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 ABSTRACT This study compares the performance of stream clustering algorithms (DenStream, CluStream, 
ClusTree) on Massive Online Analysis (MOA) using synthetic and real-world datasets. The algorithms are 
compared in the presence on noise level [0%, 10%, 30%] on the synthetic data. DenStream epsilon parameter was 
tune to 0.01 and 0.03 to improve its performance. We use the performance evaluation metrics CMM, F1-P, F1-R, 
Purity, Silhouette Coefficient, and Rand statistic. On synthetic data, our results show that ClusTree outperformed 
CluStream and DenStream on the almost all the metrics except in Purity and Silhouette were DenStream performs 
better at noise levels (10% and 30%). ClusTree outperform CluStream and DenStream on Forest Cover type dataset 
on metrics CMM, F1-P, F1-R, Silhouette Coefficient, and Rand statistic with 90%, 74%, 77% and 89% 
respectively. However, the tune DenStream epsilon parameter shows some improvements. On electricity data, 
DenStream outperform CluStream and ClusTree at epsilon parameter (0.03 and 0.05) on metrics F1-P, F1-R, and 
Purity. The investigation of DenStream epsilon parameter (0.03 and 0.05) on RandomBRF Generator with noise 
level [0%, 10%, 30%] shows that DenStream with epsilon 0.03 outperform other parameter adjustment. 
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I. INTRODUCTION 
ATA has been described as the new oil, to underscore its 
economic importance. However, to extract maximum 

benefits from the constant stream of generated data, existing 
mining and analytical tools must adapt to the new ones 
developed from scratch. A vital tool in the investigation of 
large-scale data and data stream is Massive Online Analysis 
(MOA) [1, 2]. There has been great work in extending MOA 
into R and Python; these include RMOA [3], stream [4], 
streamMOA [5], scikit-multiflow [6], and River [7]. 

Data stream environment is different from traditional data 
mining settings [2, 8]. This study investigated and compared 
the performance of data clustering techniques DenStream [16], 
CluStream [17], and ClusTree [18] in MOA using six 
performance evaluation metrics (CMM, F1-P, F1-R, Purity, 
Silhouette Coefficient, and Rand statistic). We further 
investigate DenStream performance on epsilon parameter 
adjustment and RandomBRFGenerator noise levels. Some 
studies such as [28] have tried optimizing the distance 
threshold ϵ in the range [0,1] on RandomRBFGenerator while 
[16, 29] carried out work on the fading or decaying factor λ, but 

to the best of our knowledge we have not seen the epsilon 
combined with different noise levels. 

The remainder of this paper is organized into four sessions. 
In Session II, we present the related works and major 
approaches of data stream clustering. In Session III, we present 
the methodology for the comparative analysis. In Section IV, 
we describe the experiment setup, the data set used, and output 
of the experiment. Finally, in Section V, we present future 
research and conclude this paper.  

II. RELATED WORK 

A.  DATA CLUSTERING  
Clustering is the process of grouping data objects into clusters 
based on their similarity or dissimilarity using certain 
characteristics or criteria. Clustering is an unsupervised 
learning problem [9]. Data Clustering is relevant in identifying 
structure when information about data is unavailable. 
Clustering evaluation measures is divided into 
external/extrinsic and internal/intrinsic measures [15, 26]. Data 
Clustering has a wide range of applications like in Breast 
cancer tumors diagnosis using Fuzzy c-means clustering [19], 
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in image segmentation using sine cosine algorithm [20], and 
multidimensional sequence clustering [21]. 

B.  DATA STREAM CLUSTERING APPROACHES  
There are several data stream clustering approaches in 
literature. The major approaches are described as follows:  

Partitioning: This approach produces spherical-shaped 
clusters. The most prevalent are the k-means and k-medoids. 
The k-means is not appropriate for spherical-shaped clusters 
but good when the number of clusters is known. Noise and 
outliers affect it.  

Density-based: This approach produces arbitrary shaped 
clusters mostly in partitioning method. The density-based 
approach can detect arbitrary shapes clusters and outliers.  

Grid-based: This method produces clusters based on grids 
to speedup clustering process. 

Model-based: This method is based on statistical models 
and allows objects to belong to several clusters. 

Hierarchical based: The hierarchical is grouped into 
agglomerative and divisive. Examples of agglomerative are 
Hierarchical Agglomerative Clustering (HAC) and BIRCH 
[10]. HAC, however, is not suitable for data stream due to 
multiple scans. 

