

404 VOLUME 22(3), 2023

Date of publication SEP-30, 2023, date of current version MAY-25, 2023.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.22.3.3237

Leveraging Software-Defined Networks for
Load Balancing in Data Centre Networks

using Linear Programming
VANI KURUGOD ASWATHANARAYANA REDDY, RAMAMOHAN BABU KASTURI

NAGAPPASETTY
Department of Information Science and Engineering

Dayananda Sagar College of Engineering, Bangalore, Karnataka, India

Corresponding author: Vani Kurugod Aswathanarayana Reddy (e-mail: 16vaniram@gmail.com).

 ABSTRACT A rapid increase in the number of online applications has led to exponential growth in traffic. In data
centers, it is hard to dynamically balance such huge amounts of traffic while keeping track of server data. A load-
balancing strategy is an effective solution for distributing such huge amounts of traffic. The major contribution of this
research work is to improve the performance of the network by designing a dynamic load balancing algorithm based
on server data using SDN, reduction of controller overhead and optimizing energy consumption in a server pool. The
problem is formulated using a Linear Programming mathematical model. In order to demonstrate the effectiveness and
feasibility of the proposed technique, the experimental setup is deployed using real hardware components such as a
Zodiac-Fx switch, Ryu controller and various web servers in the data center network. This proposed scheme is
compared with round-robin and random load balancing mechanisms. The experimental results show that the
performance is improved by 87.4% while saving 78% of the energy.

 KEYWORDS Software-defined networking; Quality of Service; Load balancing; Open Flow; Data Centre.

I. INTRODUCTION
N the era of information systems, there is a rapid shift in
network traffic. The requirements for quality of service and

network requirements have changed dramatically, placing
more emphasis on end-to-end goals in data centers. A wide
range of studies have shown that optimizing the performance
of data center networks (DCNs) is an essential
factor[1][2][3][4][5].Quality of service is measured by various
metrics like service availability, bandwidth, server utilization,
latency, end-to-end delay, resource allocation, scalability,
energy consumption and many more. One of the most
important considerations in sustaining QoS is ensuring the
vitality of time-sensitive applications. Load balancing plays a
crucial role in achieving a high quality of service and
distributing network traffic evenly. Any user experience is
measured in terms of service availability, which is significantly
influenced by the level of load balancing achieved. For
example, imagine an e-commerce site that is widely used for
online shopping. On regular days, a minimum number of
servers may be necessary to accommodate the number of users
accessing the site. Over the festive season, the number of users
accessing the site will increasev drastically due to various
offers.

If the servers cannot handle all the requests, in such
scenarios, load balancing can be employed[6][7].

Load balancing can be performed at two levels. One is at
the transport layer and the other one is at the application layer.
Most data centers employ hardware load balancers. Dedicated
hardware load balancers are prohibitively expensive to
maintain. As a part of this research work, the concept of
software-defined networking (SDN) was integrated to tackle
the issue of load balancing. SDN allows programmability of
network components, which makes it adaptable in every field
of networking[8].

As illustrated in Figure 1, the data plane and control plane
are decoupled in SDN. The entire intelligence in SDN is
located in the control plane. The infrastructure layer, also called
the data plane, consists of forwarding elements like switches,
routers, and many more. The controller in the control layer acts
as a decision maker, whereas data plane elements follow the
controller's instructions. The next layer is SDN's application
layer, which provides users with a wide array of application
programming interfaces for creating customized development
modules based on specific business needs[9][10][11].

I

Vani Kurugod Aswathanarayana Reddy et al. / International Journal of Computing, 22(3) 2023, 404-411

VOLUME 22(3), 2023 405

Figure 1. The SDN Architecture

The article presents a Server Metric Collection Load
Balancing [SMC-LB] algorithm based on SDN. The proposed
work consists of load balancing module that runs server metrics
collector component and the controller module that runs best
server allocator and flow installer components. The major
contribution of the proposed research work is to improve the
performance by adopting SDN while performing load
balancing among the pool of servers by increasing the number
of requests served, reducing controller overhead and optimize
server energy consumption.

The remainder of the paper is organized as follows: Section
2 reports on related work. Section 3 describes the proposed
system model. Section 4 includes implementation and
performance analysis of the proposed method. Section 5:
Conclusion and Future Enhancements.

II. RELATED WORK
The cutting-edge of this research work is employing SDN
paradigm to provide load balancing and hence improve
network QoS. The load balancing techniques are classified into
static and dynamic algorithms[12][13][14].

