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 ABSTRACT Early detection of diabetes is critical to reducing the number of cases, which continues to rise year 
after year. Many approaches to diagnosis have been used, but they still have flaws in making clinical decisions 
that are more effective and efficient. The use of intelligent systems is very effective in assisting in data analysis 
and clinical decision support. The purpose of this article is to develop a model to predict diabetes mellitus using 
the Pima Indian Diabetes Dataset (PIDD). The ensemble method has shown to be quite effective at increasing 
accuracy, but it has the issue of determining the optimal weight. As a result, to improve prediction accuracy, this 
study employs PSO optimization in the selection of ensemble majority voting weights. The test results show that 
predictions for ensemble majoritarian voting using PSO perform well, with an accuracy rate of 0.9322, precision 
of 0.9412, recall of 0.8421, and F1-score of 0.8889. PSO accuracy is improved by 4% and 7%, respectively. This 
demonstrates that applying PSO to the ensemble model can improve accuracy. 
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I. INTRODUCTION 
 non-communicable chronic disease with a significant 
death rate is diabetes mellitus (DM) [1]. Both low- and 

middle-income countries as well as numerous high-income 
countries frequently have this disease. High blood sugar levels 
cause symptoms that are unique to DM. The pancreas organ 
produces the hormone insulin, which controls the amount of 
sugar in the blood [2]. Patients with diabetes cannot create 
insulin, which is necessary for the body to convert glucose into 
energy [3]. 

Type 1 diabetes is characterized by the loss of beta cells in 
the pancreas, which create insulin, whereas type 2 diabetes is 
characterized by insulin resistance [4]. Although the body is 
still able to manufacture insulin, it cannot be utilized properly 
[5]. The severity of this illness increases the possibility of 
major side effects like heart attack, stroke, renal failure, vision 
loss, leg amputation, nerve damage, and others [6]. From year 
to year, there are more and more cases of diabetes. Type 2 
diabetes accounts for 90% of all diabetes cases worldwide. In 
2019, there were 463 million cases of diabetes worldwide. By 
2045, that number will have increased by 51% to 700 million 
cases [7]. 

As a result, early detection of diabetes is critical to reducing 
the number of cases, which continues to rise year after year. 

Many approaches to diagnosis have been used, but they still 
have flaws in making clinical decisions that are more effective 
and efficient. Many factors can make it difficult for medical 
staff to make a diagnosis in the health sector. Diabetes 
diagnosis relies heavily on medical data and decision-support 
systems. The use of intelligent systems, such as the machine 
learning approach, is very effective in assisting in data analysis 
and clinical decision support. 

Machine learning-based diabetes detection methods have 
been proposed in previous literature publications in recent 
years. An intelligent e-healthcare system for diabetes 
prediction uses the Decision Tree algorithm [8]. The main 
determinants of diabetic complications in patients were 
identified based on selected features using prediction and 
comparative testing of models such as J48, NB, RF, and LR [9] 
and [10]. Due to its low computing complexity, LGBM is 
applied to the early identification of diabetes [11]. Faster 
computations are possible thanks to the parallel processing 
capabilities of the XG-Boost algorithm [12]. In [13], where the 
authors implemented the LR, SVM, KNN, RF, NB, and GB 
models, supervised machine learning performance 
measurement employed six prediction models. According to 
the experimental findings, RF has a higher accuracy and ROC 
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than other models (86.76% and 86.28%, respectively). The 
attribute coefficient of glucose has a significant impact on the 
diagnosis of type 2 diabetes, according to the findings of the 
correlation analysis. The authors of [9] examined the 
application of several K-fold algorithms to enhance classifier 
performance. The implemented classifier models are J48, NB, 
RF, and LR. The measurement findings employed K-fold 10 
CV to prevent overfitting, and the LR of 0.77 has the maximum 
accuracy. In [10], the idea of anticipating diabetic problems 
was put out. Through feature selection, the author determined 
the key traits of diabetes complications. The implementations 
of the comparison models include LR, SVM, DT (CART), RF, 
ADB, and XGB. Grid search with 10-fold CV validation and 
hyperparameter tuning according to the experimental findings, 
XG-Boost had the greatest accuracy rate for diabetic foot 
problems, at 97.8%, out of the eight diabetic issues. The use of 
ensemble stacking techniques to increase accuracy has been 
suggested in [14]. Preprocessing like feature selection, 
normalization, and the removal of outliers and imputations was 
the subject of experiments. ADB, SVM, and MLP are the 
components of the ensemble stacking model. According to the 
testing findings, the stacking ratio outperforms ADB by 1.66%. 
In [15], we used ensemble soft voting to apply the meta-
classifier model to the prediction model. The suggested 
ensemble approach integrates the RF, LR, and NB algorithms. 
AdaBoost, LR, SVM, RF, NB, Bagging, GradientBoost, 
XGBoost, and CatBoost are compared to the ensemble model. 
The results show that Ensemble's soft voting performs best, 
with accuracy, precision, recall, and F1 scores of 79.04%, 
73.48%, 71.45%, and 80.6%, respectively. 

