

VOLUME 22(3), 2023 381

Date of publication SEP-30, 2023, date of current version AUG-23, 2023.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.22.3.3234

Approach to Implementation of
Configuration Process for Adaptive

Software Systems based on Ontologies
DMYTRO FEDASYUK, ILLIA LUTSYK

1Department of Software, Lviv Polytechnic National University, Lviv, 79000, Ukraine
(email: dmytro.v.fedasyuk@lpnu.ua, illia.i.lutsyk@lpnu.ua)

 Corresponding author: Illia Lutsyk (e-mail: illia.i.lutsyk@lpnu.ua).

 ABSTRACT Analysis of scientific research on the development of adaptive and self-adaptive software systems is
conducted. It is established that the use of machine learning methods and feedback diagrams is an effective way to
design and develop adaptive software. It is determined that the existing methods do not fully provide the possibility of
dynamic changes and expansion of functional and graphic characteristics. The software adaptation process is designed
based on the ontological model using the semantic decision-making mechanism. The proposed method allows us to
dynamically determine the necessary system characteristics and perform software adaptation. Modification process
takes into account the information about currently active device based on data about the needs and requirements of the
user. Using the results of designing an abstract approach to software configuration modification, an experimental study
of the speed of generating optimal system settings is conducted. According to the results of the experiment, it is
established that the new method demonstrates 20% better indicators of the speed of generating software settings
compared to classical approaches.

 KEYWORDS adaptive software systems; ontological approach; onto-oriented systems; methods of software
adaptation; configuration of software systems.

I. INTRODUCTION
APID development of new technologies for the
development and implementation of software entails an

increase in the number of requirements for software systems.
Such growth affects the overall structure and content of the
software, since each new requirement requires a change in the
functionality or graphical component of the system. As a result,
the problem of effective configuration of individual system
modules arises, since the set of software components may vary
depending on user requirements.

The basic requirement of modern software systems is to
solve the tasks of operational support of decision-making based
on the operation of large arrays of information. For the
effective operation of such tools, it is necessary to adapt them
to the specifics of a particular problem area and options for user
requirements [1, 2]. In such cases, it is advisable to use artificial
intelligence. Automation of decision-making in such systems
requires certain settings, which are based, as a rule, on expert
refinement of coefficients or formation of knowledge bases for
training samples of neural networks.

II. PROBLEM STATEMENT
The knowledge base of adaptive systems needs a tool that
would allow selecting relevant options for software
configuration implementation not only at the installation stage,
but also when there is a need to change the requirements during
the functioning of the software product. Thus, there is a
problem of developing a toolkit that will allow faster execution
of the tasks of creating and modifying components of the
software architecture. In addition, a low level of coupling will
avoid many problems associated with adapting the system to
the requirements of a specific user.

It should be noted that in order to ensure the ability to
dynamically change the characteristics of the created software
solution, two types of systems are usually used: adaptive and
self-adaptive. The difference between these two approaches
lies in the process of determining the need to modify the
characteristics and properties of software solutions. Unlike
adaptive systems, self-adaptive systems are able to
independently analyze specific characteristics and
subsequently change their behavior depending on the received
assessment of efficiency or productivity [1].

R

 Dmytro Fedasyuk et al. / International Journal of Computing, 22(3) 2023, 381-388

382 VOLUME 22(3), 2023

In addition, the problem of software adaptation consists in
the effective formation of a stable system configuration that
would be optimal for a certain user or group of users and would
not require significant system resources. For this, during the
development of adaptive systems, external and additional
components should be defined with a sufficient level of
abstraction to reduce the degree of coupling and improve the
efficiency of the system.

Therefore, taking into account the indicated problems and
challenges, it is relevant to design the configuration
modification process for adaptive and self-adaptive software
systems, which would allow improving the software
modification in accordance with changing requirements and
user preferences taking into account the minimization of the
use of system resources.

