
Date of publication MAR-31, 2024, date of current version FEB-09, 2024
www.computingonline.net/ computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.23.1.3430

Speech Emotion Recognition using
Hybrid Architectures

M. NORVAL1, Z. WANG2
1Department of Electrical Engineering, University of South Africa, Johannesburg (e-mail: 36825050@mylife.unisa.ac.za)

2Department of Electrical Engineering, University of South Africa, Johannesburg (e-mail: wangz@unisa.ac.za)

Corresponding author: M. Norval (e-mail: 36825050@mylife.unisa.ac.za).

This research was supported partially by the South African National Research Foundation (Grants nos. 120106, 41951, and 132797) and
the South African National Research Foundation Incentive (Grant no. 132159).

ABSTRACT The detection of human emotions from speech signals remains a challenging frontier
in audio processing and human-computer interaction domains. This study introduces a novel approach
to Speech Emotion Recognition (SER) using a Dendritic Layer combined with a Capsule Network
(DendCaps). A Convolutional Neural Network (NN) and a Long Short-Time Neural Network (CLSTM)
hybrid model are used to create a baseline which is then compared to the DendCap model. Integrating
dendritic layers and capsule networks for speech emotion detection can harness the unique advantages
of both architectures, potentially leading to more sophisticated and accurate models. Dendritic layers,
inspired by the nonlinear processing properties of dendritic trees in biological neurons, can handle the
intricate patterns and variabilities inherent in speech signals, while capsule networks, with their dynamic
routing mechanisms, are adept at preserving hierarchical spatial relationships within the data, enabling
the model to capture more refined emotional subtleties in human speech. The main motivation for using
DendCaps is to bridge the gap between the capabilities of biological neural systems and artificial neural
networks. This combination aims to capitalize on the hierarchical nature of speech data, where intricate
patterns and dependencies can be better captured. Finally, two ensemble methods namely stacking and
boosting are used for evaluating the CLSTM and DendCaps networks and the experimental results show
that stacking of the CLSTM and DendCaps networks gives the superior result with a 75% accuracy.

KEYWORDS Emotion recognition; Artificial Intelligence; Dendritic Layer; Capsule Networks; Ensem-
ble

I. INTRODUCTION

EMOTION recognition from audio signals plays a piv-
otal role in enhancing human-computer interaction

and enabling machines to understand and react to human
emotions. The field has gained significant attention due to
the explosion of voice-activated systems, virtual assistants,
and AI-driven customer support systems. However, despite
substantial advancements, emotion recognition from audio
signals remains challenging due to the inherent complex-
ity and variability of human emotions, and the diverse
acoustic characteristics they present. Recently, deep learning
models have demonstrated superior performance in various
domains, including image recognition, natural language
processing, and speech recognition. Their ability to learn
complex patterns and dependencies from raw data suggests

that they may offer improved performance for emotion
recognition from audio signals [1]. In the context of human-
computer interaction and affective computing, the challenge
of recognizing emotions from audio-speech signals remains
a vital research problem. The task involves designing robust
and efficient models capable of accurately discerning var-
ious emotional states conveyed through spoken language,
accounting for factors such as speaker diversity, language
variations, and the dynamic nature of emotions.

Researchers have ventured into the utilization of ensemble
techniques for emotion detection, with a specific focus
on employing random forest averaging, locally weighted
naive bayes (LWNB), logistic classifiers, boosting-tree-
based models, gradient boosting and majority-voting clas-
sifier [2] [3] [4] [5] [6]. Furthermore, Capsule Networks
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have garnered attention in the domain of Speech Emotion
Recognition (SER) [7], including Capsule Network hybrids
[8] [9] [10] [11] [12]. While Dendritic layers [13] [14]
[15] [16] [17] [18] [19] have found applications in di-
verse domains such as statistical learning, high-speed data
streams, complex-valued neuron models, forecasting and
hybrid configurations in conjunction with Recurrent Neural
Networks (RNN). The dendritic neuron models use in SER
have remained unexplored [20]. The study of a hybrid
approach, DendCaps, for SER is a unique contribution to
this paper, as such an approach has not been previously
investigated.