Although many prediction models have been used in recent 
years, low accuracy is still a common problem [8]. When 
compared to using a single classifier, the ensemble technique 
improves accuracy; however, finding the optimal ensemble 
weight in the ensemble model is difficult, so the prediction 
results are less accurate [16]. Particle Swarm Optimization 
(PSO) is an effective optimization method for 
multidimensional and multiparameter problems. When it 
comes to determining classifier weights, PSO has the best 
fitness [17]. This study proposes using PSO to calculate the 
weight of the ensemble majority vote from a combination of 
models such as LR, GBM, XGB, and LGBM. 

The study's remaining sections are structured as follows: 
The dataset, the detailed descriptions of the suggested 
approaches, and the evaluation metrics are provided in Section 
2. Section 3 includes an explanation of the experiment's 
findings and discussion. A summary and recommendations 
based on the experimental findings are provided in Section 4. 

II. MATERIALS AND METHODS 
This section describes several subsections, including dataset 
information, proposed pre-processing methods, predictive 
models, and optimization. 

A.  DATASET  
The National Institute of Diabetes and Digestive and Kidney 
Diseases dataset, which is part of the Pima Indian Diabetes 
Database (PIDD) and is openly accessible, was used as a 
secondary dataset in this investigation. This information 
revealed that samples were drawn from the female population 

of the Phoenix area, namely the state capital of Arizona in the 
southwest of the United States, which comprised up to 768 
individuals. It was confirmed that 258 persons out of the whole 
sample had been tested as positive for diabetes mellitus and 500 
had been tested as negative. As a result of the diagnosis, eight 
more traits in addition to the target class were also discovered 
from the examination findings. 

Table 1. List of Pima Indian dataset attributes used to 
predict diabetes 

Attribute  Description 
Pregnancies Indicator of the pregnancy rate 
OGTT (Oral Glucose 
Tolerance Test). 

An oral glucose tolerance test's two-hour 
plasma glucose concentration (mg/dl) 

Blood Pressure. diastolic blood pressure (mmHg) 
Skin Thickness Triceps skinfold thickness (mm) 
Insulin Two-hour serum insulin (mu U/ml) 
BMI (Body Mass Index) Body mass index (kg/m2) 
Age Patient age 
Pedigree Diabetes 
Function 

a function that analyzes family history to 
determine the history of diabetes 

B. PROPOSED METHODS  
This study suggests an ensemble technique for classifying data 
by maximizing the choice of the appropriate weight value in 
the ensemble majority vote, where the PSO algorithm is used 
in the process to get a more optimal value. Fig. 1 depicts the 
whole flowchart. Datasets for training and datasets for testing 
are created from the used dataset. The training data is used to 
develop several n classifier models ൛𝑪𝟏,𝑪𝟐, … , 𝑪𝒏,ൟ, each of 
which weights W relative to the other classifiers 
൛𝑾𝟏,𝑾𝟐, … , 𝑾𝒏,ൟ, where n = 1, 2,... n. Aggregation is used to 
combine the classifiers into a single entity, which is then given 
a weight for each classification to create predictions based on 
the probability of voting. The PSO approach is used to optimize 
the ensemble weights, producing the ideal weight values in the 
process. The stages of the PSO workflow can be seen in Fig. 2. 
 

