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 ABSTRACT The paper considers two forms of models: seasonal and non-seasonal analogues of oscillations.  
Additive models belong to the first form, which reflects a relatively constant seasonal wave, as well as a wave that 
dynamically changes depending on the trend. The second ones are multiplicative models. The paper analyzes the basic 
adaptive models: Brown, Holt and autoregression models. The parameters of adaptation and layout are considered by 
the method of numerical estimation of parameters. The mechanism of reflection of oscillatory (seasonal or cyclic) 
development of the studied process through reproduction of the scheme of moving average and the scheme of 
autoregression is analyzed. The paper determines the optimal value of the smoothing coefficient through adaptive 
polynomial models of the first and second order. Prediction using the Winters model (exponential smoothing with 
multiplicative seasonality and linear growth) is proposed. The application of the Winters model allows us to determine 
the calculated values and forecast using the model of exponential smoothing with multiplicative seasonality and linear 
growth. The results are calculated according to the model of exponential smoothing and with the multiplicative 
seasonality of Winters. The best model is determined, which allows improving the forecast results through the correct 
selection of the optimal value of α. The paper also forecasts the production volume according to the Tayle-Vage model, 
i.e., the analysis of exponential smoothing with additive seasonality and linear growth is given to determine the 
calculated values α. The paper proves that the additive model makes it possible to build a model with multiplicative 
seasonality and exponential tendency. The paper proves statements that allow one to choose the right method for better 
modeling and forecasting of data. 
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I. INTRODUCTION 
NALYSIS, modeling and forecasting of financial and 
economic processes form the basis for the development of 

management decisions at all levels of the economic hierarchy. 
This task is characterized by increased complexity and 
ambiguity. Therefore, the question arises about the effective 
analysis and development of such models and methods that can 
correctly describe modern financial and economic processes 
[1]. 

Most often, in the practical construction of forecasts of 
economic indicators their seasonality and cyclicality are taken 
into account. Different mathematical apparatus is used to 
predict non-seasonal and seasonal processes. The dynamics of 
many financial and economic indicators has a stable fluctuating 
component. In the study of monthly and quarterly data are often 
observed within the annual seasonal fluctuations, respectively, 
in the period of 12 and 4 months. When using daily 
observations, fluctuations with a weekly (five-day) cycle are 
often observed. In this case, to obtain more accurate forecast 
estimates, it is necessary to correctly reflect not only the trend 

but also the oscillating component. The solution to this problem 
is possible only with the use of a special class of methods and 
models [1 – 5]. 

Seasonal models are based on their non-seasonal 
counterparts, which are supplemented by means of displaying 
seasonal fluctuations. Seasonal models are able to reflect both 
a relatively constant seasonal wave and a wave that changes 
dynamically depending on the trend. The first form belongs to 
the additive class, and the second one refers to the class of 
multiplicative models [2]. Most models have both of these 
shapes. The most widely used in practice are Holt-Winters 
models [6] and autoregressions [7]. 

In short-term forecasting, the dynamics of the development 
of the studied indicator at the end of the observation period is 
usually more important than the trend of its development, 
which has developed on average throughout the prehistory 
period. The property of dynamic development of financial and 
economic processes often prevails over the property of inertia, 
so adaptive methods that take into account information 
inequality of data are more effective [8]. 

A
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Adaptive models and methods have a mechanism of 
automatic adjustment to a change in the studied indicator. The 
forecasting tool is a model, the initial assessment of the 
parameters of which is carried out on the first few observations. 
Based on it, a forecast is made, which is compared with actual 
observations. Next, the model is adjusted according to the 
magnitude of the forecast error and is used again to predict the 
next level, until all observations are exhausted. Thus, it 
constantly "absorbs" new information, adapts to it, and by the 
end of the observation period reflects the current trend [9, 10]. 
The forecast is obtained as an extrapolation of the latest trend. 
In different forecasting methods, the process of setting up 
(adapting) the model is carried out in different ways. Basic 
adaptive models are: 
 Brown model [11]; 
 Holt Winters model [6]; 
 autoregression model [7]. 

The first two models belong to the average mean scheme, 
the latter refers to the autoregression scheme [12]. Numerous 
adaptive methods based on these models differ in the way of 
numerical estimation of parameters, determination of 
adaptation parameters and layout. 

According to the moving average scheme, the assessment 
of the current level is the weighted average of all previous 
levels, and the weights in the observations decrease as they 
move away from the last (current) level, i.e., the information 
value of observations is greater the closer they are to the end of 
the observation period [13]. 

According to the autoregression scheme, the estimate of the 
current level is the weighted sum of the orders of the model’s 
"p" of the previous levels. The information value of 
observations is determined not by their proximity to the 
simulated level, but by the closeness of the relationship 
between them [14 – 16]. Both of these schemes have a 
mechanism for reflecting the oscillating (seasonal or cyclical) 
development of the studied process. 

Autoregressive Integrated Moving Average ( ARIMA) is a 
popular method for forecasting time series data using a single 
variable [17]. The problem with ARIMA is that it does not 
support seasonal data. This is a time series with a repeating 
cycle. ARIMA expects data that is not seasonal or has a 
seasonal component removed, for example seasonally adjusted 
using techniques such as seasonal variance. This method 
supports direct modeling of the seasonal component of the 
series called Seasonal Autoregressive Integrated Moving 
Average SARIMA [14]. It is an extension of ARIMA that 
explicitly supports univariate time series data with a seasonal 
component [17]. The seasonal portion of the model consists of 
terms that are very similar to the non-seasonal components of 
the model, but include reverse shifts of the seasonal period [17]. 

Prophet is a procedure for forecasting time series data based 
on an additive model where non-linear trends are fit with 
yearly, weekly, and daily seasonality, plus holiday effects. It 
works best with time series that have strong seasonal effects 
and several seasons of historical data. Prophet is robust to 
missing data and shifts in the trend, and typically handles 
outliers well [18]. 

