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 ABSTRACT The main idea is to create logic-free vector simulation, based on only read-write transactions on address 
memory. Stuck-at fault vector simulation is leveraged as a technology for assessing the quality of tests for complex IP-
cores implemented in Field Programmable Gate Array (FPGA), Application-Specific Integrated Circuit (ASIC). The 
main task is to implement new simple and reliable models and methods of vector computing based on primitive read-
write transactions in the technology of vector flexible interpretive fault simulation. Vector computing is a computational 
process based on read-write transactions on bits of a binary vector of functionality, where the input data is the addresses 
of the bits. A vector-deductive method for the synthesis of vectors for propagating input fault lists is proposed, which 
has a quadratic computational complexity. Analytical expressions of logic that require algorithmically complex 
computing are replaced by vectors of output states of elements and digital circuits. A new matrix of deductive vectors 
is synthesized, which is characterized by the following properties: compactness, parallel data processing based on a 
single read–write transaction in memory, exclusion of traditional logic from fault simulation procedures, full 
automation of its synthesis process, and focus on the technological solving of many technical diagnostics problems. A 
new structure of the sequencer for vector deductive fault simulation is proposed, which is characterized by ease of 
implementation on a single memory block. It eliminates any traditional logic, uses data read-write transactions in 
memory to form an output fault vector, uses data as addresses to process the data itself.  
 
 
 KEYWORDS vector computing; vector form of logic; matrix of deductive vectors; deductive-vector fault-as-address 

simulation; read-write transaction; vector model of input faults; functions and structures; sequencer of vector deductive 
fault simulation. 
 

I.  INTRODUCTION 
he motivation for the research is defined by the following 
factors: the use of elementary read-write transactions in 

memory-driven computing based on a vector description of 
logic, memory redundancy for storing interpretive flexible 
logic models, the use of data as addresses to increase the speed 
of deductive simulation, transfer of computing to a lower level 
of computational processes (read-write transaction), where the 
von Neumann architecture and the Post-Jablonski theorem 
about functional completeness can be ignored [1, 2]. The 
essence of vector computing is read-write transactions on 
vector data structures in address memory. The relevance of this 
direction can be seen from the latest Gartner Hype Cycle 2022, 
which highlighted Computational Storage (CS) as a trigger 
trend of transferring data processing from the CPU to the 
memory where they are located [3]. Big data must be processed 
where it is stored. 

One of these solutions is vector computing that is a 
computational process based on read-write transactions on the 
bits of a binary vector of functionality that forms 
Computational Storage, where the input data (Conventional 
Memory) are bit addresses. Data (fault vectors) in the proposed 

vector-deductive simulation method are used as addresses for 
processing the data itself. 

The input data models can be represented (Fig. 1) by 
follows: 1) sets – they are compact data that require a complex 
and sequential algorithm for processing inputs. 2) vectors, 
which provide unitary data coding, use a parallel register 
algorithm for data processing and sequential algorithm for 
processing inputs. 3) addresses, which provide a compact 
encoding of unitary data and a sequential algorithm for their 
processing by read-write transactions in memory free of logic 
and processor with parallelism in address columns. 

In design and test, three main forms of describing processes 
and phenomena are used: tabular and analytical forms, and 
graphs [4-9]. In this case, the matrix (table) and the vector are 
two forms of describing models that pass into each other. A 
vector (binary, multi-valued) is a compact representation of a 
truth table in the form of an ordered sequence of output states, 
if the input address components are sorted in ascending order 
[10-13]. If necessary, the matrix, can be transformed into a one-
dimensional vector for the convenience of parallel data 
processing in register memory. Naturally, it is enough to simply 
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restore the table or matrix from the vector description form of 
the process or phenomenon. 

 

 

Figure 1. Input data models 

Further, a vector is used as the simplest form of describing 
functions and structures [14-19], which is focused on 
placement in address memory (CS). 