A. STATIC LOAD BALANCING ALGORITHMS
A static load balancing strategy is based on a fixed set of rules
that do not depend on the current condition of the network. On
the other hand in case of sudden system failures, these
algorithms have a serious disadvantage. Some of the static load
balancing techniques are round robin, random technique,
weighted round robin, least connection; equal-cost multi-path
routing protocol, and many more. The round robin assigns new
job to each switch in a round robin fashion. On each switch, job
allocation order is maintained locally. This algorithm works
well when the workload distributions are equal. Hence, these
technique may not suit for current data center
networks[15][16][17].Equal cost multi-path routing (ECMP) is
used to split flows towards the available paths as analyzed
in[18]. Based on the hash value of the flow they are forwarded
to different paths. For the current network demands, the
mapping between flows and paths is not contributing towards
utilizing bandwidth. ECMP does not take into account dynamic
addition of flows. In random load balancing technique, each job

is assigned randomly to the pool of servers. In least connection
algorithm, the jobs are scheduled to the server with least
number of active connections. The achievement of load
balancing through traditional techniques not only entails high
costs but also presents complex implementation challenges. To
overcome these drawbacks dynamic load-balancing techniques
were designed.

B. DYNAMIC LOAD BALANCING ALGORITHMS
These algorithms perform load balancing based on current state
of the system. Dynamic load balancing offers low overhead,
increased scalability, and fault tolerance. These load balancing
techniques lead to improvement in performance of the entire
network. With the flow control mechanism in SDN, it is now
possible to build a dynamic load balancing at the software
plane [19].

Axiomatically, an SDN load balancing scheme based on
server response time is proposed in this scheme. It has a single
controller and is used to acquire response time for the selection
of a server with a minimum response time. The work proposed
by the author in[20] performs web load balancing using Open
Flow switches in software-defined networking, takes server
response time and switch port traffic for performing load
balancing among a pool of servers. The research in [21]
suggested a dynamic server load-balancing algorithm using the
sFlow protocol. A dynamic load balancing mechanism that
ensures service quality was suggested in [22]. Another strategy
of message-level scheduling and flow-level scheduling
performed in overburdening on a given access point (AP) is
addressed in[23]. To solve the problem of load balancing in
cloud data centers, a new dynamic approach to dynamic load
balancing routing in Open Flow enabled networks is used. A
path switching algorithm was designed that is capable of
balancing the workloads dynamically in the networks during
transmission, as discussed in[24]. The work proposed in[25] is
intended to design an algorithm that re-routes the traffic to an
alternate path from the original path when the throughput
decreases or data loss reaches a certain threshold.

In order to address energy-efficient load balancing, an
algorithm that ensures energy-efficient resource management
in cloud data centers was created in [26]. Based on the SNMP
protocol, a server load balancing scheme is designed in [27]
that addresses the scheduling of connections to the servers
based on different metrics. The literature on green networking
has been widely studied and a variety of solutions have been
offered. SDN also lends itself to most of these pieces. For
instance, the authors in [28] presented the GreenSDN approach
that makes use of load profile and linear profile for optimizing
the total energy efficiency. The research work in[29] presented
the Time Efficient Energy Aware Routing (TEAR) algorithm.
This research aims to reduce the number of links used for
packet delivery in order to reduce energy consumption. The
study conducted in [30] shows the usage of technologies like
SDN, virtualization, and edge computing to optimize the
energy consumption in data center networks. The research
work in [31] proposed a survey on an energy-efficient network
configuration in SDN predicted using a Machine Learning
method based on Logistic Regression. The end-to-end mobility
support required to maintain service continuity and quality of
service using stochastic network calculus (SNC) framework to
control Mobile edge computing (MEC) data flows was
examined in [32]. In the realm of IoT implementations, a
multitude of challenges arise, encompassing the effective

 Vani Kurugod Aswathanarayana Reddy et al. / International Journal of Computing, 22(3) 2023, 404-411

406 VOLUME 22(3), 2023

management of substantial network data, the establishment of
robust privacy and security measures, the fulfilment of
demanding Quality of Service (QoS) criteria, and the adept
handling of the heterogeneous nature of underlying networking
components. To address the problem of energy efficiency the
research work in [33] centers around an in-depth examination
of allocating Virtual Machines (VMs) to end devices using
Weighted Sum Method.

Based on preliminary research, it appears that using SDN
for network management and load balancing has potential
benefits. However, only a few approaches address controller
overhead. In addition, some systems have trouble
comprehending packet headers, resulting in difficulties in
routing traffic. Another significant factor during performance
evaluation is taking energy consumption by the server pool into
consideration. The proposed research work is motivated by the
design of a technique named the Server Metric Collection Load
Balancing [SMC-LB] algorithm to reduce the controller
overhead and achieve optimization of server energy
consumption.