The Dendritic Layer, inspired by the biological dendritic
structures in the human brain, provides a mechanism for
capturing complex hierarchical features in audio signals.
This layer excels in modelling intricate relationships within
speech data, enabling it to effectively extract nuanced emo-
tional cues embedded in speech patterns. On the other
hand, Capsule Networks [21] offer an elegant solution for
handling spatial hierarchies and preserving spatial relation-
ships, which are critical in understanding the nuances of
emotion expressed through vocal intonations and cadences.
Integrating the Dendritic Layer [22] with a Capsule Network
creates a synergistic architecture that leverages the strengths
of both approaches. The Dendritic Layer, inspired by the
biological dendritic structures in the human brain, provides
a mechanism for capturing complex hierarchical features
in audio signals. This layer excels in modelling intricate
relationships within speech data, enabling it to effectively
extract nuanced emotional cues embedded in speech pat-
terns. On the other hand, Capsule Networks offer an elegant
solution for handling spatial hierarchies and preserving
spatial relationships, which are critical in understanding the
nuances of emotion expressed through vocal intonations and
cadences. Integrating the Dendritic Layer with a Capsule
Network creates a synergistic architecture that leverages the
strengths of both approaches. From a research problem per-
spective, Speech Emotion Recognition accuracy is a critical
performance metric that directly impacts the utility of SER
systems and achieving high accuracy necessitates addressing
challenges such as dataset diversity, model complexity, and
the nuances of emotional expression in speech signals.
The investigation of newer state-of-the-art hybrid models
is required to bridge the gap and improve accuracy.

This paper aims to address this challenge by propos-
ing innovative/state-of-the-art techniques and methodologies
that advance SER accuracy. This paper proposes using a
Dendritic layer combined with a Capsule neural network
for SER. Combining the Dendritic Layer with a Capsule
Network represents a promising advancement for SER. This
combined framework is poised to enhance the accuracy
and robustness of SER systems. Furthermore, this paper
proposes ensemble [23] [24] methods to combine CLSTM
[25] and DendCaps using stacking and boosting. The con-
tributions of this paper are as follows: The presentation

of a state-of-the-art model for SER. From a methodology
perspective Acoustic Feature Extraction, Hybrid Approaches
and Evaluation Metrics are used. Experiments show the
superior accuracy of the hybrid model.

We organized the remaining parts of the paper as follows.
Section 2 reviews existing literature on CLSTM architec-
tures, Dendritic Layers, Capsule Networks, Training Data
and Evaluation methods. Section 3 looks at the proposed
system, data organization and training procedures. In Sec-
tion 4, we present and discuss the experimental results.
Section 5 provides a conclusion and closure to the article.

II. LITERATURE REVIEW
A. CONVOLUTIONAL LONG SHORT-TERM MEMORY
Convolutional Long Short-Term Memory (CLSTM) net-
works are a hybrid type of neural network architecture,
combining the strengths of Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) networks.
CNNs are excellent for extracting local and shift-invariant
features, particularly from image and audio data, while
LSTMs are designed to capture long-term temporal depen-
dencies, making them ideal for time-series and sequence
data. In a typical CLSTM [26] [27] architecture, CNN
layers are applied first, extracting a rich set of spatial
features from the input data. These spatial features, often
in the form of high-level feature maps, are then fed as
sequences into the LSTM layer. The LSTM layer analyses
these sequences and captures the temporal dependencies
between the features. The CLSTM architecture has found
considerable success in tasks such as video classification
and time-series prediction, where both spatial and temporal
features are critical. It leverages the spatial feature extraction
capabilities of CNNs and the ability of LSTM networks
to model temporal dynamics, thereby providing a robust
framework for spatiotemporal feature learning. Long Short-
Term Memory (LSTM) architectures represent a significant
breakthrough in the field of deep learning, specifically
addressing the challenges associated with understanding
temporal dynamics and depth [28] [29].

