

328 VOLUME 22(3), 2023

 Date of publication SEP-30, 2023, date of current version JUL-05, 2023.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.22.3.3227

Vector-deductive Faults-as-Address
Simulation

Anna Hahanova
Kharkov National University of Radio Electronics, Kharkiv, 61166, Ukraine

Corresponding author: Anna Hahanova (e-mail: hahanov@icloud.com).

 ABSTRACT The main idea is to create logic-free vector simulation, based on only read-write transactions on address
memory. Stuck-at fault vector simulation is leveraged as a technology for assessing the quality of tests for complex IP-
cores implemented in Field Programmable Gate Array (FPGA), Application-Specific Integrated Circuit (ASIC). The
main task is to implement new simple and reliable models and methods of vector computing based on primitive read-
write transactions in the technology of vector flexible interpretive fault simulation. Vector computing is a computational
process based on read-write transactions on bits of a binary vector of functionality, where the input data is the addresses
of the bits. A vector-deductive method for the synthesis of vectors for propagating input fault lists is proposed, which
has a quadratic computational complexity. Analytical expressions of logic that require algorithmically complex
computing are replaced by vectors of output states of elements and digital circuits. A new matrix of deductive vectors
is synthesized, which is characterized by the following properties: compactness, parallel data processing based on a
single read–write transaction in memory, exclusion of traditional logic from fault simulation procedures, full
automation of its synthesis process, and focus on the technological solving of many technical diagnostics problems. A
new structure of the sequencer for vector deductive fault simulation is proposed, which is characterized by ease of
implementation on a single memory block. It eliminates any traditional logic, uses data read-write transactions in
memory to form an output fault vector, uses data as addresses to process the data itself.

 KEYWORDS vector computing; vector form of logic; matrix of deductive vectors; deductive-vector fault-as-address

simulation; read-write transaction; vector model of input faults; functions and structures; sequencer of vector deductive
fault simulation.

I. INTRODUCTION
he motivation for the research is defined by the following
factors: the use of elementary read-write transactions in

memory-driven computing based on a vector description of
logic, memory redundancy for storing interpretive flexible
logic models, the use of data as addresses to increase the speed
of deductive simulation, transfer of computing to a lower level
of computational processes (read-write transaction), where the
von Neumann architecture and the Post-Jablonski theorem
about functional completeness can be ignored [1, 2]. The
essence of vector computing is read-write transactions on
vector data structures in address memory. The relevance of this
direction can be seen from the latest Gartner Hype Cycle 2022,
which highlighted Computational Storage (CS) as a trigger
trend of transferring data processing from the CPU to the
memory where they are located [3]. Big data must be processed
where it is stored.

One of these solutions is vector computing that is a
computational process based on read-write transactions on the
bits of a binary vector of functionality that forms
Computational Storage, where the input data (Conventional
Memory) are bit addresses. Data (fault vectors) in the proposed

vector-deductive simulation method are used as addresses for
processing the data itself.

The input data models can be represented (Fig. 1) by
follows: 1) sets – they are compact data that require a complex
and sequential algorithm for processing inputs. 2) vectors,
which provide unitary data coding, use a parallel register
algorithm for data processing and sequential algorithm for
processing inputs. 3) addresses, which provide a compact
encoding of unitary data and a sequential algorithm for their
processing by read-write transactions in memory free of logic
and processor with parallelism in address columns.

In design and test, three main forms of describing processes
and phenomena are used: tabular and analytical forms, and
graphs [4-9]. In this case, the matrix (table) and the vector are
two forms of describing models that pass into each other. A
vector (binary, multi-valued) is a compact representation of a
truth table in the form of an ordered sequence of output states,
if the input address components are sorted in ascending order
[10-13]. If necessary, the matrix, can be transformed into a one-
dimensional vector for the convenience of parallel data
processing in register memory. Naturally, it is enough to simply

T

Anna Hahanova et al. / International Journal of Computing, 22(3) 2023, 328-334

VOLUME 22(3), 2023 329

restore the table or matrix from the vector description form of
the process or phenomenon.

Figure 1. Input data models

Further, a vector is used as the simplest form of describing
functions and structures [14-19], which is focused on
placement in address memory (CS).