Several approaches were proposed [20-23] to testing (Built-
in self-test, BIST), diagnosing and repairing the memory 
structures based on redundancy, as well as to constructing and 
evaluating redundancy analysis algorithms based on preference 
vectors for memory devices with spare elements. Experiments 
on the use of new algorithms for self-testing and repair (STAR) 
of SRAM memory have shown the effectiveness of the 
proposed approach. There is a trend: all design and test, 
diagnosis and repair problems are technologically solved more 
simply on regular memory for processing big data, than on a 
classic computer that uses a standard ALU-based processor. 
The bottleneck of a classical computer is the communication 
channel between a slow memory and a fast logical processor. 
At present, memory performance has increased tenfold, so the 
communication channel with the logical processor is becoming 
an unacceptable obstacle to improving the performance of 
computer architecture. The solution is to transfer all 
calculations to memory, remove the logical processor from the 
computer architecture, at the same time solving the problem of 
bottlenecks in the interaction between memory and the logical 
processor (Y. Zorian, Yerevan, 2007 IEEE EWDTS). 

It is necessary to transfer to memory-driven computing, 
where the function of logic should be performed by memory 
elements with vectors written in it. Such computing is as close 
as possible to quantum parallel computing in terms of data 
structures, but not on quantum logic, which creates big 
problems, but on read-write transactions in quantum memory. 

Efficient fault simulation algorithms [24–26] for 
combinational circuits have been known for several decades. 
However, sequential failure simulation, which is often used in 
testing and fault tolerance applications, remains a very time-
consuming problem, especially for large circuits. A new 
deductive method is proposed for simulating errors at the RTL 
level and in the system model of high-level decision diagrams. 
Simulation acceleration is achieved through efficient data 
structures implemented to perform a set of operations in the 
deductive fault simulation algorithm. Experiments on RTL 
reference circuits show that this method achieves up to two 
orders of magnitude reduction in operating time compared to 
failure simulation at the gate level. Raimund Ubar singles out 
deductive simulation as the most elegant mathematical 
apparatus, which has good prospects for processing complex 
digital circuits. 

The implementation of the deductive method on vector data 
structures placed in memory has no analogues in terms of 
processing speed of complex digital elements due to significant 
memory redundancy. The method has the potential to be 
implemented in digital and quantum circuits for fault 
simulation, test quality assessment, diagnosis, and error 
elimination. 

General conclusions are represented below. The crisis of 
modern computing is associated with two problems: processing 
big data by an insolvent processor-memory pair, as well as a 
catastrophic increase in power consumption by global 
computing processes on modern microelectronics. Solving the 
first problem is based on the following axioms: All data is in 
memory. There is no logic that cannot be implemented in 
memory. There is no data that cannot be used as addresses to 
be processed in the memory, where the logic resides. There is 
no logic or functionality that cannot be implemented with a 
read-write transaction on memory. The most technologically 
advanced memory data structure is a vector or matrix, available 
for fast read-write transactions. Solving the second problem is 
based on hypotheses: quantum computing should be based on 
memory free of quantum logic and qubits. Memory must be 
stable subatomic particles. Computational processes should be 
based on quantum transactions between memory elements. The 
source of energy for such a computer is daylight. The speed of 
such a computer is determined by the light speed of quantum 
transactions between memory elements. Such a hypothetical 
computer is the meeting point of quantum (seeking 
determinism) and classical (seeking light speed) computing in 
the future. 

The goal is to develop a vector-deductive fault simulation 
method based on primitive read–write transactions for 
analyzing logic circuits. Objectives: 1) Development of a 
method for synthesizing a matrix of deductive vectors for 
propagating input fault vectors to the element output. 2) 
Development of a sequencer structure for simulating faults of 
digital circuits based on a primitive read-write transaction of 
matrix memory, where combinations of faults are addresses. 3) 
Verification and testing of models and methods for 
synthesizing matrices of deductive vectors and a sequencer for 
deductive fault analysis in digital elements and circuits. 

II. DEDUCTIVE VECTOR MATRIX SYNTHESIS METHOD 
FOR FAULT SIMULATION 
Induction is drawing logical conclusions from the particular to 
the general, where the correctness is guaranteed by a sufficient 
or exhaustive amount of factual data. It is mother of artificial 
intelligence. Deduction is drawing logical conclusions from the 
general to the specific, where the correctness is guaranteed by 
the truth of the initial axioms leading to the truth of the 
consequences-theorems. It is the mother of deterministic 
computing. The mathematical basis of deductive fault 
simulation consists in propagating binary combinations of 
input defects to the output on a given input set according to the 
following formula: L= T⨁F. The essence of deductive 
simulation is to change the logic of the element F depending on 
the input conditions T. Deductive simulation, proposed exactly 
50 years ago by Armstrong [27], is still the most elegant and 
effective tool for analyzing the quality of tests and synthesizing 
tables for detecting faults, tracing the path propagation of the 
fault. Further, its implementation is proposed based on the 
vector form of the logic description [10–12], which excludes 
logical analytical forms and makes it possible to significantly 
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simplify the algorithms for the synthesis of deductive models 
and their application for interpretative modeling digital 
elements and large-scale circuits. 

