicted by 
LSTM-FCN 

Non-
Sprain 

Sprain 
Non-

Sprain 
Sprain 

A
ct

ua
 C

la
ss

 

N
on

-s
pr

ai
n Stepping down 28 2 30 0 

Cutting 24 1 24 1 
Jogging 33 0 33 0 
Walking 35 0 35 0 

Jump Landing 31 0 31 0 
Sprain 1 182 0 183 

 
Accuracy, defined in (8), refers to the ratio of correctly 

classified trials to the total trials, with TN and TP referring to 
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the number of non-sprain and sprain motions, respectively, that 
were correctly classified, and FP and FN referring to the 
number of non-sprain and sprain motions, respectively, that 
were incorrectly classified. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
்௉ା

்௉ା்ேାி௉ାிே
. 

Precision is the ratio of the number of trials correctly 
classified as sprain motion to the total number of trials 
predicted as sprain motion, whilst recall is the ratio of the 
number of trials correctly classified as sprain motion to the total 
number of sprain motion. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
்௉

்௉ାி௉
, 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
்௉

்௉ାி
 

F1 score gives the harmonic average of precision and recall 
scores.  

 𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2(
௉௥௘௖௜௦௜௢௡∗ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ାோ௘௖
)  (11)

It can be seen that the LSTM-FCN model gives the highest 
accuracy score of 0.997 on both datasets B and C, as compared 
to that of the SVM model, with accuracy scores of 0.982 and 
0.988 on datasets B and C, respectively. However, both LSTM-
FCN and SVM models give the same accuracy score of 0.976 
on dataset A. Despite the same accuracy score on dataset A, the 
LSTM-FCN model has a better recall, whilst the SVM model 
has better precision. This is because whilst the LSTM-FCN 
model performs better in predicting sprain motions (wrongly 
predicting only 5 sprain motions as non-sprain motions, as can 
be seen from Table 4(a)), the model wrongly predicted more 
non-sprain motions as sprain motions (wrongly predicting 3 
non-sprain motions as sprain motions).  

On datasets B and C, the LSTM-FCN model performs 
better in predicting both sprain and non-sprain motions, giving 
superior accuracy, precision, recall, and f1-score as compared 
to the SVM model. Accuracy, precision, recall and f1-score of 
the LSTM-FCN model on both datasets B and C are 0.997, 
0.995, 1 and 0.997, respectively. High recall indicates that the 
model is able to accurately identify the majority of the sprain 
motions, and hence, within the context of an intelligent ankle 
sprain prevention device, it is important when the device solely 
relies on the model to detect ankle sprain motion for the 
activation of its preventive mechanism. On the other hand, 
precision is important if the preventive mechanism is overly 
restrictive to the activity of the wearer or if the preventive 
mechanism is troublesome to be deactivated, in which case, 
reducing the misidentification of non-sprain motions as sprain 
motions is of importance.  

Comparing results between datasets A, B and C, it can be 
seen that the accuracy of the SVM model is highest on dataset 
C with 0.988 and lowest on dataset A with 0.976. These 
indicate that 11 features need to be utilized (in the case of 
dataset C) for the SVM model, which necessitates using the 
IMU, FSRs and flex sensors, to extract the best performance. 
On the other hand, it can be observed that using only 6 features 
(in the case of dataset B) gives the best performance for the 

LSTM-FCN model. The 6 features can be obtained from the 
IMU sensor only. This is significant as only a single IMU 
device is required for the LSTM-FCN model to classify sprain 
and non-sprain motions with a high 0.997 accuracy. 

As can be seen from the confusion matrices in Table 4, non-
sprain motion trials that were wrongly classified as sprain 
motions were either cutting or stepping down motions; with the 
LSTM-FCN model wrongly classifying cutting motion only, 
whilst the SVM model wrongly classifying both stepping down 
and cutting motions. These are similar to Chan et al. [102], with 
stepping down and cutting contributing to most of the false 
positives detected by their SVM model. Additionally, Chan et 
al. [102] also reported false classifications of jump landing 
motion as sprain motion. These false classifications on the 
cutting, stepping down and jump landing motions may be due 
to the sudden changes in ankle motion on these 3 motions, 
almost similar to ankle sprain motion, albeit with slight 
differences. As can be seen from the result, the LSTM-FCN 
model is able to effectively differentiate between sprain motion 
and the other non-sprain motions, with the exception of cutting 
motion. 