III. RELATED WORK
In a number of studies, general principles and methods of
designing and implementing self-adaptive systems have been
defined. In particular, in [1, 3] the authors highlighted the
problems of designing these systems, namely the problems of
defining new unified processes of software adaptation and
decentralization of system elements. Based on the taxonomy of
approaches, the authors identified new directions for the
development of the process of adapting software systems:

 contextual adaptation – activators of managed resources
are integrated into the process of forming judgments;

 decentralization of adaptation logic – involves the use
of a decentralized management system;

 proactive adaptation – software adaptation is based on
prediction.

The indicated directions and problems of the
implementation of software adaptation are solved by applying
one or more adaptation methods [4]:

 Approach based on feedback loops (feedback loop) -
adaptation takes place on the basis of constant
monitoring and control of the system, which allows
making changes depending on the context [5, 6];

 Learning-based method – the method consists in using
the principles of machine learning. The process of
adaptation of the decision support system can be
achieved effectively by configuring the system for
dynamic learning and the corresponding change of
components [7-9];

 Planning-based method – planning methods for
adaptive systems determine the priority and order of
adaptation for one or more elements of the system. Such
methods are divided into those, in which only one or two
changes at a time are taken into account and the
elements are assumed to be independent with
unchanged priority, or search-based optimization
methods, which are more effective for a larger number
of variable factors [10-12];

 Method based on monitoring – the approach is applied
in several stages. The application is first traced in a
simplified form, providing information for the next
stage, which determines the adaptive configuration and
selects traces according to the current configuration.
Adaptive configuration is determined by a set of criteria

specified through the proposed subject-oriented
language [13, 14];

It should be noted that despite the general effectiveness and
diversity of software adaptation methods, there is a problem of
domain representation. For adaptive and self-adaptive systems,
the elements of the subject area can be changed, supplemented
or deleted, which makes it impossible to predict in advance the
parameters for the effective operation of the system.

The concept of creating context-adaptive user interfaces for
commercial vehicles was revealed in the work of L. Schelkopf,
M. Wolf [15]. The authors noted that the use of context-
adaptive interfaces makes it possible to detect the most
recurring events. Based on the received information, it becomes
possible to build different variations of the user interface and
scenarios of the system use for the problem area analyzed by
them, defining the main “working phases” of commercial
transport drivers.

Another example of the implementation of adaptive user
interfaces based on conceptual and ontological models was
presented in the work of D. S. Nehurytsya, E. V. Sokolova [16].
The article defined the components of Web-oriented systems
based on the analysis of methods of building and ensuring the
quality of user interfaces. In addition, the authors considered
the features of adaptive interfaces, which made it possible to
define the concept of the user model as a mandatory component
of adaptive software interfaces of Web-oriented systems. As a
result, the paper presented an empirical study that proves the
need to define additional metrics for evaluating search quality
and classifying user actions and interests in a session of
working with the Web system.

A promising way to describe subject areas is a combination
of the principles of designing and developing ontological
models and the principles of fuzzy logic [17, 18]. The authors
pointed out that the design of ontologies during the creation of
complex software usually affects the adequacy of the model
and causes inconsistency in the development process. For this,
it is advisable to use a combination of the ontological approach
and elements of fuzzy logic. As a result, the authors showed
that the modified model of ontology improvement in time
allows effectively solving the problems of analysis and
evaluation of the state space of evolving ontologies using
elements of fuzzy logic.

In addition to the effective representation of the subject area
for the implementation of an adaptive software system,
architecture is also an important component. Depending on the
context, type and other adaptation processes, the architecture
should provide a sufficiently high level of abstraction that
would not allow one to be tied to a specific implementation.

A correct definition of the architecture is especially
necessary for distributed systems, which are often denoted as a
system of systems (SoS) [19, 20]. SoS are built from a
potentially large number of subsystems, which consist of
various components, services and resources. In addition, SoS
are usually deployed in environments where the context
changes, which in turn causes the need to deviate from the pre-
designed workflow and form a more complex system. Such
modification, in turn, allows us to maintain the intended
abstract behavior or be able to provide new behavior that is
possible only through integration with other systems in a new
context.