 

Figure 1. EMVPSO architecture 
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Figure 2. PSO workflow 

The following are the steps for the PSO flow process: 
1. Initialize the random particle population's position and 

velocity in the search dimension. 
2. Evaluate the fitness of the classifier model 

൛𝐶ଵ,𝐶ଶ, … , 𝐶,ൟ based on the position of each particle. 
3. Determine the particle's best fitness and set it as G-best. 

For each particle, the initial position will be equal to the 
initial P-best. 

4. Continue until the stopping criteria are satisfied. 
If P-best and G-best already exist or are not in the initial 

position:  
a. Update each particle's velocity using Eq. 10. Using Eq. 

11, update each particle's position based on the new 
velocity value. 

b. Determine each particle's fitness. 
c. Determine the particle's best fitness and set it as G-best. 

Compare the current position of each particle to the 
previous P-best position. 

d. Examine the stopping criteria or maximum iteration; if 
they are met, stop; otherwise, return to point (a). 

Show the optimal weight based on the best ensemble-
weighted majority voting accuracy 

C.  PREPROCESSING 

C.1 IMPUTATION 
By substituting replacement values for missing values, 
imputation is a strategy for maintaining the majority of the data 
or information from a data collection. This method is employed 
because it can result in a significant reduction in the size of the 
data collection and is not always preferable to remove data 
from a data set. It has the potential to bias the data set and 
produce inaccurate analytical results. The median property was 
used in this study to implement the imputation procedure [18]. 

 

𝐼(𝑥) = ൜
𝑚𝑒𝑑𝑖𝑎𝑛(𝑥),   𝑖𝑓 𝑥 = 𝑛𝑢𝑙𝑙/𝑚𝑖𝑠𝑠𝑒𝑑   

𝑥,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (1) 

 
where x is a dimensional space-based instance of a feature 
vector. This technique works well with numerical variables. 
The median of the variable is used to replace every instance of 
missing or unrepresented values (NaN) in this technique. 
 

C.2 REMOVING OUTLIER 
Outliers are numerical observation distances from the 
remaining data or values that fall outside the data or sample 
pattern range. Outlier observations are required because they 
can lead to inaccurate estimations. The interquartile range 
(IQR) method was used as an outlier removal technique in this 
study. The IQR method determines the limits of the data by 
using the upper and lower limit values on the data. The range 
of values between 1.5 x IQR and 1.5 x IQR is designated as an 
outlier and deleted. 

 

𝑂(𝑥) = ൜
𝑥, 𝑖𝑓 𝑄௪  ≤ 𝑥 ≤   𝑄௨

𝑑𝑟𝑜𝑝, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (2) 

 
where x is an instance of a feature vector in a dimensional 
space. 

1. The first quartile, or the 25th percentile, of the total data 
is represented by Q1. 

2. The second quartile, median, or 50th percentile of the 
amount of data is represented by Q2. 

3. The third quartile, or 75th percentile, of the total data is 
represented by Q3. 

(Q1 – 1.5 x IQR) represents the data set lower limit 𝑄௪ , and 
(Q3 + 1.5 x IQR) represents the upper limit 𝑄௨. 