B. DENDRITIC NEURON LAYER
In recent years, the pursuit of biologically inspired artificial
neural network architectures has gained significant traction.
One of the intriguing developments in this domain is the
incorporation of dendritic computations into artificial neuron
models, leading to the formulation of "dendritic neuron
layers." Traditional artificial neurons are largely based on
point neurons, which do not capture the intricate dynamics
of dendritic trees observed in biological neurons. Dendritic
trees are known to integrate synaptic inputs in a complex,
often nonlinear, manner, allowing for sophisticated input-
output transformations that cannot be achieved by simple
summation. By introducing dendritic neuron layers, neural
networks can potentially harness this added computational
power, enabling them to recognize and process patterns in
data with greater nuance and efficiency. These layers, the-
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oretically, bridge the gap between traditional deep learning
models and the rich dynamics observed in biological neural
circuits. However, while the dendritic neuron layer concept
is promising, its practical applications, benefits over tradi-
tional architectures, and effective training methodologies are
areas of active research and warrant deeper exploration [19].

A dendritic neuron model is an abstraction of biological
neural computation that incorporates the nonlinear process-
ing capabilities of dendritic trees in real neurons [20]. The
input is received by dendritic trees. These are branched
extensions of the neuron that receive input from other
neurons. In computational models, dendrites can carry out
independent computations before sending their signals to the
neuron’s soma (cell body). The results of dendritic com-
putations are aggregated at the soma, which then decides
the overall output of the neuron. Unlike the perceptron,
which typically uses a single summation and activation
function, the dendritic model allows for multiple layers of
computation within a single neuron. Each dendritic branch
can perform its computation, and their combined results are
integrated at the soma. Learning in dendritic models can
be more complex than in perceptrons, as it can involve
adjusting weights in both the dendritic branches and the
soma. The Dendritic Neuron can be seen in Figure 1. The
dendritic neuron model captures more of the intricacies
of biological neurons, allowing for complex computations
within a single neuron. It can potentially model nonlinear
computations that a single perceptron cannot.

Figure 1. Dendritic Neuron Model [30].

When comparing the two both models aim to abstract
neural computation, the perceptron offers a more simplified,
linear approach, while the dendritic neuron model delves
deeper into the nonlinear, hierarchical processing capabili-
ties of biological neurons. The proof and verification for the
abovementioned statement is that the perceptron applies a
step function or threshold activation function, resulting in a
piecewise linear decision boundary. The Dendritic models

include more complex mathematical functions to capture
nonlinearities and hierarchical processing. The model may
involve spatial and temporal integration, capturing the non-
linear summation of inputs across dendritic branches. Non-
linear summation is especially better for SER because of
the following aspects: Capturing Complex Relationships,
Hierarchical Processing, Spatial Integration of Features,
Temporal Dynamics, Handling Non-Linear Acoustic Pat-
terns and Increased Model Expressiveness. A perception
with a linear lacks these features. The basic perceptron
formula is [31]:

y = f(w.x+ b) (1)

where:
y is the output.
f is an activation function, often a step function for the
simplest perceptrons, but it could be a sigmoid, tanh, ReLU,
etc. in modern networks.
w is the weight vector.
x is the input vector.
b is the bias.

The dendritic layer utilizes a multiplicative function to
handle the output originating from numerous synapses in
the synaptic layer. In this model, the synaptic layer receives
output signals from other neurons, individually processing
them using a sigmoid function. Subsequently, the dendritic
layer employs a multiplication function to process the out-
put signals from the synaptic layer. The membrane layer
then processes the resulting signals from each branch in
the dendritic layer through a summation function. Finally,
the somatic layer processes the output signals from the
membrane layer using another sigmoid function, ultimately
producing the overall output signal of the entire dendritic
neuron model.

Modelling the dendritic computation is more complex and
less standardized, given that it’s a newer area of exploration.
However, a simplified version might look something like
[19]:

y = f
∑
i

g (wi.xi) + b) (2)

f(·) Represents the activation function applied to the sum of
the weighted inputs and bias. The somaś activation function.∑

i This denotes the summation over all the inputs (i).
g This represents the activation function applied to each
weighted input.