Several approaches were proposed [20-23] to testing (Built-
in self-test, BIST), diagnosing and repairing the memory
structures based on redundancy, as well as to constructing and
evaluating redundancy analysis algorithms based on preference
vectors for memory devices with spare elements. Experiments
on the use of new algorithms for self-testing and repair (STAR)
of SRAM memory have shown the effectiveness of the
proposed approach. There is a trend: all design and test,
diagnosis and repair problems are technologically solved more
simply on regular memory for processing big data, than on a
classic computer that uses a standard ALU-based processor.
The bottleneck of a classical computer is the communication
channel between a slow memory and a fast logical processor.
At present, memory performance has increased tenfold, so the
communication channel with the logical processor is becoming
an unacceptable obstacle to improving the performance of
computer architecture. The solution is to transfer all
calculations to memory, remove the logical processor from the
computer architecture, at the same time solving the problem of
bottlenecks in the interaction between memory and the logical
processor (Y. Zorian, Yerevan, 2007 IEEE EWDTS).

It is necessary to transfer to memory-driven computing,
where the function of logic should be performed by memory
elements with vectors written in it. Such computing is as close
as possible to quantum parallel computing in terms of data
structures, but not on quantum logic, which creates big
problems, but on read-write transactions in quantum memory.

Efficient fault simulation algorithms [24–26] for
combinational circuits have been known for several decades.
However, sequential failure simulation, which is often used in
testing and fault tolerance applications, remains a very time-
consuming problem, especially for large circuits. A new
deductive method is proposed for simulating errors at the RTL
level and in the system model of high-level decision diagrams.
Simulation acceleration is achieved through efficient data
structures implemented to perform a set of operations in the
deductive fault simulation algorithm. Experiments on RTL
reference circuits show that this method achieves up to two
orders of magnitude reduction in operating time compared to
failure simulation at the gate level. Raimund Ubar singles out
deductive simulation as the most elegant mathematical
apparatus, which has good prospects for processing complex
digital circuits.

The implementation of the deductive method on vector data
structures placed in memory has no analogues in terms of
processing speed of complex digital elements due to significant
memory redundancy. The method has the potential to be
implemented in digital and quantum circuits for fault
simulation, test quality assessment, diagnosis, and error
elimination.

General conclusions are represented below. The crisis of
modern computing is associated with two problems: processing
big data by an insolvent processor-memory pair, as well as a
catastrophic increase in power consumption by global
computing processes on modern microelectronics. Solving the
first problem is based on the following axioms: All data is in
memory. There is no logic that cannot be implemented in
memory. There is no data that cannot be used as addresses to
be processed in the memory, where the logic resides. There is
no logic or functionality that cannot be implemented with a
read-write transaction on memory. The most technologically
advanced memory data structure is a vector or matrix, available
for fast read-write transactions. Solving the second problem is
based on hypotheses: quantum computing should be based on
memory free of quantum logic and qubits. Memory must be
stable subatomic particles. Computational processes should be
based on quantum transactions between memory elements. The
source of energy for such a computer is daylight. The speed of
such a computer is determined by the light speed of quantum
transactions between memory elements. Such a hypothetical
computer is the meeting point of quantum (seeking
determinism) and classical (seeking light speed) computing in
the future.

The goal is to develop a vector-deductive fault simulation
method based on primitive read–write transactions for
analyzing logic circuits. Objectives: 1) Development of a
method for synthesizing a matrix of deductive vectors for
propagating input fault vectors to the element output. 2)
Development of a sequencer structure for simulating faults of
digital circuits based on a primitive read-write transaction of
matrix memory, where combinations of faults are addresses. 3)
Verification and testing of models and methods for
synthesizing matrices of deductive vectors and a sequencer for
deductive fault analysis in digital elements and circuits.

II. DEDUCTIVE VECTOR MATRIX SYNTHESIS METHOD
FOR FAULT SIMULATION
Induction is drawing logical conclusions from the particular to
the general, where the correctness is guaranteed by a sufficient
or exhaustive amount of factual data. It is mother of artificial
intelligence. Deduction is drawing logical conclusions from the
general to the specific, where the correctness is guaranteed by
the truth of the initial axioms leading to the truth of the
consequences-theorems. It is the mother of deterministic
computing. The mathematical basis of deductive fault
simulation consists in propagating binary combinations of
input defects to the output on a given input set according to the
following formula: L= T⨁F. The essence of deductive
simulation is to change the logic of the element F depending on
the input conditions T. Deductive simulation, proposed exactly
50 years ago by Armstrong [27], is still the most elegant and
effective tool for analyzing the quality of tests and synthesizing
tables for detecting faults, tracing the path propagation of the
fault. Further, its implementation is proposed based on the
vector form of the logic description [10–12], which excludes
logical analytical forms and makes it possible to significantly

 Anna Hahanova et al. / International Journal of Computing, 22(3) 2023, 328-334

330 VOLUME 22(3), 2023

simplify the algorithms for the synthesis of deductive models
and their application for interpretative modeling digital
elements and large-scale circuits.