C.3  FEATURE SCALING  
Making numerical data in datasets that have the same range of 
values is possible with feature scaling (scale). Data variables 
that are thought to predominate over other factors should be 
adjusted. In general, scaling is independent of tree-based 
models, and vice versa, scaling is independent of non-tree 
models. When there are negative values, the feature range is 
normalized to [-1, 1] or [0, 1] using the MinMax scaling 
technique. When the data is not regularly distributed or the 
standard deviation is very small, the MinMax Scaler is helpful. 
An equation is as follows [19]: 
 

 𝑆(𝑥) =
ఞ()ିఞ

ఞೌೣିఞ
. (3) 

 

C.4  FEATURE IMPORTANCE  
It is essential to evaluate the significance of each feature in the 
dataset before selecting the optimal one because certain 
characteristics can contain extraneous data. The node impurity 
weight is decreased to indicate the significance of the feature 
based on the likelihood that the node will be reached. By 
dividing the total number of samples by the number of samples 
that reach the node, the node probability may be calculated. The 
highest value in the feature is thought to be more important. In 
this study, features that are significant and features that are not 
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required for the prediction of the target variable have been 
found using the additional tree model. 

D. ENSEMBLE METHOD  
A meta-classifier called the ensemble incorporates multiple 
different classifier algorithms [20]. When compared to 
individual classifiers, the performance of meta-classifiers is 
superior. Majority voting is a style of ensemble method that is 
highly common. Majority voting typically refers to binary 
classes, while pluralistic voting is the extension of the majority 
voting principle to numerous classes. 

D.1 HYPERPARAMETER TUNING  
In this study, the best parameters are found using a random 
search method, which has been validated using 10-fold 
correlated CVs. Random search works by performing a domain 
boundary search in the search space parameter using random 
sample points. This method has been chosen because it is quick 
and produces accurate results. 

D.2 ENSEMBLE MAJORITY VOTING 
Majority voting is one of the most widely used algorithms in 
the ensemble method. The majority voting principle is used to 
determine the prediction results, and it is based on the number 
of votes from each label that has the most votes [21]. The 
training data is used to train each classifier in Fig. 2 
(𝐶ଵ, 𝐶ଶ, … , 𝐶). The ensemble technique can employ many 
classifiers, such as DT, LR, NB, etc., or it can employ the same 
classifier with various subsets, like the Random Forest 
algorithm, which gives each Decision Tree in it a majority vote. 
For either simple majority vote or plurality voting, the 
classifications can be predicted using the following equation: 
 

 𝑦ො = 𝑚𝑜𝑑𝑒{𝐶ଵ(𝑥), 𝐶ଶ(𝑥), … , 𝐶(𝑥)}. (4) 

 
It is assumed that the ensemble has three classifiers 𝐶(𝑖 ∈

{0,1}) with class labels 0 and 1 based on sample x. 
 

 𝐶ଵ(𝑥) = 0, 𝐶ଶ(𝑥) = 0, 𝐶ଷ(𝑥) = 1. (5) 
 

 

Figure 3. Majority voting architecture 

For instance, the predicted results indicate that class 0 has 
2x votes and the remaining 1x. When all classifier weights are 
equal, the outcome of a majority vote is anticipated to be 0. 
 

 𝑦ො = 𝑚𝑜𝑑𝑒{0,0,1} = 0. (6) 
 

When using ensembles, the capacity to categorize 
fundamental people typically varies, and some may not 
perform better than others, leading to aggregation that may be 
subpar. The correct weight value for classifiers based on their 
individual performances is required to solve this issue. The 
selection of weight is crucial since it has the potential to change 
how the ensemble performs. 

D.3 ENSEMBLE WEIGHTED VOTING 
Not all classifiers in an ensemble-based classification system 
are equally accurate or powerful. It is feasible to give each 
classifier authority in choosing by assigning each classifier a 
certain amount of weight [22]. In Fig.  4, 𝑝, is denoted as the 
predicted member class of the probability of iteration i = th on 
the classifier for class label j. The 𝑤  value is the optional 
parameter weight, by default 𝑤 = 1/𝑛, ∀𝑤 ∈
{𝑤ଵ, 𝑤ଶ, … , 𝑤}, written in the following equation: 
 

 𝑦ො =
arg 𝑚𝑎𝑥

𝑗  𝑤𝑝,



ୀଵ

. (7) 

 
By giving each classifier 𝐶௧a weight 𝑤  proportionally 

based on performance, it is important to estimate the strength 
of the classifier performance in the future. 
 