The purpose of the paper is to develop the adaptive methods 
of modeling and forecasting the time series based on a 
combination of the adaptive methods of predictive modeling: 
 Holt Winters model [19]; 
 moving average model [20]. 

Time series generally focus on the prediction of real values, 
called regression problems. Therefore, the performance 
measures in the paper will focus on methods for evaluating 
real-valued predictions. 

The main contribution consists of the following: 
 the adaptive polynomial models used sequentially 

allow increasing the prediction accuracy; 
 the data interpretation algorithm for adaptive methods 

of modeling and forecasting time series is developed; 
 the comparison with Winters model and Tayle-Wage 

model shows a good quality of the proposed predictive model. 
This paper consists of several sections. In the Methods and 

means section, the data interpretation algorithm for adaptive 
methods of modeling and forecasting time series is given. The 
next section presents results of calculation and data 
interpretation. The last section concludes this paper with a 
possible solution to appraisal technique. 

II.  METHODS AND MEANS 
The time series in adaptive models are presented in Formula 1:  

𝑢௧ = 𝑓൫𝑎ଵ௧ , 𝑎ଶ௧ , … , 𝑎௧ , 𝑡൯ + 𝑒௧ , (1) 

where t – time indicator; 𝑎ଵ௧ , 𝑎ଶ௧ , … , 𝑎௧ – coefficients of the 
adaptive model at the moment of time t.  

Depending on the shape of the trend and the presence or 
absence of a periodic component, a certain type of adaptive 
forecasting should be chosen. To do this, you need to find the 
optimal value of the smoothing parameters𝛽ଵ, 𝛽ଶ, 𝛽ଷ. They 
should be used to calculate the coefficients𝑎ଵ௧ , 𝑎ଶ௧ , … , 𝑎௧. 

If the smoothing parameters change, the prediction error 
increases. However, this approach will not bring the quality of 
forecasting. The research proposes an algorithm for 
determining the optimal values of smoothing parameters. 

Also, it is important to analyze the effectiveness of the 
adaptive approach in other methods. Therefore, it is proposed 
to develop an algorithm that allows you to take into account the 
accuracy of the forecast, the complexity of the model, and its 
adequacy and compliance with the object under study. 

There are two groups of adaptive models: linear and 
seasonal. 

According to Formula 2, the forecast of linear growth 
models is shown [35]: 

𝑢௧ାఛ = 𝑎ଵ௧ + 𝑎ଶ௧𝜏, (2) 
where 𝑎 - the number of steps of the forecast; 𝑎ଵ௧ , 𝑎ଶ௧ - the 
coefficients of the adaptive model at a moment of time t. 

Adaptive models of linear growth include the Holt model, 
the Braun model, and the Box-Jenkins model. The difference 
between linear growth models lies in finding the parameters 
𝑎ଵ௧ , 𝑎ଶ௧ [35]. 

The parameters of the Holt model are found in Formula 3: 

ቊ
𝑎ଵ,௧ = 𝛽ଵ𝑢௧ + (1 − 𝛽ଵ)(𝑎ଵ,௧ିଵ + 𝑎ଶ,௧ିଵ)

𝑎ଶ,௧ = 𝛽ଶ൫𝑎ଵ,௧ − 𝑎ଵ,௧ିଵ൯ + (1 − 𝛽ଶ)𝑎ଶ,௧ିଵ
 

(3) 

Formula 4 presents the calculation of parameters according 
to the Tayle-Vage model [35]: 
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ቐ

𝑎ଵ,௧ = 𝛽ଵ𝑢௧ିଵ + (1 − 𝛽ଵ)𝑢௧ෝ

𝑎ଶ,௧ = 𝑎ଶ,௧ିଵ + 𝛽ଵ𝛽ଶ𝑒௧

𝑒௧ = 𝑢௧ − 𝑢௧ෝ

, 
(4) 

where 𝛽ଵ, 𝛽ଶ, 𝛽ଷ are the smoothing coefficients that take values 
from 0 to 1, 𝑢௧ - the real value of the series level at t-th step, 
𝑢ො௧ − the predictive value at t-th step, 𝑒௧ - the error at the t-th 
step. 

Characterizing the calculation of the parameters of 
Formulas 3-4, it is possible to highlight a certain feature of 
adaptive models. It is necessary to calculate 𝑎ଵ௧ , 𝑎ଶ௧ at each 
step. In order to receive better results from the model, it is 
necessary to find 𝛽ଵ, 𝛽ଶ, 𝛽ଷ, which will most closely correspond 
to the time series. 

The adaptive mono-parameter Brown model is used for 
stationary time series based on simple exponential smoothing: 

𝑦ො௧ାଵ = 𝑆௧ , 𝑆௧ = 𝛼𝑦௧ + (1 − 𝛼)𝑆௧ିଵ, 𝑡 = 1,2,3, …, (5) 
where 𝑦௧ାଵ is prognostic value of time series level in time (t+1), 
𝑆௧  is exponential mean, 𝛼 is adaptation coefficient, 𝑦௧  is current 
time series value. 

Here, the model value is the weighted average between the 
current true value and previous model values. Weight  is also 
called the smoothing factor. It determines how quickly we will 
"forget" the last available real observation. The smaller , the 
more influence the previous model values have, and the 
smoother the series. 

Taking the adaptation coefficient α and the warning period 
τ, it is necessary to approximate the series using an adaptive 
polynomial model. 

The Data Interpretation Algorithm for Adaptive Methods of 
Modeling and Forecasting Time Series (DIAAMMFTS) is 
developed in the paper. 

DIAAMMFTS consists of the following steps: 
Procedure 1: Zero order (р = 0); 
Procedure 2: First order (р = 1); 
Procedure 3: Second order (р = 2); 
Procedure 4: Assess the accuracy and quality of forecasts; 
Procedure 5: Make a forecast. 
All procedures of DIAAMMFTS are presented below. 