The goal of this research is to remove all analytical
expressions of deductive logic that appeared in most works [4-
9] devoted to deductive simulation. It is possible and necessary
to use only the deductive vector of fault simulation. Very often
the form of the model determines the content, compactness, and
speed of the analysis procedures. The basic methods of
deductive simulation [5-14] were reduced to the synthesis of
deductive analytic forms (DNF). Information about the logical
element was represented by a truth table or a logical expression.
But in any case, explicitly or implicitly, the equation of
technical diagnostics L=T⊕ 𝐹 was used to obtain deductive
forms of fault simulation. Further, a new method for the
synthesis of deductive vectors is proposed, which is reduced to
the analysis of output state vector of a logical element free of a
truth table.

The method for synthesizing deductive vectors using a
vector form of any logic functionality (Q-vector) has the
following two steps:

1) Modification of the Q-vector of the element (Fig. 3) on
the input i-set according to the rule: L=Q⨁𝑌௜ . Here 𝑌௜ is the state
of the logical element output on the input set 𝑥௜.

2) Determination of the deductive vector for the i-input set
by the formula: D୨ = Lୌ౟ౠ

, j = 1, 2௡തതതതതതത , which permutes the bits

according to the following permutation matrix H, which can be
easily obtained through recursion:

The algorithm ends when all deductive vectors for all input

2௡ sets have been generated. Thus, the matrix of deductive
vectors is obtained based on the execution of the following
operator D=(𝑄⨁𝑌)ு that is a result of the superposition of the
operators: L=Q⨁Y and D=𝐿ு. The synthesis of matrices of
deductive vectors for 2-input based logic is shown in Fig. 2.

Figure 2. Synthesis of deductive vectors for 2-input based
logic

It should be noted that the synthesis of deductive formulas
for mutually inverse elements Q=0110 and Q=1001 gives the
same values of the matrix of deductive vectors, which
degenerate into one vector 0110 on all input sets. The
computational complexity of executing this operator is С=
2× 2௡ × 2௡ = 2ଶ௡ାଵ. In the case of parallel execution of

register operations on vectors, the computational complexity of
this operator will be equal to С= 2× 2௡.

III. SYNTHESIS OF DEDUCTIVE VECTORS OF GATE
AND RTL LOGIC
The process of building deductive models of the main logic
elements is also of great interest, which can be used as a library
for creating and analyzing circuits. Below are tables for the
synthesis of deductive vectors to check the quality of tests of
logical circuits. The most primitive elements are the inverter
(Q=10) and the repeater (Q=01). Even though these are
different elements, they have the same deductive vectors,
which allow providing digital logical activity to transport the
fault vector from input to output without distorting it.

The next Frame is devoted to the process of synthesizing
deductive formulas for a three-input logic element given by the
vector coverage 10000001 (Fig. 3). Such an element should be
considered as a black box or Register Transfer Level (RTL) of
function representation in relation to its structure, which can be
implemented differently when specifying its behavior in a
vector. Here, the result of propagating lists of activities from
the input to the output of this element is of interest. In this case,
it is not important which paths are involved within a particular
implementation of a logical element. Nevertheless, the
synthesis of deductive formulas for this element showed that
on all input actions the activity propagation formula has the
same value on pairs of sets: 1–16 and 5–6. The remaining sets,
having symmetry, are not repeated in the matrix of deductive
vectors. Here and below, the zero coordinates of the matrices L
and D are represented by empty cells for the purpose of
figurative perception of information.

Figure 3. Synthesis of deductive vectors for one-input 10 and
01 and three-input 10000001–elements

The following circuit (Fig. 4) has the property that the
deductive vectors in the generated matrix of deductive vectors
MDV are the same and equal to 00110011. The analytic form
of such a vector after elementary transformations is D=𝑋ଶ on
all input sets. This means that two of the three functionality
variables are non-essential and cannot be activated by input
faults.