The goal of this research is to remove all analytical 
expressions of deductive logic that appeared in most works [4-
9] devoted to deductive simulation. It is possible and necessary 
to use only the deductive vector of fault simulation. Very often 
the form of the model determines the content, compactness, and 
speed of the analysis procedures. The basic methods of 
deductive simulation [5-14] were reduced to the synthesis of 
deductive analytic forms (DNF). Information about the logical 
element was represented by a truth table or a logical expression. 
But in any case, explicitly or implicitly, the equation of 
technical diagnostics L=T⊕ 𝐹 was used to obtain deductive 
forms of fault simulation. Further, a new method for the 
synthesis of deductive vectors is proposed, which is reduced to 
the analysis of output state vector of a logical element free of a 
truth table. 

The method for synthesizing deductive vectors using a 
vector form of any logic functionality (Q-vector) has the 
following two steps: 

1) Modification of the Q-vector of the element (Fig. 3) on 
the input i-set according to the rule: L=Q⨁𝑌௜ . Here 𝑌௜ is the state 
of the logical element output on the input set 𝑥௜. 

2) Determination of the deductive vector for the i-input set 
by the formula: D୨ = Lୌ౟ౠ

, j = 1,  2௡തതതതതതത , which permutes the bits 

according to the following permutation matrix H, which can be 
easily obtained through recursion: 

 
The algorithm ends when all deductive vectors for all input 

2௡ sets have been generated. Thus, the matrix of deductive 
vectors is obtained based on the execution of the following 
operator D=(𝑄⨁𝑌)ு that is a result of the superposition of the 
operators: L=Q⨁Y and D=𝐿ு. The synthesis of matrices of 
deductive vectors for 2-input based logic is shown in Fig. 2. 
 

 

Figure 2. Synthesis of deductive vectors for 2-input based 
logic 

It should be noted that the synthesis of deductive formulas 
for mutually inverse elements Q=0110 and Q=1001 gives the 
same values of the matrix of deductive vectors, which 
degenerate into one vector 0110 on all input sets. The 
computational complexity of executing this operator is С= 
2× 2௡ × 2௡ =  2ଶ௡ାଵ. In the case of parallel execution of 

register operations on vectors, the computational complexity of 
this operator will be equal to С= 2× 2௡. 

III.  SYNTHESIS OF DEDUCTIVE VECTORS OF GATE 
AND RTL LOGIC 
The process of building deductive models of the main logic 
elements is also of great interest, which can be used as a library 
for creating and analyzing circuits. Below are tables for the 
synthesis of deductive vectors to check the quality of tests of 
logical circuits. The most primitive elements are the inverter 
(Q=10) and the repeater (Q=01). Even though these are 
different elements, they have the same deductive vectors, 
which allow providing digital logical activity to transport the 
fault vector from input to output without distorting it. 

The next Frame is devoted to the process of synthesizing 
deductive formulas for a three-input logic element given by the 
vector coverage 10000001 (Fig. 3). Such an element should be 
considered as a black box or Register Transfer Level (RTL) of 
function representation in relation to its structure, which can be 
implemented differently when specifying its behavior in a 
vector. Here, the result of propagating lists of activities from 
the input to the output of this element is of interest. In this case, 
it is not important which paths are involved within a particular 
implementation of a logical element. Nevertheless, the 
synthesis of deductive formulas for this element showed that 
on all input actions the activity propagation formula has the 
same value on pairs of sets: 1–16 and 5–6. The remaining sets, 
having symmetry, are not repeated in the matrix of deductive 
vectors. Here and below, the zero coordinates of the matrices L 
and D are represented by empty cells for the purpose of 
figurative perception of information. 

 

   

Figure 3. Synthesis of deductive vectors for one-input 10 and 
01 and three-input 10000001–elements 

The following circuit (Fig. 4) has the property that the 
deductive vectors in the generated matrix of deductive vectors 
MDV are the same and equal to 00110011. The analytic form 
of such a vector after elementary transformations is D=𝑋ଶ on 
all input sets. This means that two of the three functionality 
variables are non-essential and cannot be activated by input 
faults. 