Dmytro Fedasyuk et al. / International Journal of Computing, 22(3) 2023, 381-388

VOLUME 22(3), 2023 383

A number of works are aimed at effective implementation
of the SoS concept and architecture. In particular, work [21]
presented an effective solution for architectural design
according to the SoS concept for Industry 4.0 in the field of
construction. The authors emphasized that the development of
complex systems requires constant interaction between design
decisions at the SoS level and decisions at the level of its
constituent systems, which require adaptation as the SoS
develops. In the article, the authors developed a description of
the SoS architecture based on ISO 42010, which consisted of
representations related to hierarchy, asset integration,
communication, information. However, despite the effective
description of architecture for a specific domain, the authors
noted that there was a lack of architectural frameworks suitable
for this.

In addition to using standard methods of describing SoS, it
is also effective to combine traditional approaches with
ontological ones. Thus, in [22], the process of designing the
architecture for complex software systems based on ontology
was reflected. The authors proposed a generalized approach to
the description of distributed systems, which allows us to
achieve abstraction providing the possibility of adaptation
between systems during execution, based on the semantic
mechanism of judgments. As a result of experimental
verification, the authors noted that the ontology-based
approach reduced the complexity of SoS development by
abstracting system heterogeneity through comprehensive
description of model structure and autonomous manipulation
during program execution.

Taking into account the identified problems and
shortcomings of existing approaches and methods of adaptation
for complex systems, the problem of improving the process of
system adaptation of software by modifying graphic
components and functional modules remains relevant.

The purpose of this work is to design a formalized process
of configuring adaptive software depending on user
requirements and features of the software environment for
various devices, as well as to substantiate the possibility of
increasing the reliability and efficiency of software systems by
applying an ontology-based adaptation mechanism.

IV. RESEARCH METHODOLOGY
We propose the use of an ontological approach as the basis for
the implementation of the mechanism of adaptation of software
systems.

The primary task is to define the specification of conceptual
requirements (Figure 1):

 the presence of an ontology that allows you to store the
architecture of software products;

 adaptation to the specifics of the subject area of the
industry taking into account the context of applied tasks;

 reliability of storage and speed of data processing in the
ontology repository;

 availability of a logical conclusion mechanism;
 the presence of a mechanism for adapting the interface

for users;
 availability of data import mechanisms from external

information resources.

Figure 1. Component structure of the ontological data and
knowledge server

In a formalized form, the ontology of an adaptive software
system can be represented as a combination of three
elements [23]:

𝑂௠௘௧௔ = 〈𝐶௠௘௧௔ 𝑅௠௘௧௔ 𝑃𝑟𝑜𝑝௠௘௧௔〉, (1)

where 𝐶௠௘௧௔ – set of entities of the adaptive software

system subject area containing information about users and
possible configurations of the software.

𝑅௠௘௧௔ – a set of relations between entities of the subject
area.

𝑃𝑟𝑜𝑝௠௘௧௔ – a set of properties characterizing the essence
(concept) of the subject area.

The formed ontology of adaptive software systems contains
only the main abstractions, concepts and connections necessary
for defining the software configuration. Such a structure allows
you to abstract from the specific implementation of software
for different subject areas. In addition, the model developed
provides the possibility of structural expansion of basic
concepts by using the process of imitation (“has-a”
relationship), as well as supplementing the model with new
relationships and rules. In a detailed form, the conceptual
model of the adaptive software system is presented in Figure 2.

Figure 2. Conceptual ontological model of an adaptive

software system

 Dmytro Fedasyuk et al. / International Journal of Computing, 22(3) 2023, 381-388

384 VOLUME 22(3), 2023

The ontological model of the subject area for self-adaptive
systems allows determining the necessary actions to respond to
changes in the requirements or needs of the user. However, this
model is only part of the process of generating software
settings.

The functional model of the proposed process of dynamic
software adaptation is presented in Fig. 3.