Figure 4. Synthesis of deductive vectors for a three-input
11001100–element

Increasing the number of inputs of RTL functional element
leads to an increase in simulation performance since more input
fault vectors are simulated in parallel to obtain an output fault

Hij(n =1, 2,3) = 0 1
1 0

é
éé

é
éé
®

0 1
1 0

é
éé

é
éé

2 3
3 2

é
éé

é
éé

2 3
3 2

é
éé

é
éé

0 1
1 0

é
éé

é
éé

®

0 1
1 0

é
éé

é
éé

2 3
3 2

é
éé

é
éé

2 3
3 2

é
éé

é
éé

0 1
1 0

é
éé

é
éé

4 5
5 4

é
éé

é
éé

6 7
7 6

é
éé

é
éé

6 7
7 6

é
éé

é
éé

4 5
5 4

é
éé

é
éé

4 5
5 4

é
éé

é
éé

6 7
7 6

é
éé

é
éé

6 7
7 6

é
éé

é
éé

4 5
5 4

é
éé

é
éé

0 1
1 0

é
éé

é
éé

2 3
3 2

é
éé

é
éé

2 3
3 2

é
éé

é
éé

0 1
1 0

é
éé

é
éé

Anna Hahanova et al. / International Journal of Computing, 22(3) 2023, 328-334

VOLUME 22(3), 2023 331

vector. The use of 8-input element improves simulation
performance by a factor of 11 compared to its structural gate
equivalent. In general case, the improvement in simulation
performance for RTL circuits having n inputs, compared with
the analysis of the DNF structure of two-input gates, is given
by the following formula: Q =

୬

ଶ
+ n–1, n= 4, 8, 16 …

The technological simplicity of the algorithm for
synthesizing the H-matrix of coordinate permutation H୧=

ቈ
Hଵ

୧ିଵ Hଶ
୧

Hଷ
୧ Hସ

୧ିଵ
቉ is of interest, i=1,2,3… is number of input

variables, which has 3 items:
1) the first and fourth quarters of the matrix are taken from

the previous recursive calculation of the matrix for n=i–1
variable, here the following equalities are satisfied: Hଵ

୧ିଵ =

Hସ
୧ିଵ, Hଶ

୧ିଵ = Hଷ
୧ିଵ;

2) the second quarter of the matrix is found based on the
following expression (Fig. 5):

H୧,୨ାଶ೙షభ = (2௡ − 1) − H୧,ଶ೙షభି୨, j = 0,2௡ିଵ–1,i=

0,2௡ିଵ– 1;
3) the third quarter of the matrix is found by copying the

second part of the matrix into the third area Hଷ
୧ = Hଶ

୧ .

Figure 5. Synthesis of vector recoding matrix D=L(H)

Despite the technological simplicity of the proposed
method for synthesizing a matrix of deductive vectors, this
approach has an obvious drawback associated with the
dimension of the tables with many input variables. It can be
eliminated if only one deductive vector is promptly generated
on the input test set to simulate faults. To do this, you just need
to use a single operator D୧=(Q⨁Y୧)ୌ౟ౠ

, described earlier. The

computational complexity of this procedure is equal to 2୬, n is
the number of variables in the logical element, which is
determined by permuting the bits in the Q-vector of H-matrix
to obtain the D-vector. In this case, the deductive simulation of
faults will not differ much in speed from the fault-free
simulation of a digital circuit. The processing time delta of one
logic element ∆T=TD–TG=tD+tF=2௡ାଵ will be represented by
the deductive vector generation time tD and plus the processing
time of input fault vectors tF.

IV. VECTOR–DEDUCTIVE SEQUENCER
The matrix of deductive vectors is a certain redundancy of a
digital project, which is the cost for a fast and technological
solution to the problem of assessing the quality of test patterns
and generating a fault functions table to detect faults at the stage
of a digital product functioning. The proposed matrix of
deductive vectors has the following properties: 1) compactness;
2) parallel data processing; 3) technological placement in

address memory; 4) data uniformity in size and properties; 5)
simultaneous simulation of fault-free behavior of the element
and all faults of previous elements; 6) focus on the technological
solution to the problems of simulation, testing, and diagnostics
of any logical systems.

The vector sequencer of deductive simulation on a memory
block (Fig. 6) is the simplest implementation of computing
device for deductive fault simulation of a digital circuit
(element) to assess the quality of the tests in the class of single
stuck-at faults. The main and single memory block stores a
matrix of deductive vectors, which has a dimension of 2௡ × 2௡,
where the first number is the number of deductive vectors for a
logical element of n-variables, the second one is the dimension
of each vector. Therefore, the first macro input of the memory
block Vector address has n binary variables that allow
addressing any of the 2௡ deductive vectors of the matrix. The
second macro input of the memory block Byte address also has
n, but they are already register binary variables, which allow
addressing any of the 2௡ bits of the vector, selected by the first
macro input, by their binary combination. The output of the
memory block Fault list has a bit width equal to the second
macro input, determined by the power of the simulated input
faults that must be propagated through the element of the digital
structure.