 

 

Figure 4. Synthesis of deductive vectors for a three-input 
11001100–element 

Increasing the number of inputs of RTL functional element 
leads to an increase in simulation performance since more input 
fault vectors are simulated in parallel to obtain an output fault 
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vector. The use of 8-input element improves simulation 
performance by a factor of 11 compared to its structural gate 
equivalent. In general case, the improvement in simulation 
performance for RTL circuits having n inputs, compared with 
the analysis of the DNF structure of two-input gates, is given 
by the following formula: Q =  

୬

ଶ
+ n–1, n= 4, 8, 16 …  

The technological simplicity of the algorithm for 
synthesizing the H-matrix of coordinate permutation H୧= 

ቈ
Hଵ

୧ିଵ Hଶ
୧

Hଷ
୧ Hସ

୧ିଵ
቉ is of interest, i=1,2,3… is number of input 

variables, which has 3 items:  
1) the first and fourth quarters of the matrix are taken from 

the previous recursive calculation of the matrix for n=i–1 
variable, here the following equalities are satisfied: Hଵ

୧ିଵ =

Hସ
୧ିଵ, Hଶ

୧ିଵ = Hଷ
୧ିଵ; 

2) the second quarter of the matrix is found based on the 
following expression (Fig. 5): 

H୧,୨ାଶ೙షభ = (2௡ − 1) − H୧,ଶ೙షభି୨, j = 0,2௡ିଵ–1,i= 

0,2௡ିଵ– 1; 
3) the third quarter of the matrix is found by copying the 

second part of the matrix into the third area Hଷ
୧ = Hଶ

୧ .  
 

 

Figure 5. Synthesis of vector recoding matrix D=L(H) 

Despite the technological simplicity of the proposed 
method for synthesizing a matrix of deductive vectors, this 
approach has an obvious drawback associated with the 
dimension of the tables with many input variables. It can be 
eliminated if only one deductive vector is promptly generated 
on the input test set to simulate faults. To do this, you just need 
to use a single operator D୧=(Q⨁Y୧)ୌ౟ౠ

, described earlier. The 

computational complexity of this procedure is equal to 2୬, n is 
the number of variables in the logical element, which is 
determined by permuting the bits in the Q-vector of H-matrix 
to obtain the D-vector. In this case, the deductive simulation of 
faults will not differ much in speed from the fault-free 
simulation of a digital circuit. The processing time delta of one 
logic element ∆T=TD–TG=tD+tF=2௡ାଵ will be represented by 
the deductive vector generation time tD and plus the processing 
time of input fault vectors tF. 

IV. VECTOR–DEDUCTIVE SEQUENCER 
The matrix of deductive vectors is a certain redundancy of a 
digital project, which is the cost for a fast and technological 
solution to the problem of assessing the quality of test patterns 
and generating a fault functions table to detect faults at the stage 
of a digital product functioning. The proposed matrix of 
deductive vectors has the following properties: 1) compactness; 
2) parallel data processing; 3) technological placement in 

address memory; 4) data uniformity in size and properties; 5) 
simultaneous simulation of fault-free behavior of the element 
and all faults of previous elements; 6) focus on the technological 
solution to the problems of simulation, testing, and diagnostics 
of any logical systems. 

The vector sequencer of deductive simulation on a memory 
block (Fig. 6) is the simplest implementation of computing 
device for deductive fault simulation of a digital circuit 
(element) to assess the quality of the tests in the class of single 
stuck-at faults. The main and single memory block stores a 
matrix of deductive vectors, which has a dimension of 2௡ × 2௡,  
where the first number is the number of deductive vectors for a 
logical element of n-variables, the second one is the dimension 
of each vector. Therefore, the first macro input of the memory 
block Vector address has n binary variables that allow 
addressing any of the 2௡  deductive vectors of the matrix. The 
second macro input of the memory block Byte address also has 
n, but they are already register binary variables, which allow 
addressing any of the 2௡ bits of the vector, selected by the first 
macro input, by their binary combination. The output of the 
memory block Fault list has a bit width equal to the second 
macro input, determined by the power of the simulated input 
faults that must be propagated through the element of the digital 
structure. 