The rest of the paper is structured as follows: Section 3
describes the proposed system model. Section 4 includes
implementation and performance analysis of the proposed
method. Section 5 includes Summary and proposes Future
Improvements.

PROPOSED SYSTEM MODEL
The proposed model is built in the Open Flow environment.
The model is as depicted in Figure 2. It consists of the RYU
controller, load balancer, web server’s pool, and clients
connected together via Zodiac-Fx switches.

Figure 2. SDN based System Model

The proposed scheme performs dynamic load balancing
using three different algorithms. Algorithm1 runs on a load
balancer and collects server metrics from each server within a
window period of 5ms as per the assumption. Algorithm 2 runs
on the controller to decide the best server based on load
balancer results. On the controller, Algorithm 3 installs flow
into the zodiac switch. Upon the request's arrival, the Zodiac-
Fx searches for the flow. If the flow is not defined, it is
forwarded to the controller. If the flow is defined, the switch
forwards the request to the best server concerned. The
concerned server responds directly to the request. During load
balancing, the load balancer takes care of communications

related to server status. Nevertheless, the load balancer is
separated from the controller logic, and so controller overhead
is reduced.

A. MEASURING SERVER METRICS
This module outlines the strategy for obtaining server metrics.
The start-up server scripts running on each server are
responsible for sending different metrics like requests_per_sec
(RPS), time_per_request, transfer_rate, waiting_time,
CPU_TIMES, and energy consumption [EC] to the RYU
controller. The proposed model is evaluated for different cases
in experimentation. Algorithm 1 depicts the process of
measuring server metrics. The symbols are listed in Table 1
below.

Algorithm 1: Server Metrics Collector [SMC]

 Input: sends server metrics for each 5milli seconds
 Output: Collects server metrics

1 for each server do
2 {
3 if time% t ==0 do
4 {
5 Send HTTP request to server record metrics
 Rps, Ec
6 Rps = avg [(no. Of request) / (time taken per
 request in 5ms)]
7 Ec= avg (Gc)
8 Gc= Oc+Xc
9 for each Wtime = 5ms
10 {
11 send Rps and Ec to load
 the balancer
12 }
13 } end for
14 } end if
15 } end for

Algorithm 2: Best Server Allocator [BSA]

 Input: max Rps and Min energy consumption
 Output: Finds the best server
1 While start up load balancer do
2 {
3 Collect the metrics Rps and Ec
4 Record max (Rps) and min (Ec) each 5ms
 from each server.
5 for each server.
6 {
7 If (dpkt=Creq)
8 {
9 route the traffic to server
 with max
 (Rps) and min (Ec)
10 } end if
11 } end for
12 } end while

Vani Kurugod Aswathanarayana Reddy et al. / International Journal of Computing, 22(3) 2023, 404-411

VOLUME 22(3), 2023 407

Algorithm 3: Flow Installer [FI]
 Input: max (Rps) and min (Ec)
 Output: Sends load information to RYU
 controller
1 send best_server metrics to RYU controller
2 {
3 get current best server information from load
 balancer
4 add_flow to zodiac
5 }
6 change_destination_address
7 {
8 for each HTTP connection
9 {
10 Destip = LBip
11 add flow in the switch.
12 }end for
14 Flow of packets via Zodiac-Fx
15 for each incoming HTTP request
16 {
17 if (match =true)
18 {
19 follow the flow
20 else
21 forward the packet to
 The RYU controller
22 } end if
23 } end for

Table 1. Symbols and Description

Symbol Corresponding Description
Rps Requests per second
Ec Energy consumption
Gc Global energy consumption
Oc Operating system power
Xc Energy consumption of applications.
Nr Total Number of requests
Cc Concurrent connections
Ts Time taken per requests
Rpsi Max number of requests served in window period
Eci Initial energy consumption
Rpsf Average of Rpsi
Ecf Average of Eci
Ecrr Energy consumption in round-robin
Ecrand
Rt

Energy consumption in random
Response Time of all requests

The performance evaluation and the experimental results

are discussed in the next section.

IV. EXPERIMENTATION
The experimental setup is created by connecting web servers
like Apache, SimpleHTTPServer, and NGINX installed on
Ubuntu machines in a data center environment. All the servers,
clients, and load balancers are connected to the Ryu
controller[34] via Zodiac-Fx switches[35]. To generate traffic
from different hosts, the Apache Bench (ab) tool is used. The
necessary assumptions and descriptions are given in Table 2
below.