Figure 3. Conceptual diagram of the modification of the
self-adaptive software system

The interaction of the general process of software
adaptation with external entities is presented at the top level of
the hierarchy. The system receives information about the user
and provides the user with the modification results depending
on the specification of the active device.

The main external objects for the process are “User” and
“Active Device”. Actually, to initiate the process of changing
the settings, the user sends selected information, which serves
as an identifier for the necessary changes in the operation or
appearance of the system. Adaptive structure of the ontological
model as well as adaptive software design allows one to
dynamically define settings and selected information. For
example, mobile application for people with speech and
hearing impairments could provide the form or list of questions
that would determine which problems and requirements user
has. Based on this selected information future adaptation will
proceed. During processing, the system makes a return request
for information about the active device, which will help
identify the possibility of changes in specific characteristics.
The generated settings are taken into account during the
process of modifying the system components, and the adapted
characteristics are presented to the user.

In the case of complex systems, a hierarchy of context
diagrams is built. Such a hierarchy should be described using
IDEF0 and DFD models, which allow describing the business
processes occurring at each level of the hierarchy and the data
flows between these processes. In our case, since the “Software
adaptation” process is complex and can be represented as a
sequence of sub-processes, it is advisable to carry out its
decomposition.

The detailed process of modification of self-adaptive
systems, which is a decomposition of the “Software
adaptation” process, is presented in Fig. 4.

Figure 4. Data flow diagram of the “Software adaptation” process

According to this modification process, the method of
changing system components consists of the following stages:

1. Processing of information received from the user (user
identification, checking the correctness of filling in
information).

2. Data synchronization, which allows you to create or
modify the necessary records both in the database and
in the ontological knowledge base.

3. Settings generation – the stage processes data about the
selected user and forms the necessary system settings,
based on the relationships and properties of the concepts
of the ontology.

4. Adaptation of the software system includes
modification of functional characteristics and graphical
interface based on a set of established settings.

In accordance with the presented decomposition, the
information received from the user is processed and
synchronized with the knowledge base. After synchronization,
the settings are generated, which allows you to adapt the
software product.

The “Software Adaptation” process shows the general
communication between subprocess and data storage from the
beginning of the request to generation of the response. A
detailed description of the sequence of data transmission

Dmytro Fedasyuk et al. / International Journal of Computing, 22(3) 2023, 381-388

VOLUME 22(3), 2023 385

between system elements for dynamic adaptation of the
existing software solution is revealed in the process “Software
Modules Adaptation”, the decomposition of which is presented
in Figure 5.

Figure 5. Decomposition of the “Software Modules

Adaptation” process

The process of software product adaptation consists of
several stages:

1. “Deserialization of settings”, this stage consists in
extracting data from the JSON document for their
further registration in the permanent storage of the
software.

2. “Changing elements of the graphic interface”, that is,
applying parameters to the graphic elements of the
software, installing new styles and loading additional
resources (language packs, images, fonts, etc.).

3. “Definition of functional parameters” is based on the
obtained parameters, the methods of loading and
applying the relevant modules, services or routines are
determined.

4. “Installing additional functional modules”, this stage is
aimed at installing and registering additional modules or
services in the system.

5. “Registration of settings” is the final stage of adaptation,
which ensures correct saving and display of new
software settings.

Thus, according to the proposed adaptation process, the
ontology model is used in two key stages: data synchronization
and generation of software settings. The first stage allows you
to store the selected information about the user in the
ontological knowledge base in order to facilitate further
requests regarding the modification of the system
characteristics. The second stage actually starts the semantic
mechanism of judgments, which begins processing the
semantic rules defined in the ontological model. These two
stages are interconnected, since the result of data
synchronization between the database and the knowledge base
is responsible for the correct filling of the knowledge base only

with updated information.

V. CASE STUDY
The adaptation process according to our proposed approach
takes place after checking the user data and registering them in
the ontological knowledge base. To create personalized system
settings, instances of the relevant concepts of the ontological
model are created, and connections between the created
concepts of the subject area are established. On the basis of
semantic rules, decisions are made about the need to assign
specific adaptation parameters. The result of this approach is a
set of parameters that are used to personalize the system [23].
When modifying a mobile application, two separate processes
take place in parallel: personalization of the graphical interface
and modification of the system functionality.