Procedure 1. 
Procedure 1 developed as sequence of the following steps: 
1. Let yො =  y. 
2. Append arrayyොusing following formula: yො୲ =  α ∗

y୲ + (1 − α) ∗  yො୲ − 1, where y୲ is an actual value and yො୲ିଵ is 
previous number from prediction array. 

3. Repeat step 2 for all values in dataset. 

Procedure 2. 
So far, we have been able to get from our methods at best a 

forecast only one point ahead (and still we nicely smooth the 
series), this is great, but not enough, so we move on to the 
expansion of exponential smoothing, which will make the 
forecast two points forward (and also it is nice to smooth out a 
number). 

This will help us to divide the series into two components - 
ℓ (level, intercept) and b (trend, slope). We have predicted the 
level, or expected value of the series using previous methods, 
and now the same exponential smoothing can be applied to the 
trend, naively or not very much believing that the future 

direction of a change in the series depends on the weighted 
previous changes. 

ℓ୶ =  αy୶ + (1 − α)(ℓ୶ିଵ + b୶ିଵ), 
b୶ = β(ℓ୶ − ℓ୶ିଵ) + (1 − β)b୶ିଵ,  (6) 

yො୶ାଵ = ℓ୶ + b୶.     
The algorithm is the following: 
1. Let x = 1, yො =  y, ℓ =  y and b =  yଵ − y, 

where y is our initial dataset. 
2. Define new level value using formula: ℓ୶ =  αy୶ +

(1 − α)(ℓ୶ିଵ + b୶ିଵ). 
3. Define new trend value using formula: b୶ = β(ℓ୶ −

ℓ୶ିଵ) + (1 − β)b୶ିଵ. 
4. Define our prediction yො୶ାଵ = ℓ୶ + b୶. 
5. Define x = x + 1 and repeat steps 2-5 until x < n. 

Procedure 3. 
The idea of this method is to add the third component, that 

is, seasonality. Accordingly, the method can be applied only if 
a number of this season is not deprived, which in our case is 
true. The seasonal component in the model will explain the 
repetitive fluctuations around the level and trend, and it will be 
characterized by the length of the season, i.e., the period after 
which the repetition of fluctuations begins. For each 
observation in the season, a component is formed, for example, 
if the length of the season is 7 (for example, weekly 
seasonality), then we get 7 seasonal components, one by one 
for each day of the week. 

Therefore, a new system is defined: 
ℓ୶ =  α(y୶ − s୶ି) + (1 − α)(ℓ୶ିଵ + b୶ିଵ), 

(7) 
b୶ = β(ℓ୶ − ℓ୶ିଵ) + (1 − β)b୶ିଵ, 

s୶ =  γ(y୶ − ℓ୶) + (1 − γ)s୶ି, 

yො୶ା୫ = ℓ୶ + mb୶ + s୶ିାଵା(୫ିଵ)୫୭ୢ. 

 
The algorithm is the following: 

1. Let x = 1, L = 24*7  yො =  y, ℓ =  y and .b =

 
∑ (୷శైି୷)/ై

సబ


, s_num =

୷.୪ୣ୬୲୦


, where y is initial dataset, L is 

the length of season in our case we set it to count weeks and 
s୬୳୫ is a number of seasons. 

2. Define avrg using this formula 
∑ ୷∗

ై
సబ


. 

3. Count n = n+1.Repeat step 2 until n<s num. 

4. Define susing formula ∑ ∑ y∗ା୧ − 𝑎𝑣𝑟𝑔
ୱ_୬୳୫
୨ୀ


୧ୀ . 

5. Define a new level using formula ℓ୶ =  α(y୶ −
s୶ି) + (1 − α)(ℓ୶ିଵ + b୶ିଵ) 

6. Define a new trend using formula b୶ = β(ℓ୶ −
ℓ୶ିଵ) + (1 − β)b୶ିଵ. 

7. Define new using formula s୶ =  γ(y୶ − ℓ୶) + (1 −
γ)s୶ି. 

8. Define new result using formula yො୶ = (ℓ୶ + b୶ +  s୶). 

9. Count x = x+1. Repeat steps 5-8 until x<y. 

10. Make prediction using formula yො୶ା୫ = ℓ୶ + mb୶ +
s୶ିାଵା(୫ିଵ)୫୭ୢ, where m is the number that indicates how 
many steps forward, we want to predict. 

The level now depends on the current value of the series 
except for the corresponding seasonal component, the trend 
remains unchanged, and the seasonal component depends on 
the current value of the series except for the level and the 
previous value of the component. Now, having a seasonal 
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component, we can predict not one, not even two, but arbitrary 
m steps forward. 

III. RESULTS 
Dataset consists of the dynamics of shares of a company for 25 
days [21, 33]. 

The time series xt of some economic indicator consisting of 
n observations will be analyzed.  

In Pandas [22] there is a ready implementation - 
DataFrame.rolling (window). The more we set the width of the 
interval, the smoother the trend will be. If the data is very noisy, 
which is especially common, for example, in financial terms, 
such a procedure can help us see common patterns. 

A.  ADAPTIVE ZERO ORDER POLYNOMIAL MODEL 
The exponential mean has the form [23]: 

S୲ = αx୲ + βS୲ିଵ, 
(8) 

β = 1 − α. 
Taking the adaptation coefficient α = 0.5 and the warning 

period τ = 1, it is necessary to approximate the series using an 
adaptive polynomial model [7 – 10].  

The initial condition for the first five observations is given 
as follows: S = aොଵ,, where aොଵ, is an average value, for 
example, the first five observations:  

aොଵ, =
1

5
 x୲ = 511

ହ

୲ୀଵ

. 

The forecast model value with the warning period τ will be 
determined from the relation: 

xො୲
∗ = S୲ିத = 511. 