 

   

Figure 6. Vector sequencer of deductive simulation 
implemented in the memory block 

There is a one-to-one correspondence between the 
components of the two schemes (Mathematic structure → 
Memory structure): Input set → Vector address, Input fault 
vectors → Bit address, Deductive vector matrix → Deductive 
vector matrix memory, Output fault vector → Read memory 
cells vector. Here, the input binary set (data) entered in the gate 
is interpreted as the address to access the deductive vector in 
matrix memory. The vector of output faults propagated from 
element inputs is formed by reading the coordinates of a 
deductive vector placed in matrix memory. Unusual or 
paradoxical is the fact that combinations of bits of input fault 
vectors (data) act as addresses of deductive vector bits for 
reading them from memory. Simply put, the faults (input data) 
are used as addresses to read the deductive vector bits from the 
matrix memory to form the output fault vector. 

The metric of a functional n-input element F, represented 
by a vector of 2௡ states of output coordinates and its deductive 
model DF, represented by MDV matrix of 2௡ deductive vectors 
with a dimension of 2௡ binary coordinates, is shown in Fig. 7.  
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Figure 7. Metrics of functional and deductive elements 

Here, the Bit address for the deductive element MDV is 
formed by the same-named coordinates or bits of the input fault 
vectors, and the Vector address is formed by the input binary 
set entered on the inputs of the functional element. The bit 
address for the functional element F is formed by the input 
binary word or set. 

Thus, the ratio of the two models by memory is as follows: 
F/DF=2௡/(2௡ × 2௡)=1/2௡. The computational complexity of 
synthesizing a matrix of deductive vectors is estimated by the 
following expression: Q=n× 2௡ + 2௡ × 2௡, the first term 
determines the complexity of generating address-disordered 
input variables of the deductive vectors in register operations 
on vectors, the second term determines the complexity of the 
coordinate operations for reducing the bits of deductive vectors 
according to the order of the binary addresses, composed by 
input variables. The computational complexity of the analysis 
of the matrix of deductive vectors when performing deductive 
simulation is Q=k× 𝑅, where k is the dimension of the input 
fault vectors, R is the duration of the operation of reading the 
contents of the addressable bit of the deductive vector from the 
MDV memory. The significant deductive redundancy of the 
project pays for the quality and reliability of the digital system, 
which also allows generating tests, evaluating their quality, and 
solving any problems related to diagnosing faults in the design 
and operation of a digital device in critical areas of human 
activity. 

V.  VERIFICATION OF THE VECTOR-DEDUCTIVE 
METHOD FOR FAULT SIMULATION 
An example of vector-deductive simulation of the circuit C17 
from ISCAS library with reconvergent fan-outs (2,7,8) on one 
input set 11111 is represented by a table (Fig. 8). In this case, a 
class of single stuck-at faults is considered, which are tied to 
input, internal or output lines (of the same potential) of the 
circuit. 

Any line fault that is detected by this test is marked by one 
in the coordinate of the fault simulation table. The actual fault 
of the line will always be the inverse of its fault-free state. 
Vectors are also used to simulate the fault-free behavior of the 
circuit. This circuit uses one vector Q=1110, which is used to 
simulate all elements of the circuit. The procedure of vector 
interpretive memory-driven fault-as address simulation is 
described in [15, 17, 19]. In publication [20] the authors 
considered faults as sets or vectors. 

 

 

Figure 8. Vector–deductive simulation of C17 on the input set 
11111 

The right side of the table contains a matrix of deductive 
vectors for the convenience of manual simulation. The input 
word 𝑥ଵ𝑥ଶ on the circuit element (00,01,10,11) forms the 
address of the deductive vector, the coordinates of which are 
chosen by a pair of values of the input fault vectors to generate 
the output list of detected faults. The preparation of the fault 
simulation table consists in setting unit values along the 
diagonal of the matrix. Empty matrix coordinates denote zeros. 
The simulation ends when all fault vectors are sequentially 
generated for all 12 lines of the circuit. In fact, this means 
processing all seven circuit elements. The processing of the 
element with output 12 for generating the output fault list is 
shown in more detail in Fig. 9. 
 