The choice of the activation function may depend on
factors such as the characteristics of the data, the network
architecture. Two widely used activation functions are:
1) Sigmoid Activation Function:

sigma(z) =
1

1 + e−z
(3)

2) Rectified Linear Unit (ReLU):

ReLU(z) = max(0, z) (4)
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wi are weights associated with the i-th dendritic branch.
xi is input to the i-th dendritic branch. The output of a
neuron is calculated as the weighted sum of its inputs plus
a bias term.
Neuron Output:

σ

(∑
i

wi · xi + b

)
(5)

The correctness of the formula y = σ (
∑

i g(wi · xi) + b)
involves demonstrating that it accurately represents the
desired computation, particularly in the context of neural
networks. Here’s an overview of the proof:

1) Spatial and Temporal Integration:
The summation term

∑
i g(wi · xi) represents the spatial

integration of inputs across the dendritic tree. The optional
activation function g(·) may introduce non-linearity, captur-
ing more complex relationships in the input data.

2) Bias Term (b):
The bias term (b) allows for the adjustment of the overall
activation level, accounting for factors not solely dependent
on the synaptic inputs.

3) Activation Function (σ):
The sigmoid activation function σ(z) = 1

1+e−z introduces
non-linearity and squashes the output to the range (0, 1),
making it suitable for binary classification problems.

4) Feasibility of Inputs:
The formula is feasible if the input to the sigmoid function
is within a reasonable range. The choice of weights (i) and
bias (b) during training ensures this feasibility.

5) Training and Adaptation:
The correctness is linked to the model’s ability to adapt dur-
ing training. The weights and bias are adjusted to minimize
the difference between the predicted output and the actual
target.

6) Gradient Descent:
The training process typically involves gradient descent or a
similar optimization algorithm. Correctness is supported by
the convergence of the optimization process, ensuring that
the network parameters reach values that minimize the loss
function.

The summation goes over all dendritic branches. It can be
seen the perceptron computes a weighted sum of the inputs
and then applies the activation function. On the other hand,
each dendritic branch performs its own weighted sum and
non-linear transformation before all the results are combined
and processed by the soma. It’s worth emphasizing that
these are simplified representations. The actual formulas can
be more complex, especially for the dendritic model which

can incorporate various types of non-linearities, integration
mechanisms, and more, reflecting our growing understand-
ing of dendritic computation in biological neurons. It’s also
worth noting that the true behaviour and computation of
real dendrites in biological neurons are still topics of active
research, and artificial neural models might capture only
certain aspects of this behaviour.

C. CAPSULE NETWORKS
In the domain of deep learning, Capsule Networks (Cap-
sNets) has emerged as a novel architecture that aims to over-
come the limitations inherent in traditional Convolutional
Neural Networks (CNNs). Developed by Geoffrey Hinton
and his team, Capsule Networks introduces the concept of
"capsules"—a group of neurons that learn to recognize an
object in the visual hierarchy and encapsulate its spatial
and hierarchical relationships in the form of vectors. Unlike
CNNs, which are highly susceptible to variations in orien-
tation, scale, and pose, Capsule Networks are designed to
maintain these hierarchical relationships, thereby achieving
better performance in tasks requiring spatial understanding
[32]. The distinctive routing-by-agreement mechanism en-
ables capsules at one layer to send information to appropri-
ate parent capsules in the layer above, replacing the function
of pooling layers seen in CNNs. This mechanism allows
for dynamic routing of information based on the data itself,
which is a substantial departure from the static nature of
traditional architectures. Consequently, Capsule Networks
have shown promising results in various applications, from
object classification to complex scene understanding, and
they offer the possibility for more interpretable and robust
models in the ever-evolving landscape of machine learning
[7] [8] [33].