The error is determined by formula 9: 

𝐸 =
(௫ି௫

∗)మ

௫
. (9) 

Using Formula 8 and the accepted value of α = 0.5, 
calculation is performed. 
For t = 1 
Sଵ = αxଵ + (1 − α)S = 0.5 ∗ 520 + 0.5 ∗ 511 = 515.5 
xොଵ

∗ = S = 511 
t = 2 
Sଶ = 0.5 ∗ 497 + 0.5 ∗ 515.5 = 506.25 
xොଶ

∗ = Sଵ = 515.5 
t = 3 
Sଷ = 0.5 ∗ 504 + 0.5 ∗ 506.25 = 505.125 
xොଷ

∗ = Sଶ = 506.25 

Table 1. Predicting the time series xt one step further  
(adaptive polynomial model of zero (p = 0) order) 

 t xt 

P=0 

St 𝒙ଙෝ ∗ Error 

1 0  511   

1 1 520 515.5 511 0.16 

1 2 497 506.25 515.5 0.68 

1 3 504 505.125 506.25 0.01 

1 4 525 515.063 505.125 0.75 

...      

1 24 545 534.38 523.769 0.83 

1 25 529 531.99 534.38 0.05 

1 26   531.99  

 0.5     

 0.5     

We have made a forecast for one step forward, but it cannot 
be considered optimal. To obtain an adequate forecast, it is 
necessary to choose such a value of α that the sum of the 
squares of the deviations and the error of the forecast was 
minimal. To determine the optimal value of α, tabulate it from 
0.1 to 0.9 in steps of 0.1. Then each time we substitute it in the 
calculation model to obtain the forecast and the magnitude of 
the error. Thus, the value of α is selected at which the error will 
also be minimal.  

The distribution of the prediction error with respect to the 
parameter α is shown in Figure 1. 

 

Figure1. Dependence of forecasting error on α 

Figure 1 shows that the optimal value for the zero-order 
model is α = 0.4, which is determined on the basis of the 
minimum total error E = 8.85. The results of the forecast are 
shown in Figure 2. 

 

Figure 2. Forecasting results based on a zero-order 
polynomial model (p = 0). 

Numerical forecasting values are shown in Table 2. 

Table 2. The results of the forecast at α = 0.4 

 t xt 

P=0 

St 𝒙ଙෝ ∗ Error 

1 0  511.00   

1 1 520 412.4 511.00 0.16 

1 2 497 363.76 412.4 14.4 

1 3 504 347.1 363.76 39.02 

1 4 525 348.84 347.1 60.28 

….      

1 24 560 433.26 523.159 2.46 

1 25 529 384.9 433.26 17.33 

1 26   384.9  

 0.4     

 0.6     

In the Table 2 the results of the forecast are given. They are 
not much different from our original series. 
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B.  ADAPTIVE FIRST-ORDER POLYNOMIAL MODEL 
First, according to the time series xt, we find the LSM (Least 
Squares Method) [24, 34] estimate of the linear trend: 
 

xො୲ = aොଵ + aොଶt. 
 
Suppose, aොଵ, = aොଵ and aොଶ, = aොଶ. 
To find the coefficients aොଵ, and aොଶ,on the graph of the time 

series x୲, the trend line is added (Figure 3). In our case, the 
trend equation has the form: 

 
xො୲ = 498 + 1.2t, 

 
where 𝒂ෝ𝟏,𝟎 = 𝒂ෝ𝟏 = 𝟒𝟗𝟖 and 𝒂ෝ 𝟐,𝟎 = 𝒂ෝ𝟐 = 𝟏. 𝟐. 
 

 

Figure 3. Estimation of LSM regression line 

Exponential averages of the 1st and 2nd order are defined 
as 

 

S୲ = αx୲ + βS୲ିଵ, S୲
[ଶ]

= αS୲ + βS୲ିଵ
[ଶ]

, 

 
where β=1-α. 
Hence the initial conditions are the following: 
 

S = aොଵ, −
β

α
aොଶ,, S

[ଶ]
= aොଵ, −

2β

α
aොଶ,. 

 
The estimation of the model (predicted) value of the series 

with the warning period τ is equal to 
 

xො୲
∗ = ൬2 +

α

β
τ൰ S୲ିத − ൬1 +

α

β
τ൰ S୲ିத

[ଶ]
, 

S = aොଵ, −
β

α
aොଶ, = 498 −

0.5

0.5
∗ 1.2 = 496.8, 

S
[ଶ]

= aොଵ, −
2β

α
aොଶ, = 498 − 2 ∗ 1.2 = 495.6. 

 
Using this formula, the time series is given as below: 

xො୲
∗ = ൬2 +

α

β
τ൰ S୲ିத − ൬1 +

α

β
τ൰ S୲ିத

[ଶ]

= ൬2 +
0.5

0.5
∗ 1൰ ∗ 496.8 − ൬1 +

0.5

0.5
∗ 1൰

∗ 495.6 = 499.2. 
 
The results are shown in Figure 3. The results of calculation 

are given in Table 3. Error value is lower than for parameters 
presented in Table 2. 

Table 3. The results of calculations of the predicted model 
at α = 0.5 

 t x

t 

 P=1 

St St
[2] 𝒙𝒕ෝ ∗ Error 

1 0  496.80 495.60   

1 1 520 508.40 502.00 499.20 0.83 

1 2 497 502.70 502.35 521.20 1.18 

1 3 504 503.35 502.85 503.40 0.00 

1 4 525 514.18 508.81 504.35 0.81 

...       

1 24 560 541.88 532.37 525.61 2.11 

1 25 529 535.44 533.90 560.92 1.93 

1 26    538.52  

 0.5      

 0.5      

 
At t = 1 exponential mean levels are the following: 
 

Sଵ = αxଵ + βS = 0.5 ∗ 520 + 0.5 ∗ 496.8 = 508.4, 

Sଵ
[ଶ]

= αSଵ + βS
[ଶ]

= 0.5 ∗ 508.4 + 0.5 ∗ 495.6 = 502.0. 
 
Based on this, the time series is given as: 
 

xො୲
∗ = ൬2 +

α

β
τ൰ S୲ିத − ൬1 +

α

β
τ൰ S୲ିத

[ଶ]

= ൬2 +
0.5

0.5
∗ 1൰ 508.4

− ൬1 +
0.5

0.5
∗ 1൰ 502.0 = 521.2. 