Figure 6. Vector sequencer of deductive simulation
implemented in the memory block

There is a one-to-one correspondence between the
components of the two schemes (Mathematic structure →
Memory structure): Input set → Vector address, Input fault
vectors → Bit address, Deductive vector matrix → Deductive
vector matrix memory, Output fault vector → Read memory
cells vector. Here, the input binary set (data) entered in the gate
is interpreted as the address to access the deductive vector in
matrix memory. The vector of output faults propagated from
element inputs is formed by reading the coordinates of a
deductive vector placed in matrix memory. Unusual or
paradoxical is the fact that combinations of bits of input fault
vectors (data) act as addresses of deductive vector bits for
reading them from memory. Simply put, the faults (input data)
are used as addresses to read the deductive vector bits from the
matrix memory to form the output fault vector.

The metric of a functional n-input element F, represented
by a vector of 2௡ states of output coordinates and its deductive
model DF, represented by MDV matrix of 2௡ deductive vectors
with a dimension of 2௡ binary coordinates, is shown in Fig. 7.

 Anna Hahanova et al. / International Journal of Computing, 22(3) 2023, 328-334

332 VOLUME 22(3), 2023

Figure 7. Metrics of functional and deductive elements

Here, the Bit address for the deductive element MDV is
formed by the same-named coordinates or bits of the input fault
vectors, and the Vector address is formed by the input binary
set entered on the inputs of the functional element. The bit
address for the functional element F is formed by the input
binary word or set.

Thus, the ratio of the two models by memory is as follows:
F/DF=2௡/(2௡ × 2௡)=1/2௡. The computational complexity of
synthesizing a matrix of deductive vectors is estimated by the
following expression: Q=n× 2௡ + 2௡ × 2௡, the first term
determines the complexity of generating address-disordered
input variables of the deductive vectors in register operations
on vectors, the second term determines the complexity of the
coordinate operations for reducing the bits of deductive vectors
according to the order of the binary addresses, composed by
input variables. The computational complexity of the analysis
of the matrix of deductive vectors when performing deductive
simulation is Q=k× 𝑅, where k is the dimension of the input
fault vectors, R is the duration of the operation of reading the
contents of the addressable bit of the deductive vector from the
MDV memory. The significant deductive redundancy of the
project pays for the quality and reliability of the digital system,
which also allows generating tests, evaluating their quality, and
solving any problems related to diagnosing faults in the design
and operation of a digital device in critical areas of human
activity.

V. VERIFICATION OF THE VECTOR-DEDUCTIVE
METHOD FOR FAULT SIMULATION
An example of vector-deductive simulation of the circuit C17
from ISCAS library with reconvergent fan-outs (2,7,8) on one
input set 11111 is represented by a table (Fig. 8). In this case, a
class of single stuck-at faults is considered, which are tied to
input, internal or output lines (of the same potential) of the
circuit.

Any line fault that is detected by this test is marked by one
in the coordinate of the fault simulation table. The actual fault
of the line will always be the inverse of its fault-free state.
Vectors are also used to simulate the fault-free behavior of the
circuit. This circuit uses one vector Q=1110, which is used to
simulate all elements of the circuit. The procedure of vector
interpretive memory-driven fault-as address simulation is
described in [15, 17, 19]. In publication [20] the authors
considered faults as sets or vectors.

Figure 8. Vector–deductive simulation of C17 on the input set
11111

The right side of the table contains a matrix of deductive
vectors for the convenience of manual simulation. The input
word 𝑥ଵ𝑥ଶ on the circuit element (00,01,10,11) forms the
address of the deductive vector, the coordinates of which are
chosen by a pair of values of the input fault vectors to generate
the output list of detected faults. The preparation of the fault
simulation table consists in setting unit values along the
diagonal of the matrix. Empty matrix coordinates denote zeros.
The simulation ends when all fault vectors are sequentially
generated for all 12 lines of the circuit. In fact, this means
processing all seven circuit elements. The processing of the
element with output 12 for generating the output fault list is
shown in more detail in Fig. 9.