D. TRAINING DATA
The Wheel of Emotions, proposed by psychologist Robert
Plutchik [34] in 1980, is a comprehensive model for under-
standing and categorizing human emotions. Plutchik’s wheel
is structured around eight primary emotion dimensions: joy
versus sadness, trust versus disgust, fear versus anger, and
surprise versus anticipation. These primary emotions can
be combined in different ways to represent more complex
emotional states [35]. The dataset used in this study is
based on the 8 emotions in Plutchik’s wheel. The dataset
used is a custom-created Afrikaans speech corpora [36].
There are roughly 100 samples per category, so roughly
800 samples in total. The following features are extracted
and trained on: Mel-frequency cepstral coefficients (MFCC),
chromagram (Chroma), and Mel-frequency cepstrum (Mel),
Contrast and German Tone Network (Tonnetz) [37] [38].
The figure below shows one training sample containing the
extracted features.

E. EVALUATION
Upon the application of machine learning algorithms, it
becomes imperative to employ performance evaluation met-
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Figure 2. Extracted features.

rics to gauge their efficacy. These performance evaluation
metrics constitute a crucial facet of the assessment process,
with a multitude of metrics having been introduced in
prior research endeavours, each catering to distinct as-
pects of algorithm performance. Consequently, the selection
of an apt set of metrics is contingent upon the specific
machine-learning problem at hand. Within the context of
this paper, we employ a repertoire of established metrics
tailored for classification problems. This approach allows
us to glean invaluable insights into algorithm performance
and facilitates a comprehensive comparative analysis. The
following are evaluated in this research paper: Accuracy,
precision, Recall, and F1-Score [39] [40]. Accuracy is a
widely used deep-learning evaluation metric that quantifies
the overall correctness of a model’s predictions, representing
the proportion of correctly classified instances out of the
total. While useful for assessing overall model performance,
it may be less informative in scenarios with imbalanced class
distributions. Precision assesses the model’s ability to make
accurate positive predictions by measuring the ratio of true
positive predictions to the total positive predictions. It is
particularly relevant in applications where minimizing false
positives is critical, such as medical diagnostics. Recall,
also known as sensitivity or true positive rate, evaluates the
model’s capacity to capture all relevant positive instances
by calculating the ratio of true positives to the total actual
positives. It is essential in situations where missing positive
cases can have significant consequences, like identifying
diseases. The F1-Score is a balanced metric that combines
precision and recall providing an extensive assessment of
a model’s performance, especially in imbalanced datasets.
It represents the harmonic mean of precision and recall,
favouring models that achieve both high precision and recall
simultaneously. A confusion matrix is a tabular represen-
tation of a model’s predictions, showcasing the count of
true positive, true negative, false positive, and false negative
predictions. It serves as the foundation for computing other
evaluation metrics and offers insights into the types of errors
a model makes, aiding in model diagnosis and improvement.

The respective formulas for the calculations can be seen
below [41].

Accuracy = (
TP + TN

TP + TN + FP + FN
) (6)

Precision = (
TP

TP + FP
) (7)

Recall = (
TP

TP + FN
) (8)

F1 Score = ( 2 x
Precesion x Recall
Precision + Recall

) (9)

III. METHODOLOGY
A. GAPS IN EXISTING SOLUTIONS
In the realm of speech emotion recognition (SER), sig-
nificant advancements have been made in recent years,
resulting in the development of robust models capable of
discerning various emotional states from spoken language.
However, despite these strides, there exist notable gaps and
challenges that warrant attention and further research. One
of these challenges is feature selection and extracting the
right features that capture emotional content from audio
signals. Another gap is that of high dimensionality where
speech signals have a high dimensional space, making
them computationally expensive to process and model. Fi-
nally, context awareness where emotions are often context-
specific, but many models don’t take contextual information
into account.

B. JUSTIFICATION FOR CURRENT RESEARCH
Leveraging the synergistic potential of dendritic layers, cap-
sule networks, and ensemble methods presents a compelling
avenue for enhancing the robustness and interpretability
of SER. Combining Capsule Networks (CapsNets) and
Dendritic Neural Networks for audio emotion detection is
intriguing. Both types of networks have characteristics that
could be beneficial for the challenging task of emotion
detection from audio signals.