 
The results of the calculations are shown in Table 3. For 

analyzed dataset, the predicted values are first calculated at  
α = 0.5 and τ = 1.  

Next, it is necessary to determine the optimal value of α, 
based on the consideration of the minimum total error. To do 
this, as in the first model, a value of α with the minimum total 
error is selected. 

Figure 4 shows the results of determining the optimal 
smoothing parameter. 

 

 

Figure 4. Determination of the optimal value of α 

 
Figure 4 shows that the minimum error of the predicted 

model will be at α = 0.1. 
The results of forecasting at the selected optimal value of α 

are shown in Figure 5. 
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Figure 5. Forecasting results based on a first-order polynomial 
model (p = 1) 

Thanks to this method, we obtained a smoother series, 
based on which we were able to calculate predictions for 1 step 
forward. 

C.  ADAPTIVE SECOND ORDER POLYNOMIAL MODEL 
According to the time series xt, we find the LSM estimate 

of the parabolic trend [25, 26, 34]: 
xො୲ = aොଵ + aොଶt + aොଷtଶ. 

For the second-order model, the equation of the parabolic 
trend has the following form (see Figure 6): 

xො୲ = 515.96 − 2.79t + 0.15tଶ, 
aොଵ, = aොଵ = 515.96;    aොଶ, = aොଶ = −2,79;     aොଷ, = aොଷ

= 0.15 

 

Figure 6. Finding the LSM estimate of the parabolic trend 
according to the time series xt 

Exponential averages of the 1st, 2nd and 3rd order are the 
following: 

S୲ = αx୲ + βS୲ିଵ, 

S୲
[ଶ]

= αS୲ + βS୲ିଵ
[ଶ]

, 

S୲
[ଷ]

= αS୲
[ଶ]

+ βS୲ିଵ
[ଷ]

. 

 

Figure 7. Determination of the optimal α 

From the graph it is seen that the optimal α is 0.25, as at this 
value we get the smallest error. 

The initial conditions are determined by the following 
formulas: 

S = aොଵ, −
β

α
aොଶ, +

β(2 − α)

2αଶ
aොଷ,; 

S
[ଶ]

= aොଵ, −
2β

α
aොଶ, +

β(3 − 2α)

αଶ
aොଷ,; 

S
[ଷ]

= aොଵ, −
3β

α
aොଶ, +

3β(4 − 3α)

2αଶ
aොଷ,. 

The estimate of the model (prediction) with the warning 
period τ is found from the expression: 

xො୲
∗ = [6βଶ + (6 − 5α)α ∗ τ + αଶτଶ]

ୗ౪షಜ

ଶஒమ −


6βଶ + (5 − 4α)ατ +

2αଶτଶ
൨

ୗ౪షಜ
[మ]

ଶஒమ ++[2βଶ + (4 − 3α)ατ +

αଶτଶ]
ୗ౪షಜ

[య]

ଶஒమ . 

Next, we determine the optimal value of the smoothing 
coefficient (see Figure 7). Taking into account the optimally 
obtained value α = 0.25 (E = 9.06) the forecast is given (see 
Figure 8). 

 

Figure 8. Forecasting results based on a second-order 
polynomial model (p = 2) 

Next, the proposed model will be compared with the 
existing adaptive models. The Winters model and Tayle-Vage 
are analyzed. 

D.  FORECASTING USING THE WINTERS MODEL 
(EXPONENTIAL SMOOTHING WITH MULTIPLICATIVE 
SEASONALITY AND LINEAR GROWTH) 
This model is convenient to use with a small amount of initial 
data. The seasonal model of Winters with linear growth has 
the following form: 

x୲ = aଵ,୲f୴౪୩౪
+ ε୲, 

where x୲ - original time series t = 1, 2, ..., n; aଵ,୲ - the parameter 
characterizes the linear trend of the process, i.e., the average 
values of the level of the studied time series x୲ at time t; f୴౪୩౪

 - 
seasonality factor for v୲ phase of the k୲-th cycle; v୲  =
 1,2, . . . , l , where v୲  =  t −  l(k୲ − 1); l - the number of phases 
in the full cycle (in monthly time series l = 12, in quarterly l = 
4, etc.); εt - random error. It is usually assumed that the vector 
ε = N୬(0, σଶI୬), where ε = (εଵ, … , ε୲, … , ε୬); I୬ – unit matrix 
with size of (n × n). 

The adaptive parameters of the model are estimated using 
a recurrent exponential scheme according to the time series xt, 
consisting of n observations: 

⎩
⎪⎪
⎨

⎪⎪
⎧aොଵ,୲ = αଵ

x୲

fመ୴౪,୩౪షభ

+ (1 − α)(αෝଵ,୲ିଵ + αෝଶ,୲ିଵ)

fመ୴౪୩౪
=  αଶ

x୲

aොଵ,୲

+ (1 − αଶ)fመ୴౪୩౪షభ

aොଶ,୲ = αଷ൫aොଵ,୲ − aොଵ,୲ିଵ൯ + (1 − αଷ)aොଶ,୲ିଵ

xො୲
∗ = ൫aොଵ,୲ିத + τaොଶ,୲ିத൯fመ୴౪୩౪ିଵ,
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where aଶ,୲ - the increase of the average level of the series from 
the moment t - 1 to the moment t; xො୲

∗ = xத(t) - the calculated 
value of the time series, which is determined for the time t with 
the warning period τ, i.e., according to the moment (t -τ); αଵ, 
αଶ,αଷ, - parameters of adaptation of exponential smoothing, 
and (0 <αଵ, αଶ, αଷ<1). 

The increase in α୨(j = 1,2,3) leads to an increase in the 
weight of later observations, and a decrease in αj leads to an 
improvement in the smoothing of random deviations. These 
two requirements are in conflict, and the search for a 
compromise combination of values is the task of optimizing the 
model. 