Figure 9. Vector–deductive simulation of an element with an
output of 12 on an input set of 10

Here, the logical values of the inputs (10,11) = 10 select the
deductive simulation vector 0100. By successively reading the
coordinates of this vector, an output fault list is formed based
on the addresses generated by the corresponding pairs of
coordinates (11→ 0, 11→ 0, 01→ 1, 00→ 0, 00→ 0, 10→ 0,
01→ 1, 01→ 1, 01→ 1, 10→ 0, 01→ 1, 00→ 0) of two input
fault lists. The unit at the output of the processed element
marked in red in the table is the dominant value at the output of
the simulated component. Otherwise, a fault at the output of the
simulated element is always detected. Therefore, the diagonal
coordinate of the matrix with the number M୧୨,i = j does not

need to be simulated as an input fault. The computational
complexity of the proposed vector-deductive method is
determined by the parameters of the following metric:

Anna Hahanova et al. / International Journal of Computing, 22(3) 2023, 328-334

VOLUME 22(3), 2023 333

Q=
ଵ

ଶ
×k× 𝑛ଶ, where k is the time to read a vector bit from

memory; n is the number of lines in the circuit; 1/2 is half of
the simulation table. Another simulation example is shown in
Fig. 10.

Figure 10. Vector–deductive simulation of a circuit on an

input set 11001.

The test set 11001 0110110 detects 9/24=37.5% of the
faults, which are determined by inversion to the states vector
(the fault-free state) of the circuit lines, which is needed only
to decoding single stuck-at faults detected on the circuit lines.
Based on the results of simulating input binary vectors, a matrix
of fault coverage by test sets is generated, which for two
simulated vectors has the following form (Fig. 11):

Figure 11. Fault coverage matrix

The symbol x = {0,1} denotes a detection on the line ≡0
and ≡1. The test is considered complete if all coordinates in the
coverage line are equal to the x symbol. The method uses vector
data structures, which makes it interesting from the point of
view of its implementation in computer memory or built-in
specialized hardware device. The deductive simulator is free of
traditional logic and uses the coordinates of the input fault
vectors as bit addresses of the deductive vectors that form the
output fault list to be detected. The simulator is easily
implemented in any memory, including at the quantum level,
where only one read-write transaction is required. The
paradigm of interpreting data as addresses can be promising
when processing large data using read-write transactions on
memory free of traditional logic and powerful expensive
processors. The idea could create a new type of deterministic
quantum computing free of qubits and quantum logic, based on
photonic transactions on a stable quantum atomic memory.

VI. CONCLUSIONS
A certain step has been taken towards the creation of logic-free
vector memory-based computing, using only read-write

transactions on address memory. A failure-driven management
metric T ⊕ F ⊕ L = 0, proposed in [18, 20], allows
formalizing all known processes for creating computing,
including design, test, and deductive fault simulation.

Based on the metric, innovative solutions are proposed
below. The advantages of the vector model for a compact
description of processes, phenomena, functions and structures
are determined. Analytical formulas and tabular models that
require algorithmically complex computing analyzers are
replaced by vector data structures for describing functional and
deductive logic.

A vector-deductive method for the synthesis of vectors
(instead of formulas) for propagating input fault vectors is
proposed, which has a quadratic computational complexity of
register operations. A new matrix of deductive vectors is
proposed, which is characterized by the following properties:
compactness, interpretability and flexibility of models written
to memory, parallel data processing based on a single read-
write transaction in memory, technological placement in
address memory, uniformity of data in size and properties,
exclusion of fault-free simulation of the element, exclusion of
traditional logic from fault simulation procedures, complete
automation of the process of deductive vector matrix synthesis,
focus on the technological solving all problems of technical
diagnostics.

A new structure of the vector deductive fault simulation
sequencer is proposed, which is characterized by ease of
implementation on a single memory block, free of any
traditional logic, uses data read-write transactions in memory
to form the output fault vector, uses data as addresses to process
the data itself. The method can be used for parallel processing
big data, which is interpreted as cell addresses of deductive
and/or logical vectors that compose the computational memory
on which read-write transactions but not logic ones are
performed. The method can be the basis for a new deterministic
quantum logic-free computing based on the execution of
photonic (quantum) transactions on a structure of stable
subatomic particles considered as memory. In addition, the
proposed method can effectively solve the problem of
recognizing any activity in the cyber-physical space.

The implementation of vector deductive logic models in the
FPGA LUT will allow one to obtain the performance of fault
simulation of real SoC digital blocks at the level of hundreds of
nanoseconds [28, 29].