 

Figure 4. Weight voting architecture 

E. OPTIMIZATION PSO 
Kennedy and Eberhart introduced the PSO algorithm, which 
was first influenced by flocks of birds searching for food [23]. 
PSO is a useful optimization technique because of its quick 
time convergence, stability, few parameters, and simplicity of 
use. Potential solutions are represented in the PSO algorithm 
by particles, which come together to form a swarm. Position 
and velocity are the two qualities that each particle possesses. 
The search space vector dimension is denoted by the letter D. 
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The positions and velocities of the ith particle on the twelfth 
sequence are given as [24] : 
 

 𝑥
௧ = (𝑥ଵ, 𝑥ଶ, … , 𝑥), (8) 

 𝑣
௧ = (𝑣ଵ, 𝑣ଶ, … , 𝑣). (9) 

 
The particle's velocity and position are repeatedly updated 

in the (𝑡 + 1)th iteration using the following equation to 
calculate the speed and separation between the new and old 
particles: 
 

 
𝑣

௧ = 𝑤𝑣
௧ିଵ + 𝑐1𝑟1൫𝑃௦௧

௧ − 𝑥
௧ିଵ൯ +

𝑐2𝑟2൫𝐺௦௧
௧ − 𝑥

௧ିଵ൯. 
(10) 

 
New particle position update: 

 

 𝑥
௧ = 𝑥

௧ିଵ + 𝑣
௧ , (11) 

 
where w is the inertial weight, c1 and c2 are the learning factors 
that determine positive constants. r1 and r2 are two random 
numbers from 0 to 1. 𝑃௦௧

௧  is the best position of the personal 
particle and 𝐺௦௧

௧  is the best position of the swarm. 

F. PEFORMANCE EVALUATION 
The PSO algorithm is applied to ensemble majority voting in 
this study by evaluating performance with the confusion matrix 
measurement in Table 2 and then measuring performance with 
several evaluation metrics that are commonly used to validate 
classifier models. 

Table 1. Confusion Matrix 

 Predicted class P. Predicted class N. 
Actual Class P. True Positives (TP) False Negatives (FN) 
Actual Class N. False Positives (FP) True Negatives (TN) 

 
It is crucial in assessing the confusion matrix classifier model. 
Positive data is anticipated to be true for the four matrix 
measurement reports that reflect true positives (TP). Data that 
is projected to be negative and so true (TN). Negative data that 
is expected to be positive is known as a false positive (FP). 
False negatives (FN) are positive results that are actually 
projected to be negative. It is therefore possible to utilize an 
assessment metric to assess the performance of the model based 
on the potential value revealed by the confusion matrix results. 
The performance measurement for this study, namely 
 

 𝐴𝐶 =  
்ା்ே

்ା்ேାிାிே
. (12) 

 
The model accuracy in correctly identifying data is 

measured by accuracy (AC). The equation for the outcome of 
the accurate prediction ratio for all data is provided in Eq. (12). 
 

 𝑃𝑅 =  
்

்ାி
. (13) 

Precision (PR) measures how accurately the requested data 
compares to the model forecast outcomes. The ratio of correct 
positive predictions to all positive prediction outcomes is 
displayed in Eq. (13). 
 

 𝑅𝐸 =  
்

்ାிே
. (14) 

 
Recall or sensitivity (RE) measures how well a model can 

retrieve data. To compare all of the correctly positive data, the 
ratio of correctly positive predictions is used; the equation is 
provided in Eq. (14). 
 

 𝑆𝑃 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
. (15) 

 
The model specificity (SP), which measures its accuracy in 

identifying data with negative labels, is how reliable it is. The 
outcome of the ratio of the accuracy of the negative predictions 
to the total negative data is displayed in Eq. (15). 
 