Exponential alignment always requires a preliminary 
estimate of the smoothed value. When the adaptation process 
is just beginning, there should be initial values prior to the first 
observation. In our task it is necessary to define initial 
conditions: aොଵ,;aොଶ,;fመ୴౪,, where v୲ = 1,2, l. Thus, the 
calculated values of xො୲

∗ are a function of all past values of the 
original time series xt, parameters αଵ, αଶ and αଷ initial 
conditions. The influence of the initial conditions on the 
calculated value depends on the value of the weights αj and the 
length of the series preceding the moment t. Impacts of aොଵ,;aොଶ, 
usually decrease faster than fመ୴౪,, aොଵ,୲ and fመଶ,୲ are reviewed at 
each step, but fመ୴,୩

only once per cycle. 
First, by n = 8 observations of the time series xt we find 

the LSM estimate of the linear trend xො୲ = a + a୲t. As a result 
of the calculation, we have 

xො୲ = 492.46 − 8.5476 ∗ t. 
Next, the initial conditions are defined: 

aොଵ, = aො = 492.46;    aොଶ, = aොଵ = −8.5476. 
Multiplicative zero-cycle seasonality coefficients [35] fመ୴౪,  

are defined as the arithmetic mean of seasonality indices x୲ xො୲⁄  
for v୲-th phase in the original time series: 

fመଵ, =
1.031 + 1.070

2
= 1.050;    fመଶ, =

0.999 + 1.059

2
= 1.029; 

fመଷ, =
0.968 + 0.996

2
= 0.982;    fመସ, =

0.906 + 0.972

2
= 0.939. 

 

Figure 9. LSM assessment of a linear trend 

We will perform calculations with adaptation parameters 
aଵ =  0.2; aଶ = 0.3; aଷ =  0.4 and the warning period τ = 1. 
Estimated values for the 1st cycle (k୲ = 1, v୲ = t). 
According to the formula for t = 1 we have: 
xොଵ

∗ = ൫aොଵ, + aොଶ,൯ ∗ fመଵ, = (492.46 − 8.5476) ∗ 1.050
= 508.28 

aොଵ,ଵ = αଵ ∗
xଵ

fመଵ,

+ (1 − αଵ)൫aොଵ, + aොଶ,൯

= 0.2
499

1.050
+ (1 − 0.2)(492.46 − 8.5478) = 482.14 

fመଵ,ଵ = αଶ

xଵ

aොଵ,ଵ

+ (1 − αଶ) ∗ fመଵ,

= 0.3
499

482.14
+ (1 − 0.3) ∗ 1.050 = 1.046 

aොଶ,ଵ = αଷ൫aොଵ,ଵ − aଵ,൯ + (1 − αଷ) ∗ aොଶ,

= 0.4(482.14 − 492.46) + 0.6(−8.5476)
= −9.255 

t = 2 
xොଶ

∗ = ൫aොଵ,ଵ + aොଶ,ଵ൯ ∗ fመଶ, = (482.14 − 9.255) ∗ 1.029
= 486.55 

aොଵ,ଶ = αଵ ∗
xଶ

fመଶ,

+ (1 − αଵ)(aොଵ,ଵ + aොଶ,ଵ)

= 0.2
475

1.029
+ 0.8(482.14 − 9.255)

= 470.64 

fመଶ,ଵ = αଶ

xଶ

aොଵ,ଶ

+ (1 − αଶ) ∗ fመଶ, = 0.3
475

470.64
+ 0.7 ∗ 1.029

= 1.023 
aොଶ,ଶ = αଷ൫aොଵ,ଶ − aଵ,ଵ൯ + (1 − αଷ) ∗ aොଶ,ଵ

= 0.4(470.64 − 482.14) + 0.6(−9.255)
= −10.153 

t = 3 
xොଷ

∗ = (470.64 − 10.153) ∗ 0.982 = 452.32 

aොଵ,ଷ = 0.2
452

0.982
+ 0.8(470.64 − 10.153) = 460.43 

fመଷ,ଵ = 0.3
452

460.43
+ 0.7 ∗ 0.982 = 0.982 

aොଶ,ଷ = 0.4(460.43 − 470.64) + 0.6 ∗ (−10.153)
= −10.179 

t = 4 
xොସ

∗ = (460.43 − 10.179) ∗ 0.939 = 422.58 

aොଵ,ସ = 0.2
415

0.939
+ 0.8(460.43 − 10.179) = 448.63 

fመସ,ଵ = 0.3
415

448.63
+ 0.7 ∗ 0.939 = 0.934 

aොଶ,ସ = 0.4(448.63 − 460.43) + 0.6 ∗ (−10.179)
= −10.825 

Estimated values for the 2nd cycle (k୲ = 2, v୲ = t-4). Here 
we need the seasonality coefficients found for the 1st cycle: 
fመଵ,ଵ = 1.046;    fመଶ,ଵ = 1.023;    fመଷ,ଵ = 0.982;    fመସ,ଵ = 0.934 
t = 5 
xොହ

∗ = ൫aොଵ,ସ + aොଶ,ସ൯ ∗ fመଵ,ଵ = (448.63 − 10.825) ∗ 1.046
= 457.84 

Since xොହ
∗refers to the 2nd cycle (k୲ = 2) when 

choosingfመ୴౪,୩౪ିଵbased on the fact that v୲ = 5-4 = 1 

aොଵ,ହ = 0.2
481

1.046
+ 0.8(448.63 − 10.825) = 442.24 

fመଵ,ଶ = 0.3
481

442.24
+ 0.7 ∗ 1.046 = 1.058 

aොଶ,ହ = 0.4(442.24 − 448.63) + 0.6 ∗ (−10.825) = −9.053 
t = 6 
xො

∗ = (442.24 − 9.053) ∗ 1.023 = 443.15 

aොଵ, = 0.2
467

1.023
+ 0.8(442.24 − 9.053) = 437.85 

fመଶ,ଶ = 0.3
467

437.85
+ 0.7 ∗ 1.023 = 1.036 

aොଶ, = 0.4(437.85 − 442.24) + 0.6 ∗ (−9.053) = −7.187 
t = 7 
xො

∗ = (437.85 − 7.187) ∗ 0.982 = 422.95 

aොଵ, = 0.2
431

0.982
+ 0.8(437.85 − 7.187) = 432.30 

fመଷ,ଶ = 0.3
431

432.30
+ 0.7 ∗ 0.982 = 0.987 
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aොଶ, = 0.4(432.30 − 437.85) + 0.6 ∗ (−7.187) = −6.531. 
t = 8 
xො଼