References

[1] C. E. Shannon, “Von Neumann's contributions to automata theory,”
Bulletin American Mathematical Society, vol. 64, 1958, in Claude E.
Shannon: Collected Papers, IEEE, pp.831-835, 1993.
https://doi.org/10.1090/S0002-9904-1958-10214-1.

[2] M. Davis, “Emil Post's contributions to computer science,” Proceedings
of the Fourth Annual Symposium on Logic in Computer Science, 1989,
pp. 134-136.

[3] What’s New in the 2022 Gartner Hype Cycle for Emerging Technologies,
August 10, 2022.

[4] What’s New in the 2022 Gartner Hype Cycle for Emerging Technologies.
Aug. 10, 2022. [Online]. Available at:
https://www.gartner.com/en/articles/what-s-new-in-the-2022-gartner-
hype-cycle-for-emerging-technologies

[5] M. Abramovici, Digital System Testing and Testable Design, Comp. Sc.
Press, 1998.

[6] N. Takahashi, N. Ishiura and S. Yajima, “Fault simulation for multiple
faults by Boolean function manipulation,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 13, no.
4, pp. 531-535, 1994. https://doi.org/10.1109/43.275363.

 Anna Hahanova et al. / International Journal of Computing, 22(3) 2023, 328-334

334 VOLUME 22(3), 2023

[7] M. Srivastava, S. K. Goyal, A. Saraswat and G. Gangil, “Simulation
models for different power system faults,” Proceedings of the 2020 IEEE
International Conference on Advances and Developments in Electrical
and Electronics Engineering (ICADEE), pp. 1-6, 2020,
https://doi.org/10.1109/ICADEE51157.2020.9368915.

[8] Menon and Chappell, “Deductive fault simulation with functional
blocks,” IEEE Transactions on Computers, vol. C-27, no. 8, pp. 689-695,
1978, https://doi.org/10.1109/TC.1978.1675175.

[9] I. Pomeranz and S. M. Reddy, “Forward-looking fault simulation for
improved static compaction,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 20, no. 10, pp. 1262-
1265, 2001, https://doi.org/10.1109/43.952743.

[10] Z. Navabi, Digital System Test and Testable Design. Using HDL Models
and Architectures, Springer, 2011. https://doi.org/10.1007/978-1-4419-
7548-5.

[11] I. Pomeranz and S. M. Reddy, "Hazard-Based Detection Conditions for
Improved Transition Fault Coverage of Functional Test
Sequences," 2009 24th IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems, Chicago, IL, USA, 2009, pp. 358-366,
https://doi.org/10.1109/DFT.2009.11.

[12] M. Zolfy, S. Mirkhani and Z. Navabi, "Adaptation of an event-driven
simulation environment to sequentially propagated concurrent fault
simulation," Proceedings Design, Automation and Test in Europe.
Conference and Exhibition 2001, Munich, Germany, 2001, pp. 823,
https://doi.org/10.1109/DATE.2001.915173.

[13] S. Moazzeni, A. Emami and S. Poormozaffari, "An Optimized
Simulation-Based Fault Injection and Test Vector Generation Using
VHDL to Calculate Fault Coverage," 2009 10th International Workshop
on Microprocessor Test and Verification, Austin, TX, USA, 2009, pp.
55-60, https://doi.org/10.1109/MTV.2009.22.

[14] I. Pomeranz and S. M. Reddy, "Unspecified Transition Faults: A
Transition Fault Model for At-Speed Fault Simulation and Test
Generation," in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 27, no. 1, pp. 137-146, Jan. 2008,
https://doi.org/10.1109/TCAD.2007.907000.

[15] L. Wu, M. K. Hussain, S. Abughannam, W. Müller, C. Scheytt and W.
Ecker, "Analog fault simulation automation at schematic level with
random sampling techniques," 2018 13th International Conference on
Design & Technology of Integrated Systems In Nanoscale Era (DTIS),
Taormina, Italy, 2018, pp. 1-4,
https://doi.org/10.1109/DTIS.2018.8368549.

[16] V. I. Hahanov, S. M. Hyduke, W. Gharibi, E. I. Litvinova, S. V.
Chumachenko and I. V. Hahanova, “Quantum models and method for
analysis and testing computing systems,” Proceedings of the 2014 11th
International Conference on Information Technology: New Generations,
Las Vegas, NV, 2014, pp. 430-434,
https://doi.org/10.1109/ITNG.2014.125.