 𝐹1 =  2 ∗ (𝑅𝐸 ∗ 𝑃𝑅) / (𝑅𝐸 +  𝑃𝑅). (16) 
 

By averaging precision and sensitivity harmonically, the F1 
score is determined. The outcome of the weighted average 
precision and recall comparison ratio is displayed in the Eq. 
(16). 

III. RESULTS AND DISSCUSSION 
The experimental findings of the measurement reports from the 
preprocessing subsection are presented in this section, together 
with baseline classifiers, model parameters, a comparison of 
ensemble approaches, and an assessment of model 
performance. 

A.  RESULT OF PREPROCESSING 
An empty value in the data is identified using the imputation 
approach. The results of the analysis indicate that several 
characteristics, including blood pressure, glucose, insulin, skin 
thickness, and BMI, have a value of 0 [25]. As a result, in this 
experiment, the value 0 becomes NaN. Table 3 displays how 
many values are empty. The MinMax scaling approach is used 
to normalize the data throughout the data transformation 
process. Although the scaling strategy is useful for some 
models, it does not influence the accuracy level of some 
classifiers, such as the model tree. A feature dataset with 
outliers was subjected to the IQR approach, which led to the 
removal of 186 rows of data. As can be seen in Fig. 5, some of 
the prior features before the implementation of IQR still have 
some outliers. When the data are considered free of outliers, it 
is then shown once more in Fig. 6. In Fig. 7, the outcomes of 
applying feature importance are displayed, with the features 
that are thought to be the most crucial in determining 
predictions on the target arranged according to their level of 
significance. The four most crucial factors insulin, glucose, 
skin thickness, and age are used in this experiment. Features 
that are considered unnecessary will be removed since they 
have no discernible impact on the outcomes of the predictions. 
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Figure 5. Dataset Outlier 

Figure 6. After Removing Outlier 
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Measurements were taken for each technique used to test 
the preprocessing stage to obtain the optimum tuning 
outcomes. XGB, LGBM, GBM, and LR are the four models 
with standard parameters (N) that were used to measure the 
prediction results using the PIDD dataset. The reported score 
does not determine the ultimate accuracy level because this step 
is only intended to evaluate the tuning outcomes. Rather, it 
serves as a measurement limit to identify the accuracy score 
level of the selection of preprocessing methods and is validated 
solely using the training data set. Using (I) as the median value 
to determine the blank value, the imputation stages are shown. 
Additionally, each feature's data is cleaned using the IQR 
approach, which is represented as (O). To determine which 
features contribute most to the selection of prediction targets, 
feature scaling (S) is performed by transforming feature values 
and applying feature importance (P). Table 4 shows a 
comparison of accuracy score measurements. 

Table 3. Missing Values Data 

No Attributes Missing Values 
1 Pregnancies 0 
2 Glucose 5 
3 BloodPressure 35 
4 SkinThickness 227 
5 Insulin 374 
6 BMI 11 
7 DiabetesPedigreeFunction 0 
8 Age 0 
9 Outcome 0 

 

 

Figure 7. Feature Importance 

B.  RESULTS OF HYPERPARAMETER TUNING 
The use of random search to find the best parameters yielded 
the best results, as shown in Table 5. The best score results and 
accuracy in the test data set. LR has a value of 0.8661 and a test 
value of 0.8644. GBM receives 0.9006 and 0.9152, XGB 

receives 0.9083 and 0.8983, and LGBM receives 0.9062 and 
0.8814. 