According to the classical approach, which was presented
in our previous studies, the formation of the model and settings
of the software system consists in determining the specific
entities of the subject area. Despite the high processing speed,
this approach loses efficiency if the structure of the ontological
model is variable. As can be seen from our previous research
[24], the classical approach to determining optimal system
settings depends linearly on the total number of entities of the
ontological model. However, performance is lost if it is
necessary to expand the software system with additional
modules, because it is necessary to change the structure of the
ontological model [26, 27], which in turn creates additional
connections between elements.

The approach proposed in this work eliminates this
problem. The improved ontological model defines the main
abstractions among the concepts and entities of the subject area.
Such a solution, in turn, allows the structure of the ontological
model to remain unchanged, and its expansion is ensured by
the creation of new instances of existing entities [25].

In order to compare the proposed approach and the classic
version, the software system developed in the previous study
was used [24]. The system was designed according to the
principles of a three-tier and plug-in architecture, which
consists of an Android application and a web server
implemented using the Flask framework. The plug-in based
software design allowed us to change the ontology and method
of modification with new implementation while it is still
possible to use adaptation rules of both approaches.

To compare the speed of the process of determining the
optimal characteristics for the classic implementation and our
proposed approach of abstract description of entities, the
duration of processing ontological rules is determined. To
determine the duration of adaptation, 2 mobile devices and 3
emulators are used, which makes it possible to test the system
on various versions of Android. The duration of the generation
of settings is determined from the moment of sending the
request until the final formation of the parameters. Testing of
the system is performed on each device 5 times, in order to
determine the worst-case adaptation time depending on the
number of entities of the ontological model. The results of
adaptation are presented in Table 1.

 Dmytro Fedasyuk et al. / International Journal of Computing, 22(3) 2023, 381-388

386 VOLUME 22(3), 2023

Table 1. The results of comparing the duration of determining the configuration for system parameters
№, number of instances 100 150 250 450 850 1650 3300

Classic approach

time, t1 (sec) 2.55 3.08 3.46 3.97 5.16 6.78 11.5
time, t2 (sec) 2.65 2.84 3.14 4.17 4.69 6.63 11.4

time, t3 (sec) 2.61 2.92 3.12 3.68 4.46 6.67 11.8

time, t4 (sec) 2.74 2.84 3.13 3.58 4.58 6.65 11.2

time, t5 (sec) 2.52 2.86 3.17 3.91 4.85 6.02 11.8

Average time, t avg (sec) 2.61 2.91 3.20 3.86 4.75 6.55 11.54

Abstract approach

time, t1 (sec) 2.30 2.73 2.66 3.24 3.23 3.99 6.55
time, t2 (sec) 2.20 2.21 2.82 3.05 3.47 4.39 6.96

time, t3 (sec) 2.52 2.23 2.61 2.80 3.64 4.40 6.66

time, t4 (sec) 2.55 2.85 2.75 2.94 3.59 4.32 6.59

time, t5 (sec) 2.65 2.41 2.68 2.96 3.34 4.46 7.47

Average time, t avg (sec) 2.44 2.49 2.70 3.00 3.45 4.31 6.85

A graphical display of the comparison results is presented

in Figure 6. From the presented histogram, it can be seen that
the new approach in all tests showed better performance results
compared to the classical approaches. The obtained results also
demonstrate an improvement in the speed of determining the

optimal characteristics of the software, on average, by 20%. In
addition, the new method shows better results with an increase
in the number of elements and concepts of the ontological
model.

Figure 6. Comparison of the duration of determining the configuration of system parameters

VI. DISCUSSION
The proposed adaptation process provides the possibility of
dynamic modification of the software structure and the
formation of a set of functional and graphic components of the
system based on the user’s preferences and requirements, as
well as using information about currently active device. At the
same time, it should be noted that the presented abstract
approach to the description of the subject area and software
configuration also solves the problem of adding and registering
new functional components in the system. This feature is
ensured by the implementation of their abstract representation
and the use of designed interfaces, which allow connecting
modules with a lower level of dependence and connectivity.