Table 2. Assumptions and Corresponding Description

Assumptions Description
Time = 5ms
Cc=10 to 2000

The window period for server
metric collection is assumed every 5
milliseconds

Nr = 300 to 400
Nr = 150 to 200
Nr = 10 to 50

High
Average
Low

A. TESTBED FOR IMPLEMENTATION
The experimental setup is depicted in Figure 3. The servers
from hs1 to hsn are connected to the controller and load
balancer via Zodiac-Fx switches. The clients from hc1 to hcn
connected to the controller via zodiac send HTTP requests to
the server. In modern web servers, it is common practice to
utilize persistent connections, where a single TCP connection
is employed to handle multiple HTTP requests. Here TCP
connection is often utilized as a flow for transmitting data in
network communication.

Figure 3. Experimental topology

B. Mathematical modelling.
The proposed method is modelled using a linear programming
mathematical model. A linear programming problem typically
involves finding an extreme value for a linear function. This
linear function can either be used to maximize profit or
revenue, or to minimize costs. To achieve optimization in the
proposed method the scheduling of tasks is represented as a
linear function. The objective of linear programming model in
the proposed method is to maximize the number of requests
served by each server. The objective function is represented as
shown below:

𝑓(𝑥) = ෌ ൫𝑁𝑋௜௝ + 𝐶௜௝൯
௡

௜ୀଵ
 (1)

Subject to

𝑓(𝑥) = (෌ [𝑁𝑋௜ + 𝐶௜

௡

ூୀଵ
] + ∑ [𝑁𝑋௝ + 𝐶௝]௡

௜ୀଵ ≤ 𝑋(max)

X(total) = max(∑ 𝑋௜
௡
௜ୀଵ + ∑ 𝑋௝

௡
௝ୀଵ) (2)

Non-negativity constraints:

xi, xj ≥ 0,
where

 Vani Kurugod Aswathanarayana Reddy et al. / International Journal of Computing, 22(3) 2023, 404-411

408 VOLUME 22(3), 2023

N = numbers of users
Ci= concurrency of i-th server
Cj= concurrency of j-th server
Xi=Request served by i-th server
Xj=Request served by j-th server
X (max) = Max Requests served per second
X (total) = total requests served by each server

Substituting the values of concurrency Cij, N and Xij shows
us the linear growth in the result, though the number of users
increases along with the increase in concurrency.

C=10-
2000

N=
1000,2000,5000

X=400,300,200,100,50,10

When x=400
f(x) = (1000*400) +10
f(x) = 400010

Similarly the variation of f(x) is shown in the graph below
for different values of Cij, N and Xij.

Figure 4. Linear growth of requests served per second

The experimentation was carried out as discussed below.
The switch forwards the client's HTTP request to the

controller as soon as it is received. The controller installs the
flows according to the metrics received from the load balancer.
Based on the flow, the switch forwards the packet to the
particular best server with max (Rps) and min (Ec). Here, to
calculate energy consumption, a python-based Running
Average Power Limit [pyRAPL] is used[36].

The experimentation was carried out as discussed below.
 Stage 1: The apache bench tool is installed on the client

machines for performance evaluation. Using apache bench,
each client sends the HTTP requests to the webserver.

Stage 2: Initially, this experiment was carried out using the
RR algorithm, where each client’s sends HTTP requests to the
server, and these requests will be handled by servers in turns,
i.e., the first request will be handled by server K (𝑺𝒌), the next
request will be handled by server (K+1) mod M, where M
represents the number of servers in the server pool. Here, Rps
is obtained as shown in equation (3).

𝑹𝒑𝒔 = ቀ
𝑵𝒓

𝑻𝒔
ቁ 𝑺𝒌 .… (3)

Stage 3: The evaluation is done using a random algorithm.

This technique chooses the servers randomly. Upon arrival of

a client’s request, the Zodiac-Fx switch forwards it to the
controller. Now the controller allocates a random server to
process the request by configuring the flow table with the
selected server. Here, Rps is obtained as shown in equation (4).

Stage 4: The experimentation is carried out using SMC-LB
scheme that works as described in algorithm 1, 2 and 3. To
increase the system performance, the multi-threading concept
is used in the RYU controller by creating different threads for
different tasks. Due to the employment of multi-threading,
the RYU controller receives the statistics more rapidly and
installs the flows accordingly. The proposed method considers
keep-alive extensions that enable persistent connections to
provide long-lived HTTP connections, allowing multiple
requests to be sent over the same TCP connection. According
to equation (2), the initial 𝑹𝒑𝒔𝒊 is calculated by considering the
server, which processes the total number of requests (𝑵𝒓)
within a window period of 5ms(𝑻𝒔). Using equation (5) average
𝑹𝒑𝒔𝒇 is obtained.