C.  DATA STREAM CLUSTERING 
An analysis of benchmark stream clustering algorithms was 
presented in [8]. The authors appraised the performance of 
CluStream [17], DenStream [16] and ClusTree [18] using 4 real 
datasets, Electricity, Adult, Poker, and Forest Cover Type. The 
authors use different evaluation measures Sum of Squared 
Distance (SSQ), Purity, and Clustering Mapping Measure 
(CMM) available in MOA for the evaluation. The results show 
that DenStream performed better on clustering quality based on 
window size while both CluStream and ClusTree outclassed 
DenStream on CMM metric. However, the study only focused 
on real-world datasets Adult-Census, Poker-Hand, Covertype, 
and Electricity. The CMM, a unique assessment measure for 
evolving data stream was developed [11] and implemented in 
MOA. 

In [12], the authors presented the challenges and solutions 
of data stream clustering like noise, limited time, memory, 
evolving data, and high dimensionality. 

In [13], the authors proposed “Clustering Evolving Data 
streams into Arbitrary Shaped” (CEDAS). The technique uses 
the Euclidean distance measure and can join or separate macro-
clusters in a fully online method. The proposed technique was 
evaluated for processing speed, dimensional effects, purity, 
adaptation to evolving data, detection of intrusion, and Big 
Data, using both the KDDCup99 and real-world London Air 
Quality dataset and compared with DenStream, CluStream and 
MR-Stream and CEDAS performed comparatively well.  

To scale up large data arriving at fast rate [14] propose a 
clustering algorithm that uses a two-stage strategy: a fast scale 
distance-based algorithm and a slower scale density-based 
algorithm. The authors evaluate the algorithm against 
CluStream and DenStream using concept drift experiment, 
robust path-based test, and multi-density test. The results 
proved that their algorithm performed better than the 
DenStream and CluStream algorithms.  

In [15], the authors a new grid and density-based algorithm 
known as DGStream suitable stock markets and appropriate for 
handling outliers and noise. This algorithm uses feature vectors 

and DBSCAN algorithm at the online and offline phases, 
respectively. DGStream algorithm was evaluated against 
density-based algorithms: DenStream, ClusTree, and DStream 
are used for both synthetic and real-world datasets with 
different scales. On the synthetic dataset, DGStream 
outperforms some of these algorithms based on the following 
performance metrics: time, recall, purity, precision, and F1-
score. DGStream also shows better performance than other 
algorithms on real-world datasets (Adult, KDDCup’99, 
Covertype and the National Stock Exchange of India (NSE 
Stocks, 2017).  

In [22], the authors applied persistent homology on 
streaming data. The authors use data summarization and 
computation of persistent intervals approaches which serves as 
the online and offline component of data stream clustering 
algorithms such as CluStream [17], ClusTree [18], DenStream 
[16], and streaming k-means [23]. The online component of 
ClusTree was used for the model. The model identifies and 
detect horizontal or reticulate genomic exchanges during the 
evolution of Influenza and HIV viruses.  

Several of the available data stream clustering algorithms 
are restrictive models [24]. To address the limitations, [24] 
proposed a novel data stream clustering approach improved 
streaming affinity propagation (ISTRAP). ISTRAP can detect 
and monitor clusters in evolution. However, it cannot handle 
high-dimensional data stream due to the Euclidean distance. 

The advances in IoT device networks increase demands for 
effective security systems. In [25], the authors proposed an 
online and unsupervised scheme to detect attacks in smart 
home IoT networks. The scheme combines the algorithms 
CluStream [17] and Page-Hinkley test [27]. According to the 
experimental results, the overall detection rate is about 97% 
and the precision above 87%. 

III. METHODOLOGY 
This study evaluates data stream clustering algorithms on the 
MOA platform using benchmark clustering algorithms. The 
study applied three datasets from both synthetic and real-world 
sources. The datasets are the synthetic data generator 
RandomRBFGenerator since it is the only implemented stream 
generator for clustering in MOA and two real-world datasets 
(Forest Covertype and Electricity). Since MOA cannot display 
the performance of three or more algorithms, we saved the 
output of the various algorithms as a csv file, merge, and 
populated in Microsoft Excel. We used Python open-source 
libraries (Pandas, hvplot, and Plotly) to visualization the graphs 
and charts offline on Jupyter Notebook. Other notable 
programming languages of choice like R and Gnuplot can also 
be used as an alternative. 

IV. EXPERIMENTAL SETUP 
This study used MOA release-2021.7.0 conducted on the HP 
ProBook 450 G7, Processor: Intel(R) Core (TM) i5-10210U 
CPU @ 1.60GHz 2.11 GHz; RAM: 16.00 GB. System type: 
64-bit, x64, Operating System: Windows 10 Pro. 