C. PROPOSED SYSTEM
Based on the literature review limitations exist for emo-
tion detection when using older architectures like CNNs
and LSTMs. These architectures process audio in fixed-
size chunks or frames. They might not capture long-term
dependencies or subtle changes in emotion that occur over
extended time intervals. Emotions in audio often depend on
context, which can be challenging to capture with fixed-
sized windows. Another challenging factor highlighted by
the literature review is audio quality. In most real-world
applications, audio signals are subjected to a range of dis-
tortions, noise, and variations in recording conditions. In this
article, we propose training two networks. The first network
is CLSTM. We train this network and record the results to
get a baseline. The second network is a hybrid Dendritic
[20] and Capsule network [8] DenCaps. This network is also
trained and hyperparameters are adjusted for best accuracy.
Next, ensemble methods [2] namely boosting and stacking
are used to evaluate the two combined networks. A flowchart
of the proposed system can be seen in Figure 3. The
proposed system makes use of a custom-created Afrikaans
speech corpora [36]. The following features are extracted:
MFCC, Chroma, Mel, Contrast and Tonnetz. In terms of
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evaluation Accuracy, F1-Score and a Confusion Matrix are
used.

Figure 3. Proposed system using custom dataset.

D. DATASET PREPARATION
The dataset consists of eight emotion classes corresponding
with the Plutchnik wheel of emotion. The data is placed
into eight subfolders. Each contains 100 audio file samples.
Audio files are processed, and the following are extracted:
MFCC, Chroma, Mel, Contrast and Tonnetz. Data is split
into validation and training samples using a 20% split. The
following shape is fed into the networks (798, 1047, 40,
1). There are 1047 data points using 40 coefficients and 1
dimension.

E. TRAINING PROCEDURE
Google Colab was used with a High RAM V100GPU
environment because of the sheer memory and processing
requirements. Pre-trained models and training data were
stored on Google Drive for fast access in Google Colab.
We had to experiment with code examples from numerous
GitHub repositories due to the extensive coding required
for Dendritic Layers, Capsule NN and Ensemble methods.
Some of the main libraries used are Tensorflow Keras,
Numpy and sklearn.

1) CLSTM

The CNN LSTM hybrid CLSTM model consists of the
following layers. Data is fed into a 1D Convolution layer
followed by a Max Pooling layer and subsequently a dropout
layer. The Dropout layer feeds into an LSTM layer which
is flattened and then passed to a Relu-activated dense layer.
Finally, another dropout layer. The model is compiled with
a Categorical Cross-entropy loss function and an Adam
optimizer. The model is trained using a batch size of
32 and 50 epochs. The CLSTM and DendCaps networks
are saved in .tf Tensorflow format for later comparison.
To save custom layers, the get_config () method needs
to be overridden with the configuration parameters of the
respective layer.

2) DendCaps

The DendCaps model consists of the following layers. Data
is fed into two 2D Convolution layers, the first having
a 128-kernel size and the second a 32-kernel size. Both
Convolution layers use Relu activation. The output is fed
into a max pooling layer, followed by a dropout and then a
flattening layer. This output is fed into the custom Dentritic
Layer. The output is sent to a Capsule Layer followed by
a dense dropout and again a dense layer. The model is
compiled with a Categorical Cross-entropy loss function and
an Adam optimizer. The model is trained using a batch size
of 32 and 50 epochs. The custom Dendritic layer is a custom
class written in Python. The class takes two parameters
namely units and segments. The units and segments are
used to determine the shapes and sizes of the weight and
bias tensors for the dendritic segments and the soma. The
model was trained using various combinations of units and
segments. The optimal segments were two. Unit wise the
optimal value was 64. The custom Capsule layer is a custom
class written in Python. The class takes three parameters
namely the number of capsules (num_capsules), capsule di-
mensions (dim_capsule) and number of routings (routings).
The layer takes input data, performs routing iterations, and
produces output capsules as its result. The model was trained
using various combinations of num_capsules, dim_capsule
and routings. The optimal configuration was found to be
num_capsules=10, dim_capsule=32, and routings=3.