𝑹𝒑𝒔𝒊 = 𝒎𝒂𝒙 ቄቀ
𝑵𝒓

𝑻𝒔
ቁ 𝑺𝒌ቅ …. (4)

𝑹𝒑𝒔𝒇 = 𝒂𝒗𝒈(𝑹𝑷𝑺𝒊) …. (5)

The performance (P) of round robin, random and SMC-LB
is evaluated as given in equation (6)

𝑷 = ൫𝑹𝒑𝒔𝒇 − 𝑹𝒑𝒔𝒊൯ ∗ 𝟏𝟎𝟎 …. (6)

The Average Response Time (ART) is calculated as given
below in equation (7)

ART= (Σ(Response Time of all requests)) / (Total Number of

requests)
ART =(Σ(Rt)) / (Nr) …. (7)

V. RESULTS
According to the experiment conducted in SDN networks, SMC-
LB is proposed and round robin and random techniques are
compared as shown in Table 3.

Table 3. Comparative Results of Three Different
Techniques

No. of
requests

Concurrency
level[cc]

Techniques and Observations

Round-
robin

Random SMC-LB

1000 10 High High High
100 High High High
500 Average Average High

1000 Depleted Depleted High

2000 Depleted Depleted High

2000 10 Average Average High

100 Low Low High
500 Low Low High
1000 Depleted Depleted High

2000 Depleted Depleted High

5000 10 Low Low High
100 Low Low High
500 Low Low High
1000 Depleted Depleted High

2000 Depleted Depleted High

Based on the experimental results, it is clear that the

number of requests served by round robin and random

Vani Kurugod Aswathanarayana Reddy et al. / International Journal of Computing, 22(3) 2023, 404-411

VOLUME 22(3), 2023 409

algorithms started to deteriorate as the (cc) reached 1000. From
these experimental values, it is observed that this algorithm
performs 87% better. In comparison with round robin and
random techniques, the number of requests served per second
by the proposed method is improved by 25.37% and 33.23%,
respectively.

Figure 5. max Rps at cc=10 & n=1000

Figure 6. max Rps at cc=100 & n=1000

Figure 7. max Rps at cc=500 & n=1000

Figure 8. max Rps at cc=1000 & n=1000

Figure 9. max Rps at cc=10 & n=2000

Figure 10. max Rps at cc=100 & n=2000

Figure11. max Rps at cc=500 & n=2000

Figure 12. max Rps at cc=1000 & n=2000

 Vani Kurugod Aswathanarayana Reddy et al. / International Journal of Computing, 22(3) 2023, 404-411

410 VOLUME 22(3), 2023

A. SERVER ENERGY CONSUMPTION
Current networking technology consumes a significant amount
of energy, which reduces its efficiency. In order to optimize the
energy consumption in the proposed technique, the traffic is
diverted to a server, which can handle a greater number of
requests within less time and less energy. To achieve this
optimization, the server is put into sleep mode whenever it is
not serving any requests, so the energy consumption is reduced.
This intelligence is the key factor for the SMC_LB algorithm
to perform better than round robin and random techniques. The
energy consumption 𝑬𝒄 and 𝑮𝑪 of round robin and random
techniques is obtained based on equations (8) and (9). The
energy consumption 𝑬𝑪𝒇

 of SMC-LB is given by equation (10)

respectively.

 𝐸௖ = 𝐺௖ …. (8)

𝑮𝑪 = ∑ (𝑶𝒄 + 𝑿𝒄)𝒏
𝒊ୀ𝟎 …. (9)

 𝑬𝑪𝒇
= 𝒂𝒗𝒈൫𝑬𝑪𝒊

൯ …. (10)

The covariance is calculated among the varying energy

levels of all three schemes as given in equation (11). The term
(Xi) represents data value of Rpsrr and Rpsrand, 𝑿 ഥ represents
mean of Rpsrr and Rpsrand, (Yi) represents data value of
RpsSMC-LB, 𝒀 ഥ represents mean of Rps SMC-LB.

𝒄𝒐𝒗(𝑿, 𝒀) = ෍ ቀ
(𝑿𝒊ି𝑿ഥ)ି(𝒀𝒊ି𝒀ഥ)

(𝑵ି𝟏)
ቁ

𝒏

𝒊ୀ𝟏
 …. (11)

Based on obtained values in Table 4, the energy

consumption of servers using the SMC-LB is lower in
comparison with other techniques. This is due to the efficient
way of diverting the traffic to a more stable server, which can
handle more number of requests within less time. The
covariance in equation (11) is calculated to find out the relation
between the random energy levels. According to the
observation, as the numbers of concurrent users increased, the
energy consumption also spiked in round robin and random
schemes. The graphical representation of this is given in
Figure 12.