The default parameters used for the stream clustering 
algorithms are given as follow: CluStream (with KMeans): 
horizon = 1000, maxNumKernels = 100, kernelRadiFactor = 2, 
k=5. ClusTree: horizon = 1000, maxHeight = 8. DenStream 
(with DBSCAN): horizon = 1000, epsilon = 0.02, beta = 0.2, 
mu = 1, initPoints = 1000, offline = 2, lambda = 0.25, and 
processingSpeed = 100. 
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A.  RANDOMRBF GENERATOR 
We compare CluStream and ClusTree algorithms using 
synthetic data with 10% generated using 
RandomRBFGenerator with 205000 instances for the 
evaluation. The stream setting started initial with merge/split 
events every 5000 examples and gradually to every 50000 
examples totaling 205000 and presented the output of 
CluStream in Fig. 1, output of ClusTree in Fig. 2 and output of 
DenStream in Fig. 3. 

 

 

Figure 1. CluStream for RandomRBFGenerator with 10% 
noise. The clustering is indicated with red ring, the micro-

clustering is in green rings, ground-truth is the black ring over 
the points.  

 

 

Figure 2. ClusTree for RandomRBFGenerator with 10% 
noise. The clustering is indicated with blue rings, the microc-
lustering are in green rings, ground-truth is the black ring over 

the points.  

 

 

Figure 3. DenStream for RandomRBFGenerator with 10% 
noise. The clustering is indicated with blue dots, the micro-

clustering is in green rings, ground-truth is the black ring, and 
the points are the other colors. 

We compare the CluStream, ClusTree, and DenStream 
algorithms on a synthetic data generated using the 
RandomBRFGenerator with 10%, 30%, and 0% noise. The 
performance evaluation metrics (CMM, F1-P, F1-R, Purity, 
Silhouette Coefficient, and Rand statistics) used for the 
evaluation tabulated (see Table I). We used 200,000 instances 
of the synthetic data set for the evaluation. 

The performance evaluation measures for the three 
algorithms using CMM measure is shown in Fig. 4 with 
ClusTree dropping below 0.50 at timestamp (53,000). Fig. 5 
shows the barchart for the noise level 10%, 30%, and 0% on 
the synthetic data set. The result indicate that ClusTree 
outperform DenStream and CluStream virtually in all the 
metrics at noise level 0%,10%, 30% respectively except on 
Purity and Silhouette Coefficient (see Table 1, Table 2, and 
Table 3). 

 

 

Figure 4. CMM result of CluStream ClusTree, and DenStream 
on RandomRBFGenerator with 10% noise. 

 

 

Figure 5. Noise level barchart of CluStream ClusTree, and 
DenStream on RandomRBFGenerator. 

 

 

Figure 6. Noise level barchart of CluStream ClusTree, and 
DenStream on RandomRBFGenerator with performance 

metrics. 
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Table 1. Average Evaluation measure of the algorithms on 
the RandomRBF Generator with noise level 0% 

Metrics CluStream ClusTree DenStream 

 
CMM 0.903 0.980 0.857 
F1-P 0.767 0.843 0.740 
F1-R 0.767 0.843 0.840 
Purity 0.947 0.990 0.953 
Silhouette 0.883 0.963 0.863 
Rand statistic 0.847 0.867 0.883 

Table 2. Average Evaluation measure of the algorithms on 
the RandomRBF Generator with noise level 10% 

Metrics CluStream ClusTree DenStream 

 
CMM 0.823 0.960 0.837 
F1-P 0.750 0.900 0.623 
F1-R 0.710 0.787 0.660 
Purity 0.867 0.940 0.953 
Silhouette 0.793 0.883 0.820 
Rand statistic 0.900 0.950 0.823 

Table 3. Average Evaluation measure of the algorithms on 
the RandomRBF Generator with noise level 30% 

Metrics CluStream ClusTree DenStream 

 
CMM 0.693 0.807 0.800 
F1-P 0.767 0.780 0.323 
F1-R 0.660 0.723 0.557 
Purity 0.783 0.790 0.947 
Silhouette 0.680 0.700 0.713 
Rand statistic 0.837 0.863 0.700 

B.  FOREST COVER TYPE 
The data set has 581,012 instances with 54 attributes, 10 are 
continuous while the rest are binary, and each data is classified 
as one of seven forest cover type. The dataset is from the US 
Forest Service (USFS) and available at the UCI machine 
learning site. The Forest Cover type has been extensively used 
for much data stream research. The normalized version of the 
data set is used. The stream setting is like the 
RandomRBFGenerator above with 200000 instances for 
evaluation. The screenshot of the algorithms is in Fig. 7, Fig. 8, 
and Fig. 9 respectively. The average evaluation measure of the 
algorithms on the Forest Cover type with default settings, 
DenStream epsilon 0.03 parameter, and DenStream epsilon 
0.05 parameter are tabulated (see Table 4, Table 5, and Table 
6). 