[17] M. Karavay, V. Hahanov, E. Litvinova, H. Khakhanova and I. Hahanova,
“Qubit fault detection in SoC logic,” Proceedings of the 2019 IEEE East-
West Design & Test Symposium (EWDTS), Batumi, Georgia, 2019, pp. 1-
7, https://doi.org/10.1109/EWDTS.2019.8884475.

[18] V. Hahanov, Cyber Physical Computing for IoT-driven Services, New
York, Springer 2018. https://doi.org/10.1007/978-3-319-54825-8.

[19] V. Hahanov, I. Yemelyanov, V. Obrizan and I. Hahanov, “‘Quantum’
diagnosis and simulation of SoC,” Proceedings of the 2015 XI
International Conference on Perspective Technologies and Methods in
MEMS Design (MEMSTECH), 2015, pp. 58-60.

[20] V. Hahanov, E. Litvinova, O. Shevchenko, S. Chumachenko, H.
Khakhanova and I. Hahanov, “Vector models for modeling logic based
on XOR-relations,” Proceedings of the 2022 IEEE 16th International

Conference on Advanced Trends in Radioelectronics,
Telecommunications and Computer Engineering (TCSET), 2022, pp.
823-828, https://doi.org/10.1109/TCSET55632.2022.9766894.

[21] G. Harutunvan, V. A. Vardanian and Y. Zorian, “Minimal march tests for
unlinked static faults in random access memories,” Proceedings of the
23rd IEEE VLSI Test Symposium (VTS'05), 2005, pp. 53-59,
https://doi.org/10.1109/VTS.2005.56.

[22] M. Psarakis, D. Gizopoulos, A. Paschalis and Y. Zorian, “Sequential fault
modeling and test pattern generation for CMOS iterative logic arrays,”
IEEE Transactions on Computers, vol. 49, no. 10, pp. 1083-1099, 2000,
https://doi.org/10.1109/12.888044.

[23] M. Renovell, J. M. Portal, J. Figueras and Y. Zorian, “RAM-based
FPGAs: a test approach for the logic,” Proceedings Design, Automation
and Test in Europe, Paris, France, 1998, pp. 82-88,
https://doi.org/10.1109/DATE.1998.655840.

[24] M. Psarakis, D. Gizopoulos, A. Paschalis and Y. Zorian, “Sequential fault
modeling and test pattern generation for CMOS iterative logic arrays,”
IEEE Transactions on Computers, vol. 49, no. 10, pp. 1083-1099, 2000,
https://doi.org/10.1109/12.888044.

[25] U. Reinsalu, J. Raik, R. Ubar and P. Ellervee, “Fast RTL fault simulation
using decision diagrams and bitwise set operations,” Proceedings of the
2011 IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems, Vancouver, BC, 2011, pp. 164-170,
https://doi.org/10.1109/DFT.2011.42.

[26] R. Ubar, S. Devadze, J. Raik and A. Jutman, “Fast fault simulation for
extended class of faults in scan path circuits,” Proceedings of the 2010
Fifth IEEE International Symposium on Electronic Design, Test &
Applications, Ho Chi Minh City, 2010, pp. 14-19,
https://doi.org/10.1109/DELTA.2010.32.

[27] U. Reinsalu, J. Raik and R. Ubar, “Register-transfer level deductive fault
simulation using decision diagrams,” Proceedings of the 2010 12th
Biennial Baltic Electronics Conference, 2010, pp. 193-196,
https://doi.org/10.1109/BEC.2010.5631842.

[28] D. B. Armstrong, “A deductive method for simulating faults in logic
circuits,” IEEE Transactions on Computers, vol. C-21, no. 5, pp. 464-
471, 1972, https://doi.org/10.1109/T-C.1972.223542.

[29] N. Vinod et al., “Performance evaluation of LUTs in FPGA in different
circuit topologies,” Proceedings of the 2020 International Conference on
Communication and Signal Processing (ICCSP), 2020, pp. 1511-1515,
https://doi.org/10.1109/ICCSP48568.2020.9182074.

ANNA HAHANOVA was born in 1978 in
Ukraine. Ph.D., Associate Professor of
Design Automation Department,
Computer Engineering Faculty, Kharkov
National University of Radioelectronics,
Ukraine. R&D fields: Cyber-physical,
cyber-social computing, pattern
recognition and machine learning. Digital
Smart Cyber University. Previous
positions: Deputy Dean of Computer
Engineering Faculty (2013-2016). Author

of more than 85 publications and 4 monographs, 1 patent and 39
articles indexed in Scopus; 93 citations by 83 documents, h-index
= 7.