Table 4. Energy Consumption Table

C N Ecrr Ecrand EcSMC-LB
10 1000 5.67 5.78 5.22

100 1000 9.02 9.5 8.89

500 1000 11.10 11.67 9.98

1000 1000 16.02 16.78 15.45

10 2000 7.66 7.56 7.03

100 2000 12.32 12.65 12.02

500 2000 17.85 17.83 17.10

1000 2000 23.98 23.89 23.04

Figure 13. Server energy consumption

In server1, the energy consumption using this SMC-LB
scheme is lower in comparison with round robin and random
techniques. This is due to the optimized power consumption
technique applied in the scheme. Whenever the server is not
serving any requests, it is put to sleep mode hence the energy
consumption is kept minimum. This intelligence is the key
factor for the SMC_LB algorithm to save energy of server
during its idle time and perform better than round robin and
random techniques. It is observed from the experimental results
that the proposed scheme performs 78% better. In comparison
with round robin and random techniques the proposed method
shows improvement in saving energy by 5.7% and 9.6 %
respectively.

VI. CONCLUSION
Due to the rapid growth of network traffic in a data center
environment, it is a censorious issue to balance the incoming
requests and divert them to the right server in a server pool. In
this research work, a more dynamic load-balancing scheme is
presented based on the SDN architecture in data centers. It is
observed from the results that the usage of random and round
robin techniques is not feasible in scenarios where dynamic
load balancing is required. To address this issue, the proposed
technique SMC-LB performs better. The comparative study
demonstrates that the adoption of the proposed SMC-LB
scheme in any data center network achieves better throughput.
It shows better performance in handling a greater number of
requests than round robin and random schemes as the results
shows 87.4% improvement in performance while saving 5.7%
to 9.6% of energy by reducing the controller overhead.
Currently, this method is implemented using web servers, but
as a future enhancement, heterogeneous servers could be
explored.

References

[1] G. Kumar et al., “Swift: Delay is simple and effective for congestion
control in the datacenter,” Proceedings of the ACM SIGCOMM, 2020, pp.
514–528. https://doi.org/10.1145/3387514.3406591.

[2] A. Saeed et al., “Annulus: A dual congestion control loop for datacenter
and WAN traffic aggregates,” Proceedings of the 2020 Annu. Conf. ACM
Spec. Interes. Gr. Data Commun. Appl. Technol. Archit. Protoc. Comput.
Commun. SIGCOMM 2020, pp. 735–749, 2020,
https://doi.org/10.1145/3387514.3405899.

[3] S. Hu et al., “Aeolus: A building block for proactive transport in
datacenter networks,” IEEE/ACM Trans. Netw., vol. PP, no. January, pp.
1–15, 2021, https://doi.org/10.1109/TNET.2021.3119986.

[4] T. Zhang et al., “Rethinking fast and friendly transport in data center
networks,” IEEE/ACM Trans. Netw., vol. 28, no. 5, pp. 2364–2377, 2020,
https://doi.org/10.1109/TNET.2020.3012556.

[5] G. Zeng et al., “Congestion control for cross-datacenter networks,”
Proceedings of the Int. Conf. Netw. Protoc. ICNP, vol. 2019 October, no.
January, 2019, https://doi.org/10.1109/ICNP.2019.8888042.

Vani Kurugod Aswathanarayana Reddy et al. / International Journal of Computing, 22(3) 2023, 404-411

VOLUME 22(3), 2023 411

[6] M. Karakus and A. Durresi, “Quality of Service (QoS) in Software
Defined Networking (SDN): A survey,” J. Netw. Comput. Appl., vol. 80,
pp. 200–218, 2017, https://doi.org/10.1016/j.jnca.2016.12.019.

[7] M. M. Tajiki, B. Akbari, and N. Mokari, “Optimal Qos-aware network
reconfiguration in software defined cloud data centers,” Comput.
Networks, vol. 120, pp. 71–86, 2021,
https://doi.org/10.1016/j.comnet.2017.04.003.

[8] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: An
intellectual history of programmable networks,” Comput. Commun. Rev.,
vol. 44, pp. 87–98, 2014, https://doi.org/10.1145/2602204.2602219.

[9] P. Göransson, C. Black, and T. Culver, The OpenFlow Specification.
2017. https://doi.org/10.1016/B978-0-12-804555-8.00005-3.

[10] S. Huang, J. Griffioen, and K. L. Calvert, “Network hypervisors:
Enhancing SDN infrastructure,” in Computer Communications, June
2014, vol. 46, pp. 87–96. https://doi.org/10.1016/j.comcom.2014.02.002.