 

 

Figure 7. CluStream for Forest Cover type data set. The 
clustering is indicated with red rings, the micro-clustering is 
in green rings, ground-truth is the black ring over the points.  

 

Figure 8. ClusTree for Forest Cover type data set. The 
clustering is indicated with blue rings, the micro-clustering is 
in green rings, ground-truth is the black ring over the points.  

 

 

Figure 9. DenStream for Forest Cover type data set. The 
clustering is indicated with red rings, the micro-clustering is 
in green rings, ground-truth is the black ring over the points.  

 

 

Figure 10. Silhouette Coefficient graph of CluStream 
ClusTree, and DenStream on Forest Covertype dataset. 

Table 4. Average Evaluation measure of the algorithms on 
Forest Cover Type with default settings 

Metrics CluStream ClusTree DenStream 

 
CMM 0.860 0.900 0.820 
F1-P 0.690 0.740 0.620 
F1-R 0.670 0.700 0.600 
Purity 0.840 0.860 0.900 
Silhouette 0.730 0.770 0.760 
Rand statistic 0.870 0.890 0.790 
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Table 5. Average Evaluation measure of the algorithms on 
the Forest Cover Type with Epsilon 0.03 

Metrics CluStream ClusTree DenStream 

 
CMM 0.860 0.900 0.860 
F1-P 0.690 0.740 0.690 
F1-R 0.670 0.700 0.670 
Purity 0.840 0.860 0.840 
Silhouette 0.730 0.770 0.730 
Rand statistic 0.870 0.890 0.870 

 

Table 6. Average Evaluation measure of the algorithms on 
the Forest Cover Type with Epsilon 0.05 

Metrics CluStream ClusTree DenStream 

 
CMM 0.860 0.900 0.800 
F1-P 0.690 0.740 0.690 
F1-R 0.670 0.700 0.670 
Purity 0.840 0.860 0.840 
Silhouette 0.730 0.770 0.730 
Rand statistic 0.870 0.890 0.870 

 
The effect of adjusting the DenStream parameter to 

improve its performance is described in Fig. 11.  
 

 

Figure 11. Barchart of CluStream ClusTree, and DenStream 
on Forest Cover type data set. 

C.  ELECTRICITY 
The dataset is a contribution from the Australian New South 
Wales Electricity Market. The dataset contains 45,312 
instances. This research used the normalized version of the data 
set. The stream settings start with 5,000 examples initially and 
then 40,000 examples. At the end 45,000 records were used for 
the analysis. The screenshot of CluStream, ClusTree, and 
DenStream is given in Fig. 12, Fig. 13, and Fig. 14 
respectively. In Fig. 15, the three algorithms are combined. The 
average evaluation measure of the algorithms on Electricity 
data set with default settings, DenStream epsilon 0.03 
parameter, and DenStream epsilon 0.05 parameter are tabulated 
(see Table 7, Table 8, and Table 9). 

 

Figure 12. CluStream for Electricity data set 

 

Figure 13. ClusTree for Electricity data set 

 

Figure 14. DenStream for Electricity data set 

 

  

Figure 15. Rand statistic graph of CluStream ClusTree, and 
DenStream on Electricity dataset. 
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Table 7. Average Evaluation measure of the algorithms on 
Electricity with default settings 

Metrics CluStream ClusTree DenStream 

 
CMM 0.760 0.750 0.490 
F1-P 0.060 0.110 0.020 
F1-R 0.090 0.110 0.110 
Purity 0.780 0.700 0.900 
Silhouette 0.670 0.730 0.490 
Rand statistic 0.510 0.510 0.510 

 

Table 8. Average Evaluation measure of the algorithms on 
Electricity with Epsilon 0.03 

Metrics CluStream ClusTree DenStream 

 
CMM 0.760 0.750 0.600 
F1-P 0.060 0.110 0.120 
F1-R 0.090 0.110 0.230 
Purity 0.780 0.700 0.830 
Silhouette 0.670 0.730 0.490 
Rand statistic 0.510 0.510 0.510 

 

Table 9. Average Evaluation measure of the algorithms on 
Electricity with Epsilon 0.05 

Metrics CluStream ClusTree DenStream 

 
CMM 0.760 0.750 0.780 
F1-P 0.060 0.110 0.310 
F1-R 0.090 0.110 0.480 
Purity 0.780 0.700 0.750 
Silhouette 0.670 0.730 0.570 
Rand statistic 0.510 0.510 0.510 

 

 

Figure 16. Barchart of CluStream ClusTree, and DenStream 
on Eletricity data set. 