The use of the ontological model, which represents the main
elements of the software together with the requirements and
needs of users, in combination with the proposed method
allows improving the process of modification of software
components. This combination makes it possible to distinguish
the adaptation process in two stages:

 The first stage is responsible for the synchronization of
information between the ontological knowledge base
and the database. After the synchronization process, a
semantic decision-making engine is launched, which
allows determining the optimal settings and
characteristics of the system for the user based on
ontological rules and user requirements.

Dmytro Fedasyuk et al. / International Journal of Computing, 22(3) 2023, 381-388

VOLUME 22(3), 2023 387

 The second stage is software adaptation and
modification of system components in accordance with
the received settings. This process takes place already
on the user’s active device, information about which,
together with information about the software
environment, is also used when modifying components.

Analyzing the proposed approach of software adaptation
using the ontological model, it should be noted that in further
research it is necessary to improve the first stage of adaptation,
namely, the processing of information by the ontological
knowledge base and its synchronization with the database.
Currently, this stage takes place in an external environment
from the user’s active device, which in turn requires a constant
connection to the network. The solution to such a problem can
be the formation of a local package with data about the
ontological model and its semantic rules. However, in this case,
a problem arises in maintaining and synchronizing the
ontological knowledge base.

VII. CONCLUSIONS
An analysis of research aimed at the design and development
of adaptive and self-adaptive software systems has been carried
out. Existing approaches focus on software adaptation using
methods based on feedback diagrams, methods based on
machine learning, and combinations thereof. At the same time,
the main problem with such adaptation remains the
modification of the software structure by adding new functional
or graphic components. Another problem of these approaches
is taking into account the possibility of modifying software
components on different hardware and software platforms.

A formalized approach to modifying the configuration of
adaptive software is proposed, taking into account the
preferences and requirements of a specific user, as well as the
features of currently active device. The designed process uses
an ontological model as a knowledge base about the
requirements and structure of the software and allows
determining the necessary system settings based on the
semantic decision-making mechanism. In addition, the
configuration change process allows modification of existing
components that are registered in the software environment, as
well as adding new functional and graphical elements to
expand the capabilities of the software.

Using the proposed approach, an experimental study of the
speed of the process of determining optimal system
characteristics based on ontological models is conducted. The
obtained results demonstrate 20% better indicators of the speed
of generating software settings, using an ontological model
based on an abstract description of concepts, compared to
classical approaches to the representation of the subject area. It
should also be noted that for 3300 entities and more, it is better
to use the proposed approach, since the processing time is
reduced from 11.5 to 6.85 seconds on average.

Analyzing the obtained results, it should be noted that in
further research it is necessary to improve the processing of
information by the ontological knowledge base and its
synchronization with the database. This will reduce the number
of requests to the ontological model and save the already
generated configurations.

References

[1] C. Szabo, B. Sims, T. Mcatee, R. Lodge and R. Hunjet, “Self-adaptive
software systems in contested and resource-constrained environments:

Overview and challenges,” IEEE Access, vol. 9, pp. 10711-10728, 2021,
https://doi.org/10.1109/ACCESS.2020.3043440.

[2] R. D. Lemos et al., “Software engineering for self-adaptive systems: A
second research roadmap,” Software Engineering for Self-Adaptive
Systems II, Berlin, Germany: Springer, 2013, pp. 1–32.

[3] F. Macías-Escrivá, R. Haber, R. del Toro and V. Hernandez, “Self-
adaptive systems: A survey of current approaches, research challenges
and applications”, Expert Systems with Applications, vol. 40, no. 18, pp.
7267-7279, 2013. https://doi.org/10.1016/j.eswa.2013.07.033.