Overall, it is noted that the LSTM-FCN model performs 
better in identifying both sprain and non-sprain motions on all 
3 datasets, with the exception of the identification of non-sprain 
motions on dataset A. On dataset A, the LSTM-FCN model 
wrongly predicted 3 non-sprain motions as sprain motions and 
5 sprain motions as non-sprain motions. This is in contrast to 
the SVM model, which wrongly predicted only 2 non-sprain 
motions as sprain motions, but 6 sprain motions as non-sprain 
motions. Overall, however, both the LSTM-FCN and SVM 
models demonstrate comparable performance in terms of 
accuracy on dataset A. 

B. CLASS ACTIVATION MAPS 
Generated CAM graph shows the contribution of the time point 
of the data to the LSTM-FCN model's decision in classifying 
the multivariate time series as a sprain or non-sprain motion.  
Since CAM values are rescaled to range from -1 to 1, for the 
experiment, values above 0.5 indicate a high contribution of the 
time point to the classification decision, whilst values below -
0.5 indicate a low or no contribution to the classification 
decision. The CAM graph is then used to highlight temporal 
regions of the input data that contribute the most or the least to 
the classification system. Fig. 7(a) demonstrates a CAM graph, 
with Fig. 7(b) and (c) depicting the corresponding GyroX and 
Flex1 sensor readings during one of the sprain motion trials 
from dataset A. CAM values were used to assign a color code 
to the time points of the data, with red colored plot indicating 
high contribution (CAM above 0.5) points and dark blue 
colored plot indicating low contribution (CAM below -0.5) 
points. The time points with the higher CAM value (Fig. 7(a)) 
are indicated with dark red color with a pointing black arrow. 
Coloring the time points allows us to visually see temporal 
regions of high and low contributions in the classification of 
the trial as a sprain or non-sprain motion. For instance, the 
highest contribution in classifying the data as sprain motion is 
when initial changes in angular velocity in X-axis occur (as 
seen in Fig. 7(b)) and a few moment before the inversion angle 
recorded by the medial flex sensor increases (as seen in Fig. 
7(c)). 
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(a) 

 

(b) 

 

 

(c) 

 
Figure 7. (a) Plot of CAM values (b) Plot of GyroX with colored points corresponding to CAM value (c) Plot of Flex1 with 

colored points corresponding to CAM value. Black arrows show dark red points of GyroX and Flex1 plot corresponding to the 
highest CAM value 

The number of CAM points above 0.5 were recorded onto 
a spreadsheet for each sprain motion testing trial that was 
correctly classified as sprain motion in all three datasets. The 
average number of CAM points above 0.5 for datasets A, B and 
C are 19.0, 12.8 and 20.2, respectively (with variances of 8.6, 
6.4 and 10.1, respectively), for a total of 100 points for every 
trial. A smaller number of CAM values above 0.5 indicates 
fewer time points are needed to be considered in the 
classification decision, with a possible implication that in 
future works, a shorter time series can be inputted into the 
LSTM-FCN model for classification purposes. Comparing 
datasets B and C, dataset C has a larger average number of 
CAM points above 0.5 with a larger variance. The addition of 
data from the flex sensors and FSRs may have forced the 
LSTM-FCN model to consider more time points during the 
classification process. However, although dataset B had more 
features than dataset A, dataset A had more CAM points above 
0.5. This suggests that one or more features found in dataset B 
and not in dataset A could have reduced the number of time 
points contributing highly to the LSTM-FCN's classification 