[11] M. Hamdan et al., “A comprehensive survey of load balancing techniques
in software-defined network,” J. Netw. Comput. Appl., vol. 174, no.
October 2020, p. 102856, 2021,
https://doi.org/10.1016/j.jnca.2020.102856.

[12] B. P. Mulla, C. Rama Krishna, and R. K. Tickoo, “Load balancing
algorithm for efficient VM allocation in heterogeneous cloud,” Int. J.
Comput. Networks Commun., vol. 12, no. 1, pp. 83–96, 2020,
https://doi.org/10.5121/ijcnc.2020.12106.

[13] Z. Benlalia, K. Abouelmehdi, A. Beni-hssane, and A. Ezzati, “Comparing
load balancing algorithms for web application in cloud environment,”
Indones. J. Electr. Eng. Comput. Sci., vol. 17, no. 2, p. 1104, 2020,
https://doi.org/10.11591/ijeecs.v17.i2.pp1104-1108.

[14] T. E. Ali, A. H. Morad, and M. A. Abdala, “Load balance in data center
SDN networks,” Int. J. Electr. Comput. Eng., vol. 8, no. 5, pp. 3084–
3091, 2018, https://doi.org/10.11591/ijece.v8i5.pp3084-3091.

[15] A. A. Alkhatib, A. Alsabbagh, R. Maraqa, and S. Alzubi, “Load
balancing techniques in cloud computing: Extensive review,” Adv. Sci.
Technol. Eng. Syst. J., vol. 6, no. 2, pp. 860–870, 2021,
https://doi.org/10.25046/aj060299.

[16] M. R. Belgaum, S. Musa, M. M. Alam, and M. M. Su’Ud, “A systematic
review of load balancing techniques in software-defined networking,”
IEEE Access, vol. 8, pp. 98612–98636, 2020,
https://doi.org/10.1109/ACCESS.2020.2995849.

[17] S. Kaur, J. Singh, K. Kumar, and N. S. Ghumman, “Round-robin based
load balancing in software defined networking,” Proceedings of the 2015
Int. Conf. Comput. Sustain. Glob. Dev. INDIACom 2015, pp. 2136–2139,
2015.

[18] F. Rhamdani, N. A. Suwastika, and M. A. Nugroho, “Equal-cost
multipath routing in data center network based on software defined
network,” Proceedings of the 2018 6th International Conference on
Information and Communication Technology (ICoICT), 2018, pp. 222–
226. https://doi.org/10.1109/ICoICT.2018.8528730.

[19] H. Zhong, Y. Fang, and J. Cui, “LBBSRT: An efficient SDN load
balancing scheme based on server response time,” Futur. Gener. Comput.
Syst., vol. 68, pp. 183–190, 2017,
https://doi.org/10.1016/j.future.2016.10.001.

[20] K. Soleimanzadeh, M. Ahmadi, and M. Nassiri, “SD-WLB: An SDN-
aided mechanism for web load balancing based on server statistics,” ETRI
J., vol. 41, no. 2, pp. 197–206, 2019, https://doi.org/10.4218/etrij.2018-
0188.

[21] S. Wilson Prakash and P. Deepalakshmi, “DServ-LB: Dynamic server
load balancing algorithm,” Int. J. Commun. Syst., vol. 32, no. 1, pp. 1–11,
2019, https://doi.org/10.1002/dac.3840.

[22] V. Koryachko, D. Perepelkin, and V. Byshov, “Approach of dynamic
load balancing in software defined networks with QoS,” Proceedings of
the 2017 6th Mediterranean Conference on Embedded Computing
(MECO), 2017, pp. 1–5. https://doi.org/10.1109/MECO.2017.7977237.

[23] A. S. AbdelRahman and A. B. El-Sisi, “Dynamic load balancing
technique for software defined Wi-Fi networks,” Proceedings of the 2017
12th International Conference on Computer Engineering and Systems
(ICCES), Cairo, Egypt, 2017, pp. 289-294,
https://doi.org/10.1109/ICCES.2017.8275321.

[24] H. Long, Y. Shen, M. Guo, and F. Tang, “LABERIO: Dynamic load-
balanced Routing in OpenFlow-enabled Networks,” Proceedings of the
2013 IEEE 27th International Conference on Advanced Information
Networking and Applications (AINA), 2013, pp. 290–297.
https://doi.org/10.1109/AINA.2013.7.

[25] F. S. Fizi and S. Askar, “A novel load balancing algorithm for software
defined network based datacenters,” Proceedings of the 2016
International Conference on Broadband Communications for Next
Generation Networks and Multimedia Applications, CoBCom 2016,
2016, pp. 1–6. https://doi.org/10.1109/COBCOM.2016.7593506.