∗ = (432.30 − 6.531) ∗ 0.934 = 397.88 

aොଵ,଼ = 0.2
412

0.934
+ 0.8(432.30 − 6.531) = 428.79 

fመସ,ଶ = 0.3
412

428.79
+ 0.7 ∗ 0.934 = 0.942 

aොଶ,଼ = 0.4(428.79 − 432.30) + 0.6 ∗ (−6.531) = −5.323 
t = 9 (forecast) 
xොଽ

∗ = ൫aොଵ,଼ + aොଶ,଼൯ ∗ fመଵ,଼ = (428.79 − 5.323) ∗ 1.058
= 448.16 

The calculated values and the forecast txො୲
∗, obtained from 

the time series x୲ are presented in the table above and in 
Figure 10. 

 

Figure 10. Forecasting results based on a third-order 
polynomial model (p = 3) 

From the presented graph we can conclude that the model 
of exponential smoothing with multiplicative seasonality of 
Winters is better than the regression model, but worse than the 
proposed adaptive model. The forecast results of Winters can 
be improved by selecting the optimal values of α. 

E.  PRODUCTION FORECAST BASED ON THE TAYLE-
WAGE MODEL 
The additive modeling [26, 35, 36], which has an independent 
value in economic research, is also interesting because allows 
you to build a model with multiplicative seasonality and 
exponential tendency. This requires the replacement of the 
values of the initial time series by their logarithms, which 
converts the exponential trend into a linear and at the same time 
multiplicative seasonal model into an additive. 

Suppose the observation x୲ refers to the v୲-th phase of the 
k୲-th cycle, where v୲ = t - l (k୲ - l), l is the number of phases in 
the cycle (for the quarterly time series l = 4, and for the monthly 
l = 12). 

The model with additive seasonality and linear growth can 
be represented as 

x୲ = aଵ,୲ + g୴౪୩౪
+ ε୲ 

aଵ,୲ = aଵ,୲ିଵ + aଶ,୲, 
where x୲- the average value of the level of the time series at 
time t after excluding seasonal fluctuations; aଶ,୲- additive 
growth rate from time t-1 to time t;g୴౪୩౪

– additive seasonality 
factor for the vt-th phase of the kt-th cycle; ε୲ - white noise. 

Estimates of model parameters will be sought at smoothing 
coefficients α1, α2, α3, where (0 <α1, α2, α3<1) on the 
following adaptation procedures: 

aොଵ,୲ = αଵ൫x୲ − gො୴౪,୩౪షభ
൯ + (1 − αଵ)(aොଵ,୲ିଵ + aොଶ,୲ିଵ) 

gො ୴౪୩౪
=  αଶ൫x୲ − aොଵ,୲൯ + (1 − αଶ) gො ୴౪,୩౪షభ

 

aොଶ,୲ = αଷ൫aොଵ,୲ − aොଵ,୲ିଵ൯ + (1 − αଷ)aොଶ,୲ିଵ 

xො୲
∗ = aොଵ,୲ିத + τ ∗ aଶ,୲ିத + gො୴౪,୩౪షభ

. 
The initial conditions of exponential smoothing are 

determined by the original time series xt (t = 1,2, ..., n). 
First, on the time series xt, which contains n = 8 

observations, we find the LSM - an estimate of the linear 
regression equation: 

xො୲ = θ + θଵt = 7.0071 − 0.1905t 
aොଵ, = θ = 7.0071;    aොଶ, = θଵ = −0.1905. 

The calculated values of xt and deviations∆୲= x୲ − xො୲ are 
given below. Then the initial values of additive seasonality 
coefficients are equal 

gොଵ, =
0.38 − 0.15

2
= 0.1144 

gොଶ, =
−0.13 − 0.16

2
= −0.1451 

gොଷ, =
−0.34 + 0.33

2
= −0.0046 

gොସ, =
0.05 + 0.02

2
= 0.0359. 

We will perform calculations for adaptation parameters α1 
= 0.1; α2 = 0.4; α3 = 0.3 and the warning period τ = 1. 

First loop: vt = t; kt = 1; τ = 1, initial data for calculation: 
gොଵ, = 0.1144    gො ଶ, = −0.1451    gොଷ, = −0.0046gොସ, =

0.0359. 
According to the formula for t = 1 we have: 

xොଵ
∗ = aොଵ, +  aොଶ, + gොଵ, = 7.0071 − 0.1905 + 0.1144

= 6.93 
aොଵ,ଵ = 0.1 ∗ (7.2 + 0.1144) + (1 − 0.1)

∗ (7.0071 − 0.1905) = 6.844 
gොଵ,ଵ = 0.4 ∗ (7.2 − 6.844) + 0.6 ∗ 0.1144 = −0.211 
aොଶ,ଵ = 0.3 ∗ (6.844 − 7.0071) + 0.7 ∗ (−0.1905) = −0.182 
t = 2 
xොଶ

∗ = 6.844 − 0.182 − 0.1451 = 6.52 
aොଵ,ଶ = 0.1 ∗ (6.5 + 0.1451) + 0.9 ∗ (6.844 − 0.182)

= 6.6595 
gොଶ,ଵ = 0.4 ∗ (6.5 − 6.6595) + 0.6 ∗ (−0.1451) = −0.1508 
aොଶ,ଶ = 0.3 ∗ (6.6595 − 6.844) + 0.7 ∗ (−0.182) = −0.183 
t = 3 
xොଷ