Table 5. The suitable model parameter 

Model Parameter Best Parameter 
LR solver liblinear 
 penalty l1 
 C 100 
GBM n_estimators 250 
 max_depth 3 
 learning_rate 1 
XGB max_depth 4 
 learning_rate 0.0342 
 n_estimators 200 
 subsample 0.5310 
 gamma 5 
 colsample_bytree 0.6357 
 reg_alpha 0.7250 
 reg_lambda 0.0013 
LGBM learning_rate 1.0 
 num_leaves 24 
 feature_fraction 0.1 
 bagging_fraction 0.8 
 max_depth 5 
 max_bin 20 
 min_data_in_leaf 80 
 min_sum_hessian_in_leaf 0 
 subsample 1.0 

C.  EMV RESULTS 
A mixture of the four classifier models, LR, XGB, GBM, and 
LGBM, was used for voting in deciding the outcome prediction 
choice based on the findings of the tuning process in Table 5. 
The model parameters and weights are given below: 

Table 6. Majority voting parameter 

Model Weight Voting 
XGB default soft 
LGBM default soft 
LR default soft 
GB default soft 

 
Table 6 shows the accuracy of the prediction using 

ensemble majority voting with default weights. The accuracy 
rate was 0.8983, the precision was 0.8824, the recall was 0.789, 
and the F1 was 0.8333. 

D.  PSO RESULT 
The following PSO parameters are used during the 
optimization of the PSO on the ensemble majority voting 
weight in this study: 

Table 7. PSO parameter 

Parameter Values 
Learning Factor 1 0.5 
Learning Factor 2 0.3 
Inertia weight 0.9 
Lower and upper bound [0,1] 
Dimension space 4 
Number of particle 45 
Number of iteration 100 

Table 2. Comparism of preprocessing score 

Preprocessing XGB LGBM GBM LR 
[N] 0.7570 0.7222 0.7570 0.7552 
[ I ] 0.8802 0.8854 0.8890 0.7900 
[ I, S ] 0.8802 0.8820 0.8890 0.7813 
[ I, S, O ] 0.8898 0.8921 0.9013 0.8621 
[ I, O, S, P ] 0.9006 0.9121 0.9121 0.8528 
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The best cost measurement findings were produced based 
on Table 7, and they were 1.07272 with the best particle 
position being [0.2951 0.9060 0.0279 0.3804]. The ensemble 
majority voting model employed uses the particle location 
values as weights. The following is a diagram of the 
progression of particle measurement findings: 

In terms of PSO's cost history Fig. 8 depicts a particle graph 
based on the fitness function in the search for space 
dimensions. The particles are known to converge at the 30th 
iteration of the 100 used. The best weight for each particle is 
determined and applied to the ensemble prediction model. 
 

 

Figure 8. PSO cost history 

E.  EMVPSO RESULTS 
The weights obtained through PSO optimization for each 
classifier in the optimized ensemble prediction model are 
shown in the EMVPSO parameters as follows: 

Table 8. Weighted voting is a voting parameter 

Model Weight Voting 

XGB 0.2951 weight 

LGBM 0.9060 weight 

LR 0.0279 weight 

GB 0.3804 weight 

 
According to Fig. 9, the ensemble majority voting model 

with PSO-optimized weights produces the best prediction 
accuracy; the accuracy level is 0.9322, the precision is 0.9412, 
the recall is 0.8421, and the F1 is 0.8889. 

F.  EVALUATION PEFORMANCE 
Examining the outcomes of the prediction model comes next 
after the training and testing process has been completed on the 
ensemble majority vote that has been optimized using PSO. 
The following curve illustrates the evaluation of model 
performance based on the false positive rate and false negative 
rate using the Receiver Operator Characteristic (ROC) and 
Area Under the Curve (AUC) score: 
 

 

Figure 9. ROC AUC curve 

According to Fig. 9, ensemble majority voting with PSO 
optimization results in an AUC of 0.957. Fig. 8 shows the 
results of comparing the accuracy level of the EMVPSO model 
with individual classifier models that have previously been 
subjected to hyperparameter tuning. 
 

 

Figure 10. Accuracy comparison with individual models 

According to the comparison results, the EMVPSO model 
has the highest accuracy value of 0.9322, followed by the GB 
model of 0.9153, XGB 0.8983, LGBM 0.8814, and LR 0.8644. 
The proposed model is also compared to standard ensemble 
voting (EMV) after weight optimization with PSO (EMVPSO). 
 