3) Ensemble

Two Ensemble methods are implemented namely stacking
and boosting. Stacking combines the predictions of multiple
base models by training a meta-model on their outputs, often
leading to improved prediction accuracy. This approach
leverages diverse model architectures or algorithms to cap-
ture complex patterns in data, contributing to enhanced
predictive performance. Boosting, on the other hand, is an
ensemble learning method that sequentially trains a series
of weak learners, each focusing on the data points that were
misclassified by the preceding ones. Through this iterative
process of re-weighting the data and combining weak learn-
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Table 1. CLSTM Results

Test Accuracy Precision Recall F1Score Loss
1 70% 0.84% 0.80% 0.80% 0.77%
2 69% 0.92% 0.77% 0.78% 0.82%
3 71% 0.82% 0.81% 0.81% 0.73%
4 72% 0.78% 0.82% 0.82% 0.72%

ers. To achieve this both the CLSTM and DendCaps .tf
networks are loaded into memory and then processed.

a: Stacking
In the case of stacking a new stacked network is created
using a custom Python class that Concatenates the two
networks and adds a Softmax activation layer to it. The
new model is compiled with a categorical_crossentropy loss
function and Adam optimizer. The new model is now trained
on an existing dataset using a batch size of 32 and 50
epochs.

b: Boosting
In the case of boosting a custom class is used to test both
network architectures. The prediction for each input sample
is determined by selecting the class with the highest summed
probability. Outputs are aggregated to improve prediction
accuracy.

IV. EXPERIMENTAL RESULTS
A. TEST DATA
The test data comprises randomly selected samples from the
pool of 800 audio clips. This ensures a robust evaluation
of the model’s generalization capabilities. 160 clips are
selected for validation and testing. The following evaluation
metrics are used: Accuracy, Precision, Recall and F1 Score.

B. CLSTM
The baseline CLSTM results seen in Table 1 show good
performance in terms of Accuracy, Precision, Recall, F1-
Score and Loss. The highest accuracy reached is 72%, so
this forms a solid baseline. The confusion Matrix seen in
Figure 4 shows roughly four misclassified emotions, but
overall shows a good distribution.

C. DENDCAPS
Looking at the DendCaps network results seen in Table 2 the
highest accuracy achieved is 74%. In terms of the Confusion
Matrix seen in Figure 5, the distribution is even, except for
a few falsely classified labels.

Figure 4. CLSTM Confusion Matrix.

Table 2. DendCaps Results.

Test Accuracy Precision Recall F1Score Loss
1 68% 0.84% 0.80% 0.71% 0.67%
2 70% 0.82% 0.79% 0.79% 0.72%
3 73% 0.84% 0.78% 0.81% 0.63%
4 74% 0.81% 0.77% 0.75% 0.62%

D. ENSEMBLE
1) Stacking
The first Ensemble method results can be seen in Table 3. A
high accuracy of 77% is achieved and the confusion matrix
distribution is even. The highest false classification was for
Disgust classified as trust. The confusion matrix can be seen
in Figure 6.

Table 3. Stacking Results.

Test Accuracy Precision Recall F1Score Loss
1 65% 0.84% 0.80% 0.71% 0.60%
2 67% 0.82% 0.79% 0.79% 0.61%
3 77% 0.84% 0.78% 0.81% 0.63%
4 75% 0.81% 0.77% 0.75% 0.63%
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Figure 5. DenCaps Confusion Matrix.

Figure 6. Stacking Confusion Matrix.

2) Boosting
For the second ensemble method namely boosting the results
can be seen in Table 4. Accuracy wise it is 72%, which is
decent. No confusion matrix can be formed because of the
nature of the boosting method.

Table 4. Boosting Results.