decision. 
Fig. 8 shows the contributing temporal regions for the LSTM-
FCN model on datasets A, B and C for one of the correctly 
classified sprain trials (trial index no 217). The trial shown in 
Fig. 8 is not representative of all sprain trials; however, it was 
chosen to illustrate how CAM values may differ between the 
three datasets. Only GyroY is compared as it is the only 
common feature in all three datasets. Fig. 8 shows that the 
temporal regions that have positive CAM values (time points 
colored yellow and red) are similar across the 3 datasets, where 
there is a large decrease and increase in angular velocity on the 
Y-axis. This is in line with how angular velocity is expected to 
change when supination motion occurs. There are visible 
differences in the amount of interest and disinterest at certain 
time points. The high contributing time points are at peak 
angular velocity before the sharp decrease for dataset A (Fig 
8(a)) and dataset B (Fig 8(b)), but for dataset C (Fig 8(c)), high 
contributing time points are when the angular velocity is lowest 
before the sharp increase. 

 

 

Figure 8. Plots of GyroY showing points of interest to the LSTM-FCN model for (a) Dataset A, (b) Dataset B and (c) Dataset C 

 
 (a) (b) 

 
(c) 
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The CAM method also allows us to see which region of the 

data contributed to the incorrect classification of sprain data. 
Fig. 9 shows the CAM results of cutting motion trials (trials 6 
and 274) from dataset A that were incorrectly identified as 
sprain motion as examples. The time points that highly 
contribute to the misclassification as sprain motion are colored 
red. For trial 6 (Fig. 9(a)), it can be seen that a decrease 
followed by an increase in angular velocity (GyroY), and an 
increase in inversion angle (Flex1 and Flex2) recorded during 

the cutting motion, are very similar to what is expected in 
sprain motions, leading to the misclassification. For trial 274 
(Fig. 9(b)), the CAM values are high when there is a small spike 
in angular velocity (GyroY), inversion angle (Flex 2) and 
supination torque (SupT), which led to the misclassification of 
the cutting motion. Further analysis of CAM values of cutting 
motions can help better understand which temporal region 
causes the misclassification and determine if there is a pattern. 

 

 

Figure 9. GyroY, Flex1, Flex2 and SupT of cutting motion trials and CAM value for classification as sprain motion for (a) trial 6 
and (b) trial 274 

As discussed, the CAM method is very helpful in 
understanding and visualizing the temporal regions of the time 
series that contribute most or least to the classification by the 
LSTM-FCN model. However, there are drawbacks to the CAM 
method. This method only shows the temporal regions of high 
and low contribution in the data. It does not explain why or how 
the region contributes to the classification decision. We can 
only infer why and how it contributes if a visible pattern in the 
regions of interest is what defines the motion as a sprain 
motion. It does not show if the LSTM-FCN considers just one 
feature or if multiple dependent features are considered in the 
decision-making process. Knowing the feature/features that 
contribute most to the classification would reduce the size of 
the input and improve the efficiency of the monitoring system. 
Further analysis with more data or different DNN methods 
would be needed to determine which feature/features 

contribute the most to the classification decision.  

IV. CONCLUSION 
An SVM model was used in a previous study [6] to classify 
sprain and non-sprain motion successfully. However, DNNs 
have recently been considered for classifying time series data 
rather successfully, albeit not specifically for the classification 
of an ankle sprain. In this paper, data collection is made on 11 
participants performing different trials on sprain and non-
sprain motions by collecting different ankle kinematics data. 
Both SVM and LSTM-FCN models are trained to classify 
sprain and non-sprain motions on the three different datasets 
obtained from the experiment. Comparison results have shown 
that the LSTM-FCN model is better at classifying sprain and 
non-sprain motions, with maximum accuracy of 0.997. It has 
also been shown that the use of features from a single IMU 

 
 (a) (b) 
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device to track 6 parameters related to ankle kinematics is 
sufficient to give high accuracy using the LSTM-FCN model. 
Additionally, the use of the LSTM-FCN model also allows the 
use of the CAM method to identify temporal regions in the 
inputted data that contribute to the classification system and 
patterns associated with sprain motion in the data. The CAM 
method can also be used to visualize data points that contribute 
to the misclassification of non-sprain motion as sprain motion, 
allowing us to better understand what leads to the 
misclassification for future works. 
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