 

Figure 11. Accuracy of standard and optimization 
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According to Fig. 11, the EMVPSO model has the highest 
accuracy value of 0.9322 when compared to the standard voting 
model, which has an accuracy rate of 0.8983. By using "soft 
voting," the weights in the EMV model are equalized or 
averaged so that each classifier in the ensemble has the same 
level of power. In the EMVPSO model with weighted voting, 
where the default weight is optionally determined by the user, 
the weight is determined based on the results of the optimal 
solution to produce the best accuracy by applying the weighted 
results of the PSO optimization. The results of this comparison 
show that applying PSO to ensemble voting can increase 
accuracy; in this study, the percentage increase in accuracy was 
4%, followed by 7% increases in precision, recall, and F1. 
 

Table 9. Performance comparison with related research 

Model Classifier 
Meta 

Learning 
Evaluation 

Gopi et al [9] LR - Accuracy 77.00 

Recall 77.00 

Precision 76.00 

F1 76.00 

Satish et al 
[14] 

ADB, SVM, 
MLP 

Stacking Accuracy  78.20 

Recall 51.00 

Precision 72.20 

F1 59.40 

Saloni et al 
[15] 

RF, LR, NB Soft Voting Accucary  79.04 

Recall 71.45 

Precision 73.48 

F1 80.60 

Proposed 
Method 

XGB, GB, 
LGBM, LR 

Weighted 
Voting + 
PSO 

Accuracy  93.22 

Recall 84.21 

Precision 94.12 

F1 88.89 

 
In this case, the activities completed as a whole will be 

displayed in tabular form. Experiments using the Pima Indian 
Diabetes Dataset (PIDD) dataset have been carried out in 
related studies. Each of the three related research models, as 
shown in Table 9, has a preprocessor tuned to improve 
accuracy. Two of the prediction models used the ensemble 
method, namely stacking and majority voting with various 
classifier combinations, and validation was performed during 
training. According to research [15] and [14], the ensemble 
method model outperforms the individual model [9] in terms of 
accuracy. This study's model employs several preprocessors 
and employs the ensemble majority voting method, which has 
been optimized using PSO and validated using a 10-fold CV. 
With an accuracy of 93.22, a precision of 94.12, a recall of 
84.21, and an F1 of 88.89, the proposed method outperforms 
other models. 
 
III. CONCLUSION AND FUTURE WORK 
The proposed prediction model is capable and accurate enough 
to be used to predict type 2 diabetes mellitus outcomes from 
the Pima Indian Diabetes Dataset (PIDD) data. This is 
demonstrated through testing with public datasets, where the 
data is pre-processed in ways such as imputation to determine 
empty values in the data, removal of outlier values in the data 
distribution, feature scaling to normalize data features to have 
the same range, and feature importance to determine features 
that affect the target data prediction results. It is concluded by 
applying to pre-process that clean data can affect the accuracy 

of the prediction model used. The accuracy of all models 
increased following the pre-processing stage, according to 
testing of the 12 base models. The ensemble-based prediction 
model uses the XGB, GB, LGBM, and LR classifier 
combinations during the training phase. The EMV model 
produced a performance of 0.8983 with 0.8824 precision, 
0.7895 recall, and an F1 of 0.8333. The test was repeated while 
utilizing PSO optimization to determine the weights for the 
EMVPSO model. Accuracy increased to 0.9322, precision to 
0.9412, recall to 0.8421, and F1 to 0.8889 as a result of the 
optimized weights. Performance, as measured by the ROC-
AUC, generated a result of 0.9566. According to the 
experimental findings, PSO can create weights for ensemble 
majority voting that are more accurate than those produced by 
traditional ensemble majority voting. PSO results show a 4% 
improvement in accuracy performance, and a 7% improvement 
in precision, recall, and F1 score. 

Future research ideas can be generated by adjusting the 
prediction model more thoroughly. Then, to achieve higher 
performance, it is possible to run tests using a wider variety of 
classifier combinations in the ensemble. 
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