[4] I. Gerostathopoulos, T. Vogel, D. Weyns and P. Lago, “How do we
evaluate self-adaptive software systems? A ten-year perspective of
SEAMS,” Proceedings of the 2021 International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), Madrid,
Spain, 2021, pp. 59-70,
https://doi.org/10.1109/SEAMS51251.2021.00018.

[5] D. Weyns, Software Engineering of Self-adaptive Systems, In Handbook
of Software Engineering, Springer, 2019, pp. 399–443.
https://doi.org/10.1007/978-3-030-00262-6_11.

[6] C. Krupitzer, T. Temizer, T. Prantl, and C. Raibulet, “An overview of
design patterns for self-adaptive systems in the context of the internet of
things,” IEEE Access, vol. 8, pp. 187384–187399, 2020.
https://doi.org/10.1109/ACCESS.2020.3031189.

[7] T. R. D. Saputri and S.-W. Lee, “The application of machine learning in
self-adaptive systems: A systematic literature review,” IEEE Access, vol.
8, pp. 205948-205967, 2020,
https://doi.org/10.1109/ACCESS.2020.3036037.

[8] O. Gheibi, D. Weyns, and F. Quin, “Applying machine learning in self-
adaptive systems,” ACM Transactions on Autonomous and Adaptive
Systems, vol. 15, no. 3, pp. 1–37, 2020. https://doi.org/10.1145/3469440.

[9] D. Papamartzivanos, F. Gomez Marmol, and G. Kambourakis,
“Introducing deep learning self-adaptive misuse network intrusion
detection systems,” IEEE Access, vol. 7, pp. 13546–13560, 2019.
https://doi.org/10.1109/ACCESS.2019.2893871.

[10] L. Wang, “Search-based adaptation planning framework for self-adaptive
systems,” Proceedings of the 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), Buenos
Aires, Argentina, 2017, pp. 465-466, https://doi.org/10.1109/ICSE-
C.2017.21.

[11] J. Wan, Q. Li, L. Wang, L. He and Y. Li, “A self-adaptation framework
for dealing with the complexities of software changes,” Proceedings of
the 2017 8th IEEE International Conference on Software Engineering
and Service Science (ICSESS), Beijing, China, 2017, pp. 521-524,
https://doi.org/10.1109/ICSESS.2017.8342969.

[12] Y. Li, Q. Li, L. Wang, W. Cheng and T. Wu, “ADAPT: An agent-based
development toolkit and operation platform for self-adaptive systems,”
Proceedings of the 2017 IEEE Conference on Open Systems (ICOS),
Miri, Malaysia, 2017, pp. 53-58,
https://doi.org/10.1109/ICOS.2017.8280274.

[13] J. Mertz and I. Nunes, “On the practical feasibility of software
monitoring: A framework for low-impact execution tracing,”
Proceedings of the 2019 IEEE/ACM 14th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), Montreal, QC, Canada, 2019, pp. 169-180,
https://doi.org/10.1109/SEAMS.2019.00030.

[14] E. Zavala, “Towards adaptive monitoring services for self-adaptive
software systems,” Proceedings of the Service-Oriented Computing –
ICSOC 2017 Workshops, 2018, pp. 357–362.
https://doi.org/10.1007/978-3-319-91764-1_31.

[15] L. Schölkopf, M.-M. Wolf, V. Hutmann, and F. Diermeyer, “Conception,
development and first evaluation of a context-adaptive user interface for
commercial vehicles,” Proceedings of the 13th International Conference
on Automotive User Interfaces and Interactive Vehicular Applications,
2021. https://doi.org/10.1145/3473682.3480256.

[16] D. Nehurytsia and E. Sokolova, “User model in adaptive web-oriented
system software interfaces,” Radio Electronic and Computer Systems,
vol. 1, no. 65, pp.104-111, 2014.

[17] I. Tvoroshenko, M. A. Ahmad, S. K. Mustafa, V. Lyashenko, A. R.
Alharbi, “Modification of models intensive development ontologies by
fuzzy logic,” International Journal of Emerging Trends in Engineering
Research, vol. 8, no. 3, pp. 939–944, 2020.
https://doi.org/10.30534/ijeter/2020/50832020.