[26] Y. Gao and L. Yu, “Energy-aware load balancing in heterogeneous cloud

data centers,” Proceedings of the ACM Int. Conf. Proceeding Ser., 2017,
pp. 80–84, https://doi.org/10.1145/3034950.3035000.

[27] T. Malbasic, P. D. Bojovic, Z. Bojovic, J. Suh, and D. Vujosevic, “Hybrid
SDN networks: A multi-parameter server load balancing scheme,” J.
Netw. Syst. Manag., vol. 30, no. 2, pp. 1–28, 2022,
https://doi.org/10.1007/s10922-022-09642-y.

[28] B. B. Rodrigues, A. C. Riekstin, G. C. Januario, V. T. Nascimento, T. C.
M. B. Carvalho, and C. Meirosu, “GreenSDN: Bringing energy efficiency
to an SDN emulation environment,” Proceedings of the 2015 IFIP/IEEE
Int. Symp. Integr. Netw. Manag. IM 2015, pp. 948–953, 2015,
https://doi.org/10.1109/INM.2015.7140416.

[29] Y. H. Chen, T. L. Chin, C. Y. Huang, S. H. Shen, and R. Y. Huang, “Time
efficient energy-aware routing in software defined networks,”
Proceedings of the 2018 IEEE 7th Int. Conf. Cloud Networking, CloudNet
2018, pp. 1–7, 2018, https://doi.org/10.1109/CloudNet.2018.8549457.

[30] J. Light, “Green networking: A simulation of energy efficient methods,”
Procedia Comput. Sci., vol. 171, no. 2019, pp. 1489–1497, 2020,
https://doi.org/10.1016/j.procs.2020.04.159.

[31] S. Rout, K. S. Sahoo, S. S. Patra, B. Sahoo, and D. Puthal, “Energy
efficiency in software defined networking: A survey,” SN Comput. Sci.,
vol. 2, no. 4, pp. 1–15, 2021, https://doi.org/10.1007/s42979-021-00659-
9.

[32] Y. Narimani, E. Zeinali, and A. Mirzaei, “QoS-aware resource allocation
and fault tolerant operation in hybrid SDN using stochastic network
calculus,” Phys. Commun., vol. 53, Aug. 2022,
https://doi.org/10.1016/j.phycom.2022.101709.

[33] S. S. Patra, R. Govindaraj, S. Chowdhury, M. A. Shah, R. Patro, and S.
Rout, “Energy efficient end device aware solution through SDN in edge-
cloud platform,” IEEE Access, vol. 10, no. November, pp. 115192–
115204, 2022, https://doi.org/10.1109/ACCESS.2022.3218328.

[34] S. Asadollahi, B. Goswami, and M. Sameer, “Ryu controller’s scalability
experiment on software defined networks,” Proceedings of the 2018
IEEE International Conference on Current Trends in Advanced
Computing, ICCTAC 2018, 2018, pp. 1–5.
https://doi.org/10.1109/ICCTAC.2018.8370397.

[35] S. Wang, K. G. Chavez, S. Kandeepan, and P. Zanna, “The smallest
software defined network testbed in the world: Performance and
security,” Proceedings of the IEEE/IFIP Network Operations and
Management Symposium: Cognitive Management in a Cyber World,
NOMS 2018, 2018, pp. 1–2.
https://doi.org/10.1109/NOMS.2018.8406116.

[36] A. Chakib-Belgaid, “pyRAPL,” 2019. [Online]. Available at:
https://pyrapl.readthedocs.io/en/latest/#

Mrs. Vani K.A is Assistant Professor at
Dayananda Sagar College of Engineering,
Visvesvaraya Technological University
(VTU), Bengaluru, Karnataka, India. She
received her Bachelor of Engineering and
Master of Technology degree in Computer
Science and Engineering from VTU,
Belagavi, Karnataka, India. She is
currently pursuing Ph D from VTU,
Belagavi, Karnataka, India. She has about
14 years of experience in teaching. Her
areas of interest are computer networks,

QoS in SDN, mobile networks, serverless computing and machine
learning. She can be contacted at email: vanika-
ise@dayanandasagar.edu.

Prof. RAMA MOHAN BABU K.N is currently
working as Professor in the Department of
Information Science and Engineering at
Dayananda Sagar College of Engineering,
Bengaluru, India. He obtained his B.Tech
in Computer Science and Engineering
from Mangalore University, India, M.S from
BITS-PILANI India and PhD from Dr.MGR
University, India. His areas of interest are
computer networks, wireless mobile
networks,QoS in SDN and network
security.

He can be contacted at email: ramamohanbabu-
ise@dayanandasagar.edu.