 

Figure 9. Vector–deductive simulation of an element with an 
output of 12 on an input set of 10 

Here, the logical values of the inputs (10,11) = 10 select the 
deductive simulation vector 0100. By successively reading the 
coordinates of this vector, an output fault list is formed based 
on the addresses generated by the corresponding pairs of 
coordinates (11→ 0,  11→ 0, 01→ 1, 00→ 0, 00→ 0, 10→ 0, 
01→ 1, 01→ 1, 01→ 1, 10→ 0, 01→ 1, 00→ 0) of two input 
fault lists. The unit at the output of the processed element 
marked in red in the table is the dominant value at the output of 
the simulated component. Otherwise, a fault at the output of the 
simulated element is always detected. Therefore, the diagonal 
coordinate of the matrix with the number M୧୨,i = j does not 

need to be simulated as an input fault. The computational 
complexity of the proposed vector-deductive method is 
determined by the parameters of the following metric: 
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Q=
ଵ

ଶ
×k× 𝑛ଶ, where k is the time to read a vector bit from 

memory; n is the number of lines in the circuit; 1/2 is half of 
the simulation table. Another simulation example is shown in 
Fig. 10. 
 

 
Figure 10. Vector–deductive simulation of a circuit on an 

input set 11001. 

The test set 11001 0110110 detects 9/24=37.5% of the 
faults, which are determined by inversion to the states vector 
(the fault-free state) of the circuit lines, which is needed only 
to decoding single stuck-at faults detected on the circuit lines. 
Based on the results of simulating input binary vectors, a matrix 
of fault coverage by test sets is generated, which for two 
simulated vectors has the following form (Fig. 11): 

 

 

Figure 11. Fault coverage matrix 

The symbol x = {0,1} denotes a detection on the line ≡0 
and ≡1. The test is considered complete if all coordinates in the 
coverage line are equal to the x symbol. The method uses vector 
data structures, which makes it interesting from the point of 
view of its implementation in computer memory or built-in 
specialized hardware device. The deductive simulator is free of 
traditional logic and uses the coordinates of the input fault 
vectors as bit addresses of the deductive vectors that form the 
output fault list to be detected. The simulator is easily 
implemented in any memory, including at the quantum level, 
where only one read-write transaction is required. The 
paradigm of interpreting data as addresses can be promising 
when processing large data using read-write transactions on 
memory free of traditional logic and powerful expensive 
processors. The idea could create a new type of deterministic 
quantum computing free of qubits and quantum logic, based on 
photonic transactions on a stable quantum atomic memory. 

VI. CONCLUSIONS 
A certain step has been taken towards the creation of logic-free 
vector memory-based computing, using only read-write 

transactions on address memory. A failure-driven management 
metric T ⊕  F ⊕ L = 0,  proposed in [18, 20], allows 
formalizing all known processes for creating computing, 
including design, test, and deductive fault simulation. 

Based on the metric, innovative solutions are proposed 
below. The advantages of the vector model for a compact 
description of processes, phenomena, functions and structures 
are determined. Analytical formulas and tabular models that 
require algorithmically complex computing analyzers are 
replaced by vector data structures for describing functional and 
deductive logic.  

A vector-deductive method for the synthesis of vectors 
(instead of formulas) for propagating input fault vectors is 
proposed, which has a quadratic computational complexity of 
register operations. A new matrix of deductive vectors is 
proposed, which is characterized by the following properties: 
compactness, interpretability and flexibility of models written 
to memory, parallel data processing based on a single read-
write transaction in memory, technological placement in 
address memory, uniformity of data in size and properties, 
exclusion of fault-free simulation of the element, exclusion of 
traditional logic from fault simulation procedures, complete 
automation of the process of deductive vector matrix synthesis, 
focus on the technological solving all problems of technical 
diagnostics.  

A new structure of the vector deductive fault simulation 
sequencer is proposed, which is characterized by ease of 
implementation on a single memory block, free of any 
traditional logic, uses data read-write transactions in memory 
to form the output fault vector, uses data as addresses to process 
the data itself. The method can be used for parallel processing 
big data, which is interpreted as cell addresses of deductive 
and/or logical vectors that compose the computational memory 
on which read-write transactions but not logic ones are 
performed. The method can be the basis for a new deterministic 
quantum logic-free computing based on the execution of 
photonic (quantum) transactions on a structure of stable 
subatomic particles considered as memory. In addition, the 
proposed method can effectively solve the problem of 
recognizing any activity in the cyber-physical space.  

The implementation of vector deductive logic models in the 
FPGA LUT will allow one to obtain the performance of fault 
simulation of real SoC digital blocks at the level of hundreds of 
nanoseconds [28, 29].  
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