∗ = 6.6595 − 0.183 − 0.0046 = 6.472 
aොଵ,ଷ = 0.1 ∗ (6.1 + 0.0046) + 0.9 ∗ (6.6595 − 0.183)

= 6.4394 
gොଷ,ଵ = 0.4 ∗ (6.1 − 6.4394) + 0.6 ∗ (−0.0046) = −0.1385 
aොଶ,ଷ = 0.3 ∗ (6.4394 − 6.6595) + 0.7 ∗ (−0.183) = −0.194 
t = 4 
xොସ

∗ = 6.4394 − 0.194 + 0.0359 = 6.281 
aොଵ,ସ = 0.1 ∗ (6.3 − 0.0359) + 0.9 ∗ (6.4394 − 0.194)

= 6.2472 
gොସ,ଵ = 0.4 ∗ (6.3 − 6.2472) + 0.6 ∗ 0.0359 = 0.0427 
aොଶ,ସ = 0.3 ∗ (6.2472 − 6.4394) + 0.7 ∗ (−0.194) = −0.194 

Second loop: vt = t-4; kt = 2. Initial data for calculation: 
gොଵ,ଵ = 0.211    gොଶ,ଵ = −0.1508    gොଷ,ଵ = −0.1385gො ସ,ଵ

= 0.0427 
t = 5 
xොହ

∗ = 6.2472 − 0.194 + 0.211 = 6.265 
aොଵ,ହ = 0.1 ∗ (5.9 − 0.211) + 0.9 ∗ (6.2472 − 0.194)

= 6.0172 
gොଵ,ଶ = 0.4 ∗ (5.9 − 6.0172) + 0.6 ∗ 0.211 = 0.0799 
aොଶ,ହ = 0.3 ∗ (6.0172 − 6.2472) + 0.7 ∗ (−0.194) = −0.204 
t = 6 
xො

∗ = 6.0172 − 0.204 − 0.1508 = 5.662 
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aොଵ, = 0.1 ∗ (5.8 + 0.1508) + 0.9 ∗ (6.0172 − 0.204)

= 5.8165 
gොଶ,ଶ = 0.4 ∗ (5.7 − 5.8165) + 0.6 ∗ (−0.1508) = −0.1371 
aොଶ, = 0.3 ∗ (5.8165 − 6.0172) + 0.7 ∗ (−0.204) = −0.203 
t = 7 
xො

∗ = 5.8165 − 0.203 − 0.1385 = 5.475 
aොଵ, = 0.1 ∗ (6 + 0.1385) + 0.9 ∗ (5.8165 − 0.203)

= 5.6658 
gොଷ,ଶ = 0.4 ∗ (6 − 5.6658) + 0.6 ∗ (−0.1385) = 0.0352 
aොଶ, = 0.3 ∗ (5.6658 − 5.8165) + 0.7 ∗ (−0.203) = −0.188 
t = 8 
xො଼

∗ = 5.6658 − 0.188 + 0.0427 = 5.521 
aොଵ,଼ = 0.1 ∗ (5.5 + 0.0427) + 0.9 ∗ (5.6658 − 0.188)

= 5.4761 
gොସ,ଶ = 0.4 ∗ (5.5 − 5.4761) + 0.6 ∗ 0.0427 = 0.0352 
aොଶ,଼ = 0.3 ∗ (5.4761 − 5.6658) + 0.7 ∗ (−0.188) = −0.188 
t = 9 (forecast) 
xොଽ

∗ = aොଵ,଼ + aଶ,଼ + gଵ,ଶ = 5,4761 − 0,188 + 0,799 = 5,368 
As estimates gො ୴౪, takes the average values of the 

deviations ∆୲= x୲ − xො୲, corresponding to the vt-th phase of the 
original time series, where v୲  =  1, 2, . . . , l. 

Calculated according to the Tayle-Wage model, the values 
of the time series xො୲

∗are presented in Figure 11, where they are 
presented with the original time series xଵ. 

 

Figure11. Forecasting results using the Tayle-Wage model 

The graph shows that our forecast is not that far from the 
original series and that it maintains the trends. 

The comparison of the proposed forecasting model 
DIAAMMFTS with existing models is given in Table 4. Mean 
Squared Error (MSE) [29 – 30] is used for all the models. 

Table 4. The comparison of forecasting models 

Model MSE 
DIAAMMFTS 0.23 

Tayle-Wage model 0.31 
Winters model 0.39 

The error values are in squared units of the predicted values. 
A mean squared error of zero indicates perfect skill, or no error. 

IV. CONCLUSIONS 
In this work the different adaptive methods are analyzed. 

The Data Interpretation Algorithm for Adaptive Methods of 
Modeling and Forecasting Time Series (DIAAMMFTS) is 
developed in the paper. This method is based on 5-steps 
procedure and shows promising forecast skill. 

Also, we have implemented a program that builds models 
using these methods. Based on the obtained results and the 

characteristics of the models calculated by the program, the 
results are analyzed and a comparison of the methods used in 
the work was carried out, on the basis of which a conclusion is 
made about the most efficient models for each specific 
situation. 

The results of this work are as follows: 
- time series is investigated and characteristics that 

affect the adequacy and accuracy of models are identified; 
- characteristics of time series dynamics that influence 

the choice of forecasting model are determined; 
-  new data interpretation algorithm for adaptive 

methods of modeling and forecasting time series is developed; 
- the comparison with Winters model and Tayle-Wage 

model shows a good quality of the proposed predictive model; 
-  a program is implemented that builds models and 

calculates forecasts by adaptive methods; 
- the adaptive polynomial models used sequentially 

allow increasing the prediction accuracy. 
The implemented program showed good results, which 

allows us to conclude that these adaptive models are effective 
in predicting economic or conventional computational 
processes. 

The model of exponential smoothing with multiplicative 
seasonality of Winters is better than the regression model, but 
worse than the proposed adaptive model. The forecast results 
of Winters can be improved by selecting the optimal values of 
α. 
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