Test Accuracy Precision Recall F1Score Loss
1 72% 0.66% 0.9% 0.76% 0.87%
2 72% 0.67% 0.6% 0.63% 0.82%
3 72% 0.70% 0.72% 0.66% 0.83%
4 72% 0.81% 0.52% 0.63% 0.74%

E. DISCUSSION OF RESULTS

The CLSTM baseline has solid results for accuracy, Preci-
sion, Recall and F1-Score. Building on this, the DendCaps
network outperforms it in terms of accuracy. The Precision,
Recall and F1-Score are also very good. In Tests 3 and 4,
the DendCaps model achieves higher recall values compared
to the Conv LSTM model. This suggests that DendCaps
is better at capturing instances of certain emotional states,
possibly the ones with lower representation in the data.
The DendCaps model consistently has lower loss values
across all tests. Lower loss indicates better convergence and
a better fit to the training data. In Test 3, the DendCaps
model achieves a higher F1-Score, indicating a better bal-
ance between precision and recall, which can be important
for tasks like speech emotion recognition. DendCaps may
generalize better to the specific characteristics of the dataset
used in these tests. Subsequently, these two network models
(CLSTM and DendCaps) are saved and with the two en-
semble methods, namely stacking and boosting, combined.
Boosting yields decent results, but CLSTM stacked with
DendCaps gives the best results. In terms of balanced per-
formance, stacking consistently maintains a balance between
precision and recall, which is crucial for tasks like speech-
emotion recognition. While DendCaps may outperform in
specific tests, Stacking provides a more balanced and consis-
tent performance. Generilization-wise, Stacking shows the
ability to generalize well to different aspects of the data
across tests. It is not overly sensitive to variations in the
dataset, as seen in Test 3, where it achieves the highest
accuracy. For the competitive metrics, Stacking performs
competitively in terms of accuracy, precision, recall, and F1-
Score. It may not have the highest values in all tests, but it
offers a well-rounded performance across different metrics.
Lastly, Stacking has relatively stable loss values, indicating
good convergence and robustness. Stacking emerges as the
most favourable method among DendCaps, Stacking, and
Boosting due to its balanced and consistent performance,
achieving competitive accuracy, precision, recall, and F1-
Score across various tests. Stacking’s ability to generalize
well to different aspects of the data while maintaining stabil-
ity in loss values makes it a robust choice for speech emotion
recognition. In terms of the various metrics, very high scores
have been achieved ranging from 60% to 80% [42] using
speech corporas like the well-known RAVDESS(Ryerson
Audio-Visual Database of Emotional Speech and Song)
[43], IEMOCAP (Interactive Emotional Dyadic Motion
Capture) [44] and Emo-DB (Emotional Database) [45]. For
the custom-created Afrikaans [36] speech corpora CNN,
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RNN and LSTM produce lower and inferior results than
CLSTM, DendCap and DendCaps Ensemble methods. One
must bear in mind that the number of emotions, 7 for
RAVDESS, 5 for IEMOCAP and 7 for EmoDB as opposed
to 8 for the Afrikaans corpora plays a role. Another factor
is the amount of samples. RAVDESS has 7356, EmoDB
has 535, IEMOCAP 1,150 and Afrikaans 800 samples/audio
clips. Taking these factors into account the model perfor-
mance compared to other simulations set a high precedent
and offers exciting research opportunities.

V. CONCLUSIONS
In this article, we investigated the performance and accu-
racy of using a Dendritic Layer Capsule network hybrid
combined with ensemble methods. The aim of increased ac-
curacy was achieved with this study. It is hypothesized that
the model proved more effective because of the following.
Hierarchical feature extraction, complex spatial relationships
within speech data and capturing nuanced emotional cues.
The ensemble methods and in this case stacking improved
accuracy by increasing the overall robustness of the stacked
model. The relevance of this is a more accurate model to
be used by other researchers as well. Future work will be
testing additional ensemble methods using DendCaps and
CLSTM. We will also consider a Dendritic LSTM Capsule
hybrid model. From our perspective, other model combina-
tions and ensemble methods will build on the success of
this model.
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