D.  DENSTREAM WITH RANDOMRBF NOISE 
We further investigated the performance of DenStream with 
adjusted epsilon parameter on different noise level [0%, 10%, 
30%] of RandonBRFGenerator. The output is tabulated in 
Table 10, Table 11, and Table 12 respectively. DenStream with 
epsilon 0.03 performance better on CMM and F1-P metrics on 
RandomBRFGenerator with 0% noise level than DenStream 

with default settings and DenStream with epsilon parameter 
0.05 (see Table 10 and Fig. 17).  
 

Table 10. DenStream and RandomBRF Generator with 
0% noise level. 

Metrics default Epsilon_03 Epsilon_05 

 
CMM 0.840 0.850 0.760 
F1-P 0.760 0.830 0.790 
F1-R 0.760 0.760 0.690 
Purity 0.870 0.820 0.720 
Silhouette 0.800 0.790 0.750 
Rand statistic 0.840 0.820 0.740 

 

 

Figure 17. Barchart of DenStream on RandomBRF Generator 
with 0% noise level. 

DenStream performance was also investigated on 
RandomBRFGenerator with 10% noise level. The result also 
shows that DenStream with epsilon parameter 0.03 outperform 
DenStream with default settings and DenStream with epsilon 
0.05 on performance metrics CMM, F1-P, F1-R, Silhouette, 
and Rand statistic (see Table 11 and Fig. 18). 

 

Table 11. DenStream and RandomBRF Generator with 
10% noise level. 

Metrics default Epsilon_03 Epsilon_05 

 
CMM 0.820 0.850 0.810 
F1-P 0.620 0.650 0.500 
F1-R 0.600 0.620 0.610 
Purity 0.900 0.870 0.860 
Silhouette 0.760 0.770 0.700 
Rand statistic 0.790 0.820 0.800 

 

 

Figure 18. Barchart of DenStream on RandomBRF Generator 
with 10% noise level. 
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Lastly, DenStream performance was compared on 
RandomBRF Generator with 30% noise level. DenStream with 
epsilon parameter 0.03 also outperforms DenStream with 
default settings and DenStream with epsilon 0.05 on 
performance metrics CMM, F1-P, F1-R, Silhouette, and Rand 
statistic (see Table 12 and Fig. 19). 

Table 12. DenStream and RandomBRF Generator with 
30% noise level. 

Metrics default Epsilon_03 Epsilon_05 

 
CMM 0.780 0.830 0.700 
F1-P 0.350 0.350 0.180 
F1-R 0.500 0.600 0.520 
Purity 0.930 0.930 0.930 
Silhouette 0.670 0.740 0.640 
Rand statistic 0.660 0.780 0.740 

 

  

Figure 19. Barchart of DenStream on RandomBRF Generator 
with 30% noise level. 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, we have investigated and compared three data 
stream clustering algorithms on MOA framework using 
synthetic dataset RandomRBFGenerator and two real data sets 
Forest Cover and Electricity. The comparison was performed 
on RandomBRFGenerator using noise level [0%, 10%, 30%] 
and on the real data sets using DenStream epsilon parameter 
adjustment. We further investigated DenStream epsilon 
adjusted parameter on RandomBRFGenerator noise level  
[0%, 10%, 30%]. We have used performance evaluation 
metrics CMM, F1-P, F1-R, Purity, Silhouette Cofficient, and 
Rand statistics for the comparison. The data visualization was 
performed using Python libraries (pandas and hvplot).  

From experiments, we observe ClusTree outperform 
DenStream and CluStream using RandomBRFGenerator with 
0% noise level on performance metrics CMM, F1-P, F1-R, 
Purity, and Silhouette. Coefficient with 98%, 84.3%, 84.3%, 
99%, and 96.8% respectively. ClusTree also performed better 
on noise level 10% and 30%. On Forest Cover Type, we 
observe data set, we observe ClusTree outperform DenStream 
and CluStream on most of the metrics. with adjusted epsilon 
parameter to 0.03, DenStream improves a bit and dropped with 
epsilon 0.05. On Electricity data set, DenStream outperform 
both CluStream and ClusTree on Purity and with epsilon 0.03 
outperformed the two on F1-P, F1-R, and Purity. DenStream 
likewise outperform CluStream and ClusTree on CMM, F1-P, 
and F1-R.  

In the further works, we will implement adjustment on 
DenStream other parameters on RandomBRFGenerator noise 
levels and real data sets.  
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