[18] A. Kindo, G. Kaladzavi, S. Malo, G. Camara, T. M. Y. Tapsoba and
Kolyang, “Fuzzy logic approach for knowledge modeling in an ontology:
A review,” Proceedings of the 2020 IEEE 2nd International Conference
on Smart Cities and Communities (SCCIC), Ouagadougou, Burkina Faso,
2020, pp. 1-8, https://doi.org/10.1109/SCCIC51516.2020.9377335.

 Dmytro Fedasyuk et al. / International Journal of Computing, 22(3) 2023, 381-388

388 VOLUME 22(3), 2023

[19] C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Peleska,
“Systems of Systems Engineering,” ACM Computing Surveys, vol. 48,
no. 2, pp. 1–41, 2015. https://doi.org/10.1145/2794381.

[20] D. S. Santos, B. R. Oliveira, R. Kazman, and E. Y. Nakagawa,
“Evaluation of systems-of-systems software architectures: State of the art
and future perspectives,” ACM Computing Surveys, vol. 55, no. 4, pp. 1–
35, 2022. https://doi.org/10.1145/3519020.

[21] J. Axelsson, J. Fröberg, and P. Eriksson, “Architecting systems‐of‐
systems and their constituents: A case study applying industry 4.0 in the
construction domain,” Systems Engineering, vol. 22, no. 6, pp. 455–470,
2019. https://doi.org/10.1002/sys.21516.

[22] A. Elhabbash, V. Nundloll, Y. Elkhatib, G. S. Blair, and V. S. Marco,
“An ontological architecture for principled and automated system of
systems composition,” Proceedings of the IEEE/ACM 15th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems,. 2020. https://doi.org/10.1145/3387939.3391602

[23] D. Fedasyuk and I. Lutsyk, “Method of modification of self-adaptive
software systems based on ontology,” Proceedings of the 2022 IEEE 16th
International Conference on Advanced Trends in Radioelectronics,
Telecommunications and Computer Engineering (TCSET), Lviv-Slavske,
Ukraine, 2022, pp. 530-533,
https://doi.org/10.1109/TCSET55632.2022.9766856.

[24] D. Fedasyuk and I. Lutsyk, “Tools for adaptation of a mobile application
to the needs of users with cognitive impairments,” Proceedings of the
2021 IEEE 16th International Conference on Computer Sciences and
Information Technologies (CSIT), Lviv, Ukraine, 2021, pp. 321-324,
https://doi.org/10.1109/CSIT52700.2021.9648702.

[25] D. Fedasyuk and I. Lutsyk, “The use of ontology in the process of
designing adaptive software systems,” Proceedings of the 2022 IEEE
17th International Conference on Computer Sciences and Information
Technologies (CSIT), Lviv, Ukraine, 2022, pp. 503-506,
https://doi.org/10.1109/CSIT56902.2022.10000528.

[26] M. Moshref, R. Al-Sayyad, “Developing ontology approach using
software tool to improve data visualization (Case study: Computer
Network),” International Journal of Modern Education and Computer
Science (IJMECS), vol. 11, no. 4, pp. 32-39, 2019.
https://doi.org/10.5815/ijmecs.2019.04.04.

[27] H. Razouki, “Security policy modelling in the mobile agent system,”
International Journal of Computer Network and Information Security
(IJCNIS), vol. 11, no. 10, pp. 26-36, 2019.
https://doi.org/10.5815/ijcnis.2019.10.04.

Dmytro FEDASYUK, Professor, Head
of Software Engineering Department,
Institute of Computer Sciences and
Information Technologies, Lviv
Polytechnic National University.

Research interests: mathematical
modeling and information
technologies, modeling of thermal
regimes in microelectronic systems,
software design

Illia LUTSYK, a PhD student of
Software Engineering Department,
Institute of Computer Sciences and
Information Technologies, Lviv
Polytechnic National University.

Research interests: adaptive
software, ontological